Lyapunov Exponents Vectors and Modes

by

Gary Morriss, Tooru Taniguchi, Tony Chung & Dean Robinson

University of New South Wales, Sydney AUSTRALIA

Lyapunov Spectrum

100 hard disks

Contents

- Quasi-one-dimensional system
- Lyapunov modes
- Time dependence
- Two-dimensional systems
- Lyapunov Localization
- Dynamics of the most localized Lyapunov vector

Quasi-one-dimensional Systems

Schematic boundary conditions

corresponds to x-coordinate.

Four types of boundary conditions. We mostly use (H,P)

The number and pattern of steps changes with

Modes observed in the long direction only - x-

Simplifies the presentation of modes

P = periodic

H = hard wall

Numerical Results for Lyapunov exponents

- Quasi-one-dimensional system N=100
- 200 coordinates + 200 momenta -> 400 exponents
- (H,P) -> 4 zero exponents #199, 200, 201, 202
- First 1-point step #198 #203
- First 2-point step #196, 197 #204, 205
- Second 1-point step #195 #206

General Features

- Numerical calculations using Benettin's scheme
- Step structure in the Lyapunov exponents closest to zero (positive and negative)
- Here: 1-point step, then 2-point step (boundary conditions)
- Lyapunov vectors can exhibit stable delocalized structure – called Lyapunov modes

Symplectic structure

Symplectic eigenvalue theorem - pairing of Lyapunov exponents

 $\left\{ \boldsymbol{\lambda}_{j},-\boldsymbol{\lambda}_{j}
ight\}$

Conjugacy of Lyapunov vectors

$$\lambda_{j} \iff \delta\Gamma_{j} = \begin{pmatrix} \delta q_{j} \\ \delta p_{j} \end{pmatrix} \qquad \qquad \lambda_{-j} \iff \delta\Gamma_{-j} = \begin{pmatrix} \delta q_{-j} \\ \delta p_{-j} \end{pmatrix}$$

$$\lambda_{-j} = -\lambda_j \quad \Leftrightarrow \quad \delta\Gamma_{-j} = \begin{pmatrix} \delta q_{-j} \\ \delta p_{-j} \end{pmatrix} = \begin{pmatrix} \delta p_j \\ -\delta q_j \end{pmatrix}$$

Benettin's scheme preserves this structure

Conserved Quantities

For each conserved quantity of the dynamics there is a zero Lyapunov exponent. For (P,P):

Centre of mass
$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$

Total momentum

$$\overline{p}_x = \frac{1}{N} \sum_{i=1}^{N} p_{xi}$$

$$\overline{p}_{y} = \frac{1}{N} \sum_{i=1}^{N} p_{yi}$$

Energy
$$\frac{1}{2} \sum_{i=1}^{N} p_{xi}^2 + p_{yi}^2 = N\overline{e} = NT$$

There can be no exponential separation in the direction of the trajectory. Time translational invariance \bar{t} Conjugacy $\{\overline{x}, \overline{p}_x\}$ $\{\overline{y}, \overline{p}_y\}$ $\{\overline{e}, \overline{t}\}$

Lyapunov Modes for Zero exponents

Lyapunov Vector notation

$$\delta \Gamma = \begin{pmatrix} \delta \mathbf{q} \\ \delta \mathbf{p} \end{pmatrix} = \begin{pmatrix} \delta x \\ \delta y \\ \delta p_x \\ \delta p_y \end{pmatrix}$$

Noether's theorem transformations corresponding to conserved quantities

$$\delta\Gamma_{px} = \frac{1}{\sqrt{N}} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \qquad \qquad \delta\Gamma_{py} = \frac{1}{\sqrt{N}} \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \qquad \qquad \delta\Gamma_{e} = \frac{1}{\sqrt{2Ne}} \begin{pmatrix} 0\\0\\p_{x}\\p_{y} \end{pmatrix}$$

Evidence that these form two independent sub-spaces

$$\left\{\delta\Gamma_{x},\delta\Gamma_{y},\delta\Gamma_{t}\right\} \left\{\delta\Gamma_{px},\delta\Gamma_{py},\delta\Gamma_{e}\right\}$$

Lyapunov Modes

First 1-point step

Second 1-point step

L mode

First 2-point step

 $\delta x_j \sim \sin(k_1 x_j) \cos(\omega t)$

First 2-point step

 $\delta x_j \sim p_{xj} \cos(k_1 x_j) \sin(\omega t)$

P mode

First 2-point step

Coordinate

Momentum

197

196

Summary of Modes

For Quasi-one-dimensional system with (H,P) the principle contribution to the mode

1-point steps - transverse modes

k_n - boundary condition dependent

coordinate and momentum components same functional form

eta and eta' depend upon density

2-point steps – longitudinal modes

$$\delta\Gamma_{197} = -\cos\omega t \begin{pmatrix} \alpha \sin kx_{j} \\ 0 \\ \alpha' \sin kx_{j} \\ 0 \end{pmatrix} + \sin\omega t \begin{pmatrix} \beta p_{xj} \cos kx_{j} \\ \beta p_{yj} \cos kx_{j} \\ \beta' p_{xj} \cos kx_{j} \\ \beta' p_{yj} \cos kx_{j} \end{pmatrix}$$

$$\delta\Gamma_{196} = -\sin\omega t \begin{pmatrix} \alpha\sin kx_{j} \\ 0 \\ \alpha'\sin kx_{j} \\ 0 \end{pmatrix} + \cos\omega t \begin{pmatrix} \beta p_{xj}\cos kx_{j} \\ \beta p_{yj}\cos kx_{j} \\ \beta' p_{xj}\cos kx_{j} \\ \beta' p_{yj}\cos kx_{j} \end{pmatrix}$$

Comparison of Boundary Conditions

Time Dependence

Time Correlation Functions

- Experimentally measurable quantities
- Time dependent properties
- Integrals give transport coefficients
- Connections with linear response theory

Velocity autocorrelation function

 $\langle p_x(t)p_x(0)\rangle$

n

At longer time random behaviour

Periods for different Boundary Conditions

	τ	$T_{lyap} \; oldsymbol{ au}$	$T_{acf} au$
(P,P)	0.0369	77.0	37.4
(P,H)	0.0371	91.5	45.9
(H,P)	0.0380	154.5	77.4
(H,H)	0.0383	194.5	96.8

Numerical Results

 Momentum autocorrelation function has oscillatory behaviour at long time

$$\langle p_{xj}(t)p_{xj}(0)\rangle \sim \sin\omega t$$
 (1)

• Lyapunov mode for the 2-points steps is oscillatory

$$\delta x_j \sim p_{xj} \cos(k_n x_j) \sin \omega_L t$$

• which implies

$$\left\langle \delta x_{j}(t) \delta x_{j} \right\rangle \sim \sin \omega_{L} t$$
 (2)

But:

$$\left\langle \delta x_{j}(t) \delta x_{j} \right\rangle \sim \left\langle p_{xj}(t) p_{xj} \cos(k_{n} x_{j}) \cos(k_{n} x_{j}) \right\rangle \cos \omega_{L} t$$
$$\sim \left\langle p_{xj}(t) p_{xj} \right\rangle \cos \omega_{L} t$$
$$\sim \sin \omega t \cos \omega_{L} t$$
$$\sim \sin(\omega - \omega_{L}) t \tag{3}$$

comparing (2) & (3)

$$\sin\omega_L t \sim \sin(\omega_L - \omega)t$$

Equating arguments

$$\omega_L = \omega - \omega_L$$
$$\Downarrow$$

Two-dimensional Systems

Lyapunov Spectrum in Two-dimensions

Two-dimensional square N=100

(H,H) has 4-point step, (P,P) has no steps

Momentum Autocorrelation Function

Two-dimensional square N=100

Time Dependence of Lyapunov Mode

Two-dimensional square N=100

T_{lyap}=2267

T_{tcf}=1189

Fully Two-Dimensional System

T_{acf}=37120=Tlyap/2 T_{lyap}=7403

T_{lyap}=74031 (Eckmann et. al.)

Lyapunov Localization

Localization

Contribution to n th Lyapunov vector from j th particle

$$\left|\delta\Gamma_{j}^{(n)}(t)\right|^{2} = \left(\delta x_{j}^{(n)}\right)^{2} + \left(\delta y_{j}^{(n)}\right)^{2} + \left(\delta p_{xj}^{(n)}\right)^{2} + \left(\delta p_{yj}^{(n)}\right)^{2}$$

Normalized contribution

$$\gamma_{j}^{(n)}(t) = \frac{\left|\delta\Gamma_{j}^{(n)}(t)\right|^{2}}{\sum_{k=1}^{N} \left|\delta\Gamma_{k}^{(n)}(t)\right|^{2}}$$

$$0 \le \gamma_n^{(j)}(t) \le 1$$

Localization 'width'

$$\frac{\mathcal{W}^{(n)}}{N} = \frac{1}{N} \exp\left(-\sum_{j=1}^{N} \left\langle \gamma_{j}^{(n)}(t) \ln \gamma_{j}^{(n)}(t) \right\rangle\right)$$

 $\frac{1}{N} \leq \frac{\mathcal{W}^{(n)}}{N} \leq 1$

Localization spectra

Localization in Low density Limit

Localization for the Lyapunov vector of the largest exponent

Quasi-one-dimensional System

Randomly Distributed Brick Model

Conjecture:

The number of most localized Lyapunov vectors is equal to the number of exponents in the linear region

The number of exponents in the linear region is the average number of randomly dropped bricks

Localization in Low density Limit

Dynamics of the most Localized Lyapunov vector

Normalized Hopping Rate

Density dependence

Brick Accumulation Model

$$\mathcal{K}_{l}(n) = \begin{cases} \max\{\mathcal{K}_{j}(n-1), \mathcal{K}_{k}(n-1)\} + 1 & \text{for} \quad j, k \\ \mathcal{K}_{l}(n-1) & \text{for} \quad l \notin \{j, k\} \end{cases}$$

Clock Model

Total Accumulation Rate

Largest Lyapunov Exponent

Conclusions

- Space and time dependent Longitudinal modes
- The period of the oscillating Lyapunov mode and the period of oscillations in the momentum auto-correlation function are related.
- This connection is independent of the boundary conditions: ω and ω_L change but $\omega_L = \frac{1}{2}\omega$ remains!
- The relation is correct for fully two-dimensional systems.
- Linear region in Localization spectrum is explained
- Dynamics explained by brick accumulation model

Nonequilibrium Heat flow

Left-side boundary condition Right-side boundary condition

$$p'_x = \varepsilon p_{T_L} - (1 - \varepsilon) p_x$$

$$p'_{x} = -\varepsilon p_{T_{R}} - (1 - \varepsilon) p_{x}$$

Quasi-one-dimensional system

COLD

T=1

T=10

HOT

N=100 $\varepsilon = 0.5$

Temperature Profile

Largest positive and negative exponents

Smallest positive and negative exponents