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From a physicist’s point of view:

Number theorist := someone who is willing to spend an 
infinite amount of time on an impossible problem.
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Farey Fractions:

The Farey fractions (modified Farey sequence) may be 
defined by addition:
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At each level, we keep the fractions previously generated 
(the “old” fractions) and generate “new” ones.  If 

are neighboring fractions at level k, then a “new” fraction

a + b

c + d

appears between them at level k+1.  In this way, all rationals 
in [0,1] are generated as k → ∞.
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Alternatively, one can generate the Farey fractions using 
products of the matrices 

A =

(

1

1

0

1

)

B =

(

1

0

1

1

)

and

Each such product of k matrices is denoted

Mk = AAB . . . BAA
︸ ︷︷ ︸

k

=

(

a b

c d

)

.
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When the product begins with A, one has 

with a/c the neighbor of b/d at level k, and all 2k-1+1 
fractions are generated.

b

d
<

a

c



Of course, there is a more charming way to generate them....

Which may 
explain the 

name...
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Mini–course in Statistical Mechanics:

The Farey fraction spin chains are a set of physical models 
built on Farey fractions.  (Originally studied by Cvitanovic, 
Fiegenbaum, and others as models of intermittency; later by 

Knauf and co-workers.)  To get an idea of their physical 
interest, we introduce a few stat mech quantities.  

Consider the following simple model of a magnet: a chain 
composed of k molecules (“spins”), each of which can point 
either up ↑ or down ↓. The magnetization = (number of up 

spins - the number of downs) / k.  In order to account for 
thermal effects, we must perform a certain weighted 

average over all possible arrangements (configurations or 
states) of ups and downs, then let the length k of the chain 

(the number of spins) go to ∞.



↑↑↓ . . . ↑↓↓
︸ ︷︷ ︸

k

With k spins there are 2k configurations (states).  

The probability of a given configuration (the “Boltzmann 
factor”) depends on its energy E and the temperature T: 

p =

e−E/T

Z

where the partition function Zk is just the normalizing factor:

Z =

∑

configs

e
−E/T

.k



Note that the probability of a configuration (state) decreases 
with its energy.  Thus the state of lowest energy (the “ground 
state”) has the largest probability.  This is generally ordered 
(magnetized) and dominates at low temperatures, as we will 

see.



The partition function Zk plays another role as well.  Its 
logarithm gives the free energy f, the function that determines 

the thermodynamic behavior of the system.  Explicitly,

f = −T lim
k→∞

lnZ

k
.

Of course, for arbitrary choices of energy E, it is not 
obvious that f will exist.  If it does exist, its singularities (as 

a function of T) determine the phase transitions of the 
model.  Their nature determines the type (“order”) of phase 
transition.  In our case there is a phase transition between a 
magnetized (ordered) state and unmagnetized (disordered) 

state.

k



To specify our model, we must list the configurations and 
assign an energy to each one.  For us, a configuration is just 

one of the 2k products of k matrices A and B.  Each A = ↑, 
spin up, while B = ↓, spin down.  Thus the configuration 

with all As has all spins up

Here the chain is completely magnetized.  

↑↑↑ . . . ↑↑
︸ ︷︷ ︸

k

= A
k

=

(

1 0

k 1

)



 
The Trace Model:

There are various ways to define the energy that are of 
interest.  Most of them use the product of the k matrices 

mentioned

Mk = AAB . . . BAA
︸ ︷︷ ︸

k

=

(

a b

c d

)

.

Note that det(A) = det(B) = 1, so ad - bc = 1, and all matrix 
entries are non-negative.   For the Trace Model, the energy of 

a given configuration is 

so the partition function is simply

Ei = ln[Tr(Mi)] = ln(a + d),

Zk(T ) =
2

k∑

i=1

1

Tr(Mi)1/T



The ground state is all spins up (or down)

with energy 

Ek,0 = ln[Tr(Ak)] = ln2.

Turning over one or more spins gives an “excited state”, 
with energy that grows with chain length at least like  

ln(k).  The maximum excited state energy grows like k 

for the “antiferromagnetic” state

↑↓↑↓↑↓ . . . ↑↓
︸ ︷︷ ︸

k

↑↑↑ . . . ↑↑
︸ ︷︷ ︸

k

= A
k

=

(

1 0

k 1

)



Now there are only two ground states, but exponentially 
many excited states (2k-2).  Additionally, the free energy is 

known to exist, and there is a single phase transition at 
temperature Tc = 1/2.    For k → ∞, the ground states 

dominate at low temperatures.  However, for  T  > Tc, the 

system goes into a disordered (thermodynamic) state, i.e. it 
undergoes a phase transition.



It is unusual to find a phase transition at finite T in a one–
dimensional system.  Generally such systems are always 
ordered or always disordered.  The transition here is also 

interesting because it is “second–order” (the first derivative 
of f is continuous at Tc).

The following (quite heuristic) argument explains why one–
dimensional systems usually don’t have a phase transition. 



 Assume an ordered state at low temperature.  Suppose the 
energy of a defect is ε.  Then the entropy of a defect is 

where k is the number of spins.  Hence the free energy 
change due to the extra defect is

∆s = log k,

∆f = ε − T log k,

which will always be < 0 (favored) for k large enough, unless
 i.) ε = ∞ (when the system is always ordered) or
 ii.) the interactions are long–ranged (the case here–note 
the energy of a defect in the KSC is logarithmic in k).

↑↑↑ . . . ↑↑↓↓ . . . ↓
︸ ︷︷ ︸

k



The magnetization (for an ∞ chain) goes from saturated 
(m = 1) to paramagnetic (m = 0) at the transition, which 

occurs at  Tc = 1/2.  The low–temperature state is completely 

ordered, with no thermal effects at all (this is also unusual). 



The free energy f vanishes for T < Tc, and is negative 
for T > Tc.  Just above the transition it has the form 

(Fiala, PK, and Özlük, 2003)

(we’ll explain how this is known shortly).  This 
functional form means that the transition is (barely) 

second–order.

f ∼

T − Tc

ln(T − Tc)



Summary:
Mk = AAB . . . BAA

︸ ︷︷ ︸

k

=

(

a b

c d

)

.

f = −T lim
k→∞

lnZ

k
.

Ei = ln(a + d)

f ∼

T − Tc

ln(T − Tc) (Tc = 1/2)

Zk(T ) =
2

k

∑

i=1

1

(a + d)1/T

(

=
∑

n

Φk(n)

n1/T

)

k



The trace model has inspired some work in number theory.  
Define first

i.e., the number of configurations in a chain of length k with 
energy ln(n) (“density of states”).   (As mentioned, usingΦk, 
Zk becomes a Dirichlet series.)  However, Φk  turns out to be 

difficult to handle.  If one lets

Φk(n) = |{Mk|Tr(Mk) = n}|

Φ(n) =
∞∑

k=1

Φk(n)

Ψ(N) =
N∑

n=2

Φ(n)

and defines a summed “density of states”



Additionally, M. Peter (2001) proved that for the density of 
states itself 

does not even exist!  (it’s a distribution).  Generically, the 
reason is that there is fractal behavior in this model (the 

Farey chain was originally studied as a model of 
intermittency in chaos)...

lim
N→∞

Φ(N)

NlnN

Kallies, Özlük, Peter and Snyder (2001) and Boca (2005) 
have shown, using results for reduced quadratic 

irrationalities, that as N →∞ the summed density of states

Ψ(n) =
6

π2
n

2 log(n) + c n
2 + O(n

9

5
+ε).



For instance, here are the Farey denominators at level k = 16: 



Generalized Knauf model:

Next we consider the generalized Knauf model (thanks Don 
Zagier!), in which the energy is defined via 

Ei = ln(cx+d), with a parameter x ≥ 0 – recall that the 

configuration matrix is given by 

Mk = AAB . . . BAA
︸ ︷︷ ︸

k

=

(

a b

c d

)

The resulting partition function is 

Zk(x, β) =
2

k∑

i=1

1

(cx + d)β

(with β = 1/T)



The free energy, however, is exactly the same as in the trace 
model.  So why bother?  

 1) Because we can see very clearly the connection with 
dynamical systems, and

 2) certain correlation functions (expectation values) can 
be exactly calculated.  



Zk+1(x, β) =
1

(x + 1)β
Zk(

x

x + 1
, β) + Zk(x + 1, β)

Note that if we set x = 0, only Zk(0,β) and Zk(1,β) appear.  

This closure is very useful.  
(Note that our recursion relation is closely related to the 
“Lewis three–term equation” which has been extensively 

studied in the theory of the Selberg ζ–function.)

First, to generate Mk+1 multiply Mk by A or B;  i.e.    

 Mk+1 = {MkA , MkB}.  From this a functional recursion 

relation follows immediately:



The associated transfer 
operator is

 Next, consider the Farey map on [0,1]



What is the connection with the Farey fractions?  The inverse 
maps (“presentation functions”) are

F0 =
x

1 + x
, F1 =

1

1 + x
.

Acting on 1/2, these generate the “new” Farey fractions (the 
“Farey tree”).  E.g. F0(1/2)=1/3, F1(1/2)=2/3;  

F0 F0(1/2)=1/4, F1 F0(1/2)=3/4, etc.  

At each level k the 2k-2 new fractions are generated by 
composition of F0 and F1.



Using the “evenness” property

Zk(x, β) =
1

2
L

k+11(x)

which implies that the spectrum of the transfer operator 
determines the partition function and free energy.  Prellberg 

(2003) has determined the spectrum. His result for the 
leading eigenvalue λ then gives the form of the free energy 

near the transition quoted above:

it follows that the transfer operator is the same as the rhs of 
the functional recursion for Zk(x,β).  One finds easily that

Zk(x, β) =
1

xβ
Zk(

1

x
, β)

f ∼

T − Tc

ln(T − Tc)



The expectation value of a quantity Q in statistical mechanics 
is the weighted sum over configurations given by

where Qi is the value of Q in the ith configuration, and Ei is 

the energy of the ith configuration.  When Q involves 
quantities at more than one location (e.g. on the spin chain), 

this is called a “correlation function”.

< Q >=

∑

i

Qie
−Ei/T

Z
,



Now for some correlation (expectation value) results.  The 
following are for the x = 0 case, which is the “canonical” 

partition function studied by Knauf and co–workers.  In this 
case there is an up–spin (matrix A) at the beginning of the 
chain, so at low temperatures all spins are up (for k →∞). 



  Our results are in terms of the leading eigenvalue λ

of the transfer operator L.  Using the functional recursion and 
spin flip behavior (the “evenness” mentioned is invariance 

under spin flip) we find, above the transition,
 (Fiala and PK, 2004) 

λ = e
−βf

〈 . . .
︸︷︷︸

∞

↑ . . .
︸︷︷︸

n

〉 =
1

2
(1 +

2 − λ

λn+1
),

The rhs is always > 1/2, due to the initial up–spin.



  On the other hand

So the down–spin on the rh edge cancels the effect of the 
initial up spin, making the function independent of n and of 

the direction of the spin at distance n. 

〈 . . .
︸︷︷︸

∞

↑ . . .
︸︷︷︸

n

↓〉 =
λ − 1

2λ
= 〈 . . .

︸︷︷︸

∞

↓ . . .
︸︷︷︸

n

↓〉

This would seem to be a curious edge effect, but we also 
find...



〈 . . .
︸︷︷︸

∞

↑ . . .
︸︷︷︸

n

↓ ↑ . . . ↑ . . . ↑
︸ ︷︷ ︸

r−1

〉 =
λ − 1

2λr
= 〈 . . .

︸︷︷︸

∞

↓ . . .
︸︷︷︸

n

↓ ↑ . . . ↑ . . . ↑
︸ ︷︷ ︸

r−1

〉.

This exhibits the same effects, which is unexpected.  

The spins on the rh edge are a cluster, which removes the 
spin asymmetry from the spin at distance n.  What is striking 
is that this occurs regardless of the cluster size r, and for any 
temperature above the transition.  In the next talk, Thomas 

Prellberg will demonstrate that such clusters provide a 
mechanism for the phase transition.



Critical Farey tree partition function:

The Farey tree partition function was originally studied by 
Feigenbaum et al as a model of multifractals.  It has the 

same free energy f as the other Farey models.  At the critical 
point, it reduces to the sum over alternate differences 
between new Farey fractions (at each level).  These 

differences are called “even” intervals.  The complementary 
set are the “odd” intervals.

For instance, at level k = 4

1

1

0

1

1

2

1

3

2

3

1

4

3

4

3

5

2

5

even even oddoddodd



At an arbitrary level, there are many even and odd intervals



One can show (Fiala and PK, 2005) that 

Here Ik
(o) is the sum of odd intervals at level k, and Ik

(e) 

the sum of even intervals (which is the same as the Farey 
tree partition function).  Thus, if there were an ε > 0 such 

that Ik
(e) > ε for all k, the lhs would diverge.  Hence

Numerically, it is clear that the limit is zero.
This is apparently a new and unexpected property of the 

Farey fractions.

lim inf
k→∞

I
(e)
k

= 0.



We considered the Farey Fraction Spin Chain, one-
dimensional statistical mechanical models built on the Farey 

fractions (modified Farey sequence).  

Summary:

1) Dynamical systems connection proves, rigorously, a 
(barely) second-order phase transition.  

2) Certain correlation functions are calculated exactly.

3) The partition function at the critical point suggests a 
subtle, apparently new, property of the Farey fractions.  

4) Rigorous results by number theorists for the “density of 
states”; a close connection to the Lewis three-term equation.
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