Absence and existence of phase transitions in piecewise expanding coupled map lattices

Gerhard Keller, Universität Erlangen-Nürnberg

Coauthors:
Carlangelo Liverani, Università di Roma "Tor Vergata"
Jean-Baptiste Bardet, Université de Rennes 1

Durham, July 8, 2006
(1) Introduction
(2) Unique SRB measure for weak coupling
(3) An example with phase transition
(4) Summary and further questions

Definition: Coupled map lattice (CML)

- lattice: $\Lambda=\mathbb{Z}^{d}$ or $(\mathbb{Z} / L \mathbb{Z})^{d}$
- local systems: $\tau: I \rightarrow I \quad$ (p.w. C^{2}, p.w. expanding, mixing) Annihilation of two initial probability densities at exponential speed Spectral gap for Perron-Frobenius operator acting on BV(I) (K., C.R.Acad.Sc. Paris (1980))

Definition: Coupled map lattice (CML)

- lattice: $\Lambda=\mathbb{Z}^{d}$ or $(\mathbb{Z} / L \mathbb{Z})^{d}$
- local systems: $\tau: I \rightarrow I \quad$ (p.w. C^{2}, p.w. expanding, mixing)
- global system: $\Omega=I^{\wedge}$,

$$
\begin{array}{lll}
T: \Omega \rightarrow \Omega, & (T x)_{p}= \\
\Phi_{\epsilon}: \Omega \rightarrow \Omega, & \text { " } \epsilon \text {-clos } \epsilon \\
T_{\epsilon}:=T \circ \Phi_{\epsilon} & \text { or } & \Phi_{\epsilon} \circ T
\end{array}
$$

Definition: Coupled map lattice (CML)

- lattice: $\Lambda=\mathbb{Z}^{d}$ or $(\mathbb{Z} / L \mathbb{Z})^{d}$
- local systems: $\tau: I \rightarrow I \quad$ (p.w. C^{2}, p.w. expanding, mixing)
- global system: $\Omega=I^{\wedge}$,

$$
\begin{array}{lll}
T: \Omega \rightarrow \Omega, & (T x)_{p}= \\
\Phi_{\epsilon}: \Omega \rightarrow \Omega, & \text { " } \epsilon \text {-clos } \epsilon \\
T_{\epsilon}:=T \circ \Phi_{\epsilon} & \text { or } & \Phi_{\epsilon} \circ T
\end{array}
$$

Example: Diffusive nearest neighbour coupling

$$
\left(\Phi_{\epsilon} x\right)_{p}=(1-\epsilon) x_{p}+\frac{\epsilon}{2 d} \sum_{q \in \mathcal{N}(p)} x_{q}
$$

Definition: Coupled map lattice (CML)

- lattice: $\Lambda=\mathbb{Z}^{d}$ or $(\mathbb{Z} / L \mathbb{Z})^{d}$
- local systems: $\tau: I \rightarrow I \quad$ (p.w. C^{2}, p.w. expanding, mixing)
- global system: $\Omega=I^{\wedge}$,

$$
\begin{array}{lll}
T: \Omega \rightarrow \Omega, & (T x)_{p}= \\
\Phi_{\epsilon}: \Omega \rightarrow \Omega, & \text { " } \epsilon \text {-clos } \epsilon \\
T_{\epsilon}:=T \circ \Phi_{\epsilon} & \text { or } & \Phi_{\epsilon} \circ T
\end{array}
$$

Example: Diffusive nearest neighbour coupling

$$
\left(\Phi_{\epsilon} x\right)_{p}=(1-\epsilon) x_{p}+\frac{\epsilon}{2 d} \sum_{q \in \mathcal{N}(p)} x_{q}
$$

$\Phi_{\epsilon}: \Omega \rightarrow \Omega$ differentiable but not diffeomorphism!

SRB measures (also: physical, natural,... measures)

SRB measures (also: physical, natural,... measures)

- What are SRB measures?

Law of large numbers for "a.a." initial conditions
Stability under "smooth" random perturbations

SRB measures (also: physical, natural,... measures)

- What are SRB measures?

Law of large numbers for "a.a." initial conditions
Stability under "smooth" random perturbations

- Existence of SRB measures?
- Uniqueness of SRB measures? Phase transitions?
- Exponential decay of correlations?

SRB measures (also: physical, natural,... measures)

- What are SRB measures?

Law of large numbers for "a.a." initial conditions
Stability under "smooth" random perturbations

- Existence of SRB measures?
- Uniqueness of SRB measures? Phase transitions?
- Exponential decay of correlations?

The beginnings

- Kaneko '83+

SRB measures (also: physical, natural,... measures)

- What are SRB measures?

Law of large numbers for "a.a." initial conditions
Stability under "smooth" random perturbations

- Existence of SRB measures?
- Uniqueness of SRB measures? Phase transitions?
- Exponential decay of correlations?

The beginnings

- Kaneko '83+
- Bunimovich/Sinai '88

Small $|\epsilon|, C^{2}$ map (expanding or hyperbolic), diffeomorphic Φ_{ϵ} Baladi, Bricmont, Bunimovich, Degli Eposti, Fischer, Isola, Järvenpää, Jiang, Kupiainen, Pesin, Rugh, Sinai, Volevich,

Small $|\epsilon|, C^{2}$ map (expanding or hyperbolic), diffeomorphic Φ_{ϵ} Baladi, Bricmont, Bunimovich, Degli Eposti, Fischer, Isola, Järvenpää, Jiang, Kupiainen, Pesin, Rugh, Sinai, Volevich,

Small $|\epsilon|$, p.w. C^{2} exp. interval map, C^{2} but non-diffeomorphic Φ_{ϵ}

Small $|\epsilon|, C^{2}$ map (expanding or hyperbolic), diffeomorphic Φ_{ϵ}

Baladi, Bricmont, Bunimovich, Degli Eposti, Fischer, Isola, Järvenpää, Jiang, Kupiainen, Pesin, Rugh, Sinai, Volevich,

Small $|\epsilon|$, p.w. C^{2} exp. interval map, C^{2} but non-diffeomorphic Φ_{ϵ}

- K./Künzle '92, Künzle '93:

Existence of invariant measures with absolutely continuous finite-dimensional marginals: $\mu_{\epsilon} \in \mathrm{AC}$.

Small $|\epsilon|, C^{2}$ map (expanding or hyperbolic), diffeomorphic Φ_{ϵ}

Baladi, Bricmont, Bunimovich, Degli Eposti, Fischer, Isola, Järvenpää, Jiang, Kupiainen, Pesin, Rugh, Sinai, Volevich,

Small $|\epsilon|$, p.w. C^{2} exp. interval map, C^{2} but non-diffeomorphic Φ_{ϵ}

- K./Künzle '92, Künzle '93:

Existence of invariant measures with absolutely continuous finite-dimensional marginals: $\mu_{\epsilon} \in$ AC.

- Schmitt '03: Uniqueness, spectral gap if $\Lambda=\mathbb{Z}$ and $\left|\tau^{\prime}\right|$ large

Small $|\epsilon|, C^{2}$ map (expanding or hyperbolic), diffeomorphic Φ_{ϵ}

Baladi, Bricmont, Bunimovich, Degli Eposti, Fischer, Isola, Järvenpää, Jiang, Kupiainen, Pesin, Rugh, Sinai, Volevich,

Small $|\epsilon|$, p.w. C^{2} exp. interval map, C^{2} but non-diffeomorphic Φ_{ϵ}

- K./Künzle '92, Künzle '93:

Existence of invariant measures with absolutely continuous finite-dimensional marginals: $\mu_{\epsilon} \in \mathrm{AC}$.

- Schmitt '03: Uniqueness, spectral gap if $\Lambda=\mathbb{Z}$ and $\left|\tau^{\prime}\right|$ large
- K./Liverani '04: Uniqueness, spectral gap, SRB if $\Lambda=\mathbb{Z}$
- K./Liverani '04/05: Uniqueness, spectral gap, SRB if $\Lambda=\mathbb{Z}^{d}$

Small $|\epsilon|, C^{2}$ map (expanding or hyperbolic), diffeomorphic Φ_{ϵ}

Baladi, Bricmont, Bunimovich, Degli Eposti, Fischer, Isola, Järvenpää, Jiang, Kupiainen, Pesin, Rugh, Sinai, Volevich,

Small $|\epsilon|$, p.w. C^{2} exp. interval map, C^{2} but non-diffeomorphic Φ_{ϵ}

- K./Künzle '92, Künzle '93:

Existence of invariant measures with absolutely continuous finite-dimensional marginals: $\mu_{\epsilon} \in \mathrm{AC}$.

- Schmitt '03: Uniqueness, spectral gap if $\Lambda=\mathbb{Z}$ and $\left|\tau^{\prime}\right|$ large
- K./Liverani '04: Uniqueness, spectral gap, SRB if $\Lambda=\mathbb{Z}$
- K./Liverani '04/05: Uniqueness, spectral gap, SRB if $\Lambda=\mathbb{Z}^{d}$
- Bardet/K. '06: Example for phase transition with $\Lambda=\mathbb{Z}^{2}$

Notation: the measures

- $\mathcal{M}(\Omega)$: finite signed Borel measures on $\Omega=I^{\wedge}$,

$$
|\mu|:=\sup \mu(\varphi), \quad \text { "total variation", "total mass" }
$$

Notation: the measures

- $\mathcal{M}(\Omega)$: finite signed Borel measures on $\Omega=I^{\wedge}$,

$$
|\mu|:=\sup _{|\varphi|_{\infty} \leq 1} \mu(\varphi), \quad \text { "total variation", "total mass" }
$$

- $\mathcal{B}(\Omega):=\{\mu \in \mathcal{M}(\Omega): \operatorname{Var}(\mu)<\infty\}$,

$$
\operatorname{Var}(\mu):=\sup _{|\varphi|_{\infty} \leq 1} \sup _{p \in \Lambda} \mu\left(\partial_{p} \varphi\right), \quad \text { "variation" }
$$

$\varphi: \mathbb{R}^{\wedge} \rightarrow \mathbb{R}$ test functions with continuous partial derivatives

Notation: the measures

- $\mathcal{M}(\Omega)$: finite signed Borel measures on $\Omega=I^{\wedge}$,

$$
|\mu|:=\sup _{|\varphi|_{\infty} \leq 1} \mu(\varphi), \quad \text { "total variation", "total mass" }
$$

- $\mathcal{B}(\Omega):=\{\mu \in \mathcal{M}(\Omega): \operatorname{Var}(\mu)<\infty\}$,

$$
\operatorname{Var}(\mu):=\sup _{|\varphi|_{\infty} \leq 1} \sup _{p \in \Lambda} \mu\left(\partial_{p} \varphi\right), \quad \text { "variation" }
$$

$\varphi: \mathbb{R}^{\wedge} \rightarrow \mathbb{R}$ test functions with continuous partial derivatives

$$
d \mu=f d \lambda^{n}: \quad\left|\mu\left(\partial_{p} \varphi\right)\right|=\left|\int \partial_{p} f \cdot \varphi d \lambda^{n}\right| \leq\left\|\partial_{p} f\right\|_{L^{1}}
$$

Notation: the measures

- $\mathcal{M}(\Omega)$: finite signed Borel measures on $\Omega=I^{\wedge}$,

$$
|\mu|:=\sup _{|\varphi|_{\infty} \leq 1} \mu(\varphi), \quad \text { "total variation", "total mass" }
$$

- $\mathcal{B}(\Omega):=\{\mu \in \mathcal{M}(\Omega): \operatorname{Var}(\mu)<\infty\}$,

$$
\operatorname{Var}(\mu):=\sup _{|\varphi|_{\infty} \leq 1} \sup _{p \in \Lambda} \mu\left(\partial_{p} \varphi\right), \quad \text { "variation" }
$$

$\varphi: \mathbb{R}^{\wedge} \rightarrow \mathbb{R}$ test functions with continuous partial derivatives

- $|\mu| \leq \frac{1}{2} \operatorname{Var}(\mu)$, so "Var" is a norm.

Notation: the measures

- $\mathcal{M}(\Omega)$: finite signed Borel measures on $\Omega=I^{\wedge}$,

$$
|\mu|:=\sup _{|\varphi|_{\infty} \leq 1} \mu(\varphi), \quad \text { "total variation", "total mass" }
$$

- $\mathcal{B}(\Omega):=\{\mu \in \mathcal{M}(\Omega): \operatorname{Var}(\mu)<\infty\}$,

$$
\operatorname{Var}(\mu):=\sup _{|\varphi|_{\infty} \leq 1} \sup _{p \in \Lambda} \mu\left(\partial_{p} \varphi\right), \quad \text { "variation" }
$$

$\varphi: \mathbb{R}^{\wedge} \rightarrow \mathbb{R}$ test functions with continuous partial derivatives

- $|\mu| \leq \frac{1}{2} \operatorname{Var}(\mu)$, so "Var" is a norm.
- $\mathcal{B}(\Omega) \subsetneq \mathrm{AC}(\Omega)$
(absolutely continuous finite-dimensional marginals)

Notation: the measures

- $\mathcal{M}(\Omega)$: finite signed Borel measures on $\Omega=I^{\wedge}$,

$$
|\mu|:=\sup _{|\varphi|_{\infty} \leq 1} \mu(\varphi), \quad \text { "total variation", "total mass" }
$$

- $\mathcal{B}(\Omega):=\{\mu \in \mathcal{M}(\Omega): \operatorname{Var}(\mu)<\infty\}$,

$$
\operatorname{Var}(\mu):=\sup _{|\varphi|_{\infty} \leq 1} \sup _{p \in \Lambda} \mu\left(\partial_{p} \varphi\right), \quad \text { "variation" }
$$

$\varphi: \mathbb{R}^{\wedge} \rightarrow \mathbb{R}$ test functions with continuous partial derivatives

- $|\mu| \leq \frac{1}{2} \operatorname{Var}(\mu)$, so "Var" is a norm.
- $\mathcal{B}(\Omega) \subsetneq \mathrm{AC}(\Omega)$
(absolutely continuous finite-dimensional marginals)
- $\mu \in \mathcal{B}(\Omega) \Rightarrow \mu$ has finite entropy density

Notation: "good" $\left(a_{1}, a_{2}\right)$-coupling

$$
\Phi_{\epsilon}: \Omega \rightarrow \Omega, \Phi_{\epsilon}(x)=x+A_{\epsilon}(x)
$$

Notation: "good" (a_{1}, a_{2})-coupling

$$
\begin{aligned}
& \Phi_{\epsilon}: \Omega \rightarrow \Omega, \Phi_{\epsilon}(x)=x+A_{\epsilon}(x) \\
& \bullet \quad\left|\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon| \\
& \bullet \quad\left|\partial_{q}\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon| A_{q p}^{\prime}, A^{\prime} \text { a } \Lambda \times \Lambda \text {-matrix, }\left\|A^{\prime}\right\|_{1}=a_{1} \\
& \bullet \quad\left|\partial_{k} \partial_{q}\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon| A_{q p}^{\prime \prime}, A^{\prime \prime} \text { a } \Lambda \times \Lambda \text {-matrix, }\left\|A^{\prime \prime}\right\|_{1}=a_{2}
\end{aligned}
$$

Notation: "good" $\left(a_{1}, a_{2}\right)$-coupling

$$
\begin{aligned}
& \Phi_{\epsilon}: \Omega \rightarrow \Omega, \Phi_{\epsilon}(x)=x+A_{\epsilon}(x) \\
& \text { - } \quad\left|\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon| \\
& \text { - } \quad\left|\partial_{q}\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon| A_{q p}^{\prime}, \quad A^{\prime} \text { a } \Lambda \times \Lambda \text {-matrix, }\left\|A^{\prime}\right\|_{1}=a_{1} \\
& \text { - }\left|\partial_{k} \partial_{q}\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon| A_{q p}^{\prime \prime}, \quad A^{\prime \prime} \text { a } \Lambda \times \Lambda \text {-matrix, }\left\|A^{\prime \prime}\right\|_{1}=a_{2}
\end{aligned}
$$

Example Diffusive nearest neighbour coupling is a $(1,0)$-coupling

Notation: "good" $\left(a_{1}, a_{2}\right)$-coupling

$\Phi_{\epsilon}: \Omega \rightarrow \Omega, \Phi_{\epsilon}(x)=x+A_{\epsilon}(x)$

- $\quad\left|\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon|$
- $\quad\left|\partial_{q}\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon| A_{q p}^{\prime}, A^{\prime}$ a $\Lambda \times \Lambda$-matrix, $\left\|A^{\prime}\right\|_{1}=a_{1}$
- $\left|\partial_{k} \partial_{q}\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon| A_{q p}^{\prime \prime}, \quad A^{\prime \prime}$ a $\Lambda \times \Lambda$-matrix, $\left\|A^{\prime \prime}\right\|_{1}=a_{2}$

Example Diffusive nearest neighbour coupling is a $(1,0)$-coupling

Proposition: Existence (K./Künzle '92, Künzle '93)

Given τ p.w. C^{2} expanding and a good coupling,

$$
\exists \epsilon_{1}>0 \text { s.t. } \forall|\epsilon|<\epsilon_{1} \exists \mu_{\epsilon}=T_{\epsilon}^{*} \mu_{\epsilon} \in \mathcal{B}(\Omega)
$$

Notation: "good" (a_{1}, a_{2})-coupling

$\Phi_{\epsilon}: \Omega \rightarrow \Omega, \Phi_{\epsilon}(x)=x+A_{\epsilon}(x)$

- $\left|\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon|$
- $\quad\left|\partial_{q}\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon| A_{q p}^{\prime}, A^{\prime}$ a $\Lambda \times \Lambda$-matrix, $\left\|A^{\prime}\right\|_{1}=a_{1}$
- $\left|\partial_{k} \partial_{q}\left(A_{\epsilon}(x)\right)_{p}\right| \leq 2|\epsilon| A_{q p}^{\prime \prime}, \quad A^{\prime \prime}$ a $\Lambda \times \Lambda$-matrix, $\left\|A^{\prime \prime}\right\|_{1}=a_{2}$

Example Diffusive nearest neighbour coupling is a $(1,0)$-coupling

Proposition: Existence (K./Künzle '92, Künzle '93)

Given τ p.w. C^{2} expanding and a good coupling,

$$
\exists \epsilon_{1}>0 \text { s.t. } \forall|\epsilon|<\epsilon_{1} \exists \mu_{\epsilon}=T_{\epsilon}^{*} \mu_{\epsilon} \in \mathcal{B}(\Omega)
$$

Example In case of diffusive nearest neighbour coupling:

$$
\epsilon_{1}=\frac{1}{2}-\frac{1}{\kappa_{1}} \text { where } \kappa_{1}:=\inf \left|\tau^{\prime}\right|>2 .
$$

Theorem (K./Liverani, Commun. Math. Phys. 262, 2006)

Given τ p.w. C^{2} expanding and a good finite range coupling (short range works if τ is Lipschitz),

Theorem (K./Liverani, Commun. Math. Phys. 262, 2006)

Given τ p.w. C^{2} expanding and a good finite range coupling (short range works if τ is Lipschitz), $\exists \epsilon_{0} \in\left(0, \epsilon_{1}\right)$ s.t. $\forall|\epsilon|<\epsilon_{0}$

- \exists unique! $\mu_{\epsilon}=T_{\epsilon}^{*} \mu_{\epsilon} \in \mathcal{B}(\Omega)$

Theorem (K./Liverani, Commun. Math. Phys. 262, 2006)

Given τ p.w. C^{2} expanding and a good finite range coupling (short range works if τ is Lipschitz), $\exists \epsilon_{0} \in\left(0, \epsilon_{1}\right)$ s.t. $\forall|\epsilon|<\epsilon_{0}$

- \exists unique! $\mu_{\epsilon}=T_{\epsilon}^{*} \mu_{\epsilon} \in \mathcal{B}(\Omega)$
- μ_{ϵ} exponentially mixing in time and space

Theorem (K./Liverani, Commun. Math. Phys. 262, 2006)

Given τ p.w. C^{2} expanding and a good finite range coupling (short range works if τ is Lipschitz), $\exists \epsilon_{0} \in\left(0, \epsilon_{1}\right)$ s.t. $\forall|\epsilon|<\epsilon_{0}$

- \exists unique! $\mu_{\epsilon}=T_{\epsilon}^{*} \mu_{\epsilon} \in \mathcal{B}(\Omega)$
- μ_{ϵ} exponentially mixing in time and space
- $\mu_{\epsilon}=$ weak- $\lim _{L \rightarrow \infty} \mu_{\epsilon, L}$,
(a.c. inv. measure on $I^{(\mathbb{Z} /(L \mathbb{Z}))^{d}}$)

Theorem (K./Liverani, Commun. Math. Phys. 262, 2006)

Given τ p.w. C^{2} expanding and a good finite range coupling (short range works if τ is Lipschitz), $\exists \epsilon_{0} \in\left(0, \epsilon_{1}\right)$ s.t. $\forall|\epsilon|<\epsilon_{0}$

- \exists unique! $\mu_{\epsilon}=T_{\epsilon}^{*} \mu_{\epsilon} \in \mathcal{B}(\Omega)$
- μ_{ϵ} exponentially mixing in time and space
- $\mu_{\epsilon}=$ weak- $\lim _{L \rightarrow \infty} \mu_{\epsilon, L}$, (a.c. inv. measure on $I^{\left.(\mathbb{Z} /(L \mathbb{Z}))^{d}\right)}$
- μ_{ϵ} stable under smooth random perturbations of the system

Theorem (K./Liverani, Commun. Math. Phys. 262, 2006)

Given τ p.w. C^{2} expanding and a good finite range coupling (short range works if τ is Lipschitz), $\exists \epsilon_{0} \in\left(0, \epsilon_{1}\right)$ s.t. $\forall|\epsilon|<\epsilon_{0}$

- \exists unique! $\mu_{\epsilon}=T_{\epsilon}^{*} \mu_{\epsilon} \in \mathcal{B}(\Omega)$
- μ_{ϵ} exponentially mixing in time and space
- $\mu_{\epsilon}=$ weak- $\lim _{L \rightarrow \infty} \mu_{\epsilon, L}, \quad$ (a.c. inv. measure on $\left.I^{(\mathbb{Z} /(L \mathbb{Z}))^{d}}\right)$
- μ_{ϵ} stable under smooth random perturbations of the system
- Strong law of large numbers:

Let $\psi \in C(\Omega, \mathbb{R})$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \psi\left(T_{\epsilon}^{k} x\right)=\mu_{\epsilon}(\psi) \text { for } \lambda \text {-a.e. } x \in \Omega
$$

Theorem (K./Liverani, Commun. Math. Phys. 262, 2006)

Given τ p.w. C^{2} expanding and a good finite range coupling (short range works if τ is Lipschitz), $\exists \epsilon_{0} \in\left(0, \epsilon_{1}\right)$ s.t. $\forall|\epsilon|<\epsilon_{0}$

- \exists unique! $\mu_{\epsilon}=T_{\epsilon}^{*} \mu_{\epsilon} \in \mathcal{B}(\Omega)$
- μ_{ϵ} exponentially mixing in time and space
- $\mu_{\epsilon}=$ weak- $\lim _{L \rightarrow \infty} \mu_{\epsilon, L}, \quad$ (a.c. inv. measure on $\left.I^{(\mathbb{Z} /(L \mathbb{Z}))^{d}}\right)$
- μ_{ϵ} stable under smooth random perturbations of the system
- Strong law of large numbers:
$f: I \rightarrow \mathbb{R}$ probab. density of bd. variation, $\lambda_{f}=(f m)^{\Lambda}$. Let $\psi \in C(\Omega, \mathbb{R})$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \psi\left(T_{\epsilon}^{k} x\right)=\mu_{\epsilon}(\psi) \text { for } \lambda_{f} \text {-a.e. } x \in \Omega
$$

SRB measure!

Ingredients of the proof

Lasota-Yorke type estimate

$$
\operatorname{Var}\left(T_{\epsilon}^{* n} \mu\right) \leq C \cdot \rho^{n} \cdot \operatorname{Var}(\mu)+B \cdot|\mu| \quad(0<\rho<1)
$$

Ingredients of the proof

Lasota-Yorke type estimate

$$
\operatorname{Var}\left(T_{\epsilon}^{* n} \mu\right) \leq C \cdot \rho^{n} \cdot \operatorname{Var}(\mu)+B \cdot|\mu| \quad(0<\rho<1)
$$

Decoupling estimate

For $p \in \Lambda$ define $\Phi_{\epsilon, p}: \Omega \rightarrow \Omega$ as
" Φ_{ϵ} with p decoupled from all other $q \in \Lambda$ "
Let $T_{\epsilon, p}=\Phi_{\epsilon, p} \circ T$. Then

$$
\left|T_{\epsilon}^{* N} \mu-T_{\epsilon, p}^{* N} \mu\right| \leq C N \epsilon \operatorname{Var}(\mu)
$$

Ingredients of the proof

Lasota-Yorke type estimate

$$
\operatorname{Var}\left(T_{\epsilon}^{* n} \mu\right) \leq C \cdot \rho^{n} \cdot \operatorname{Var}(\mu)+B \cdot|\mu| \quad(0<\rho<1)
$$

Decoupling estimate

For $p \in \Lambda$ define $\Phi_{\epsilon, p}: \Omega \rightarrow \Omega$ as
" Φ_{ϵ} with p decoupled from all other $q \in \Lambda$ "
Let $T_{\epsilon, p}=\Phi_{\epsilon, p} \circ T$. Then

$$
\left|T_{\epsilon}^{* N} \mu-T_{\epsilon, p}^{* N} \mu\right| \leq C N \epsilon \operatorname{Var}(\mu)
$$

Observe: Switching on/off the coupling in a lattice of size L is a "perturbation" of size $N L \epsilon$. Here each μ_{p} is treated separately, the perturbation is of size $N \epsilon$.

Ingredients of the proof
Telescoping Let $\mu=\mu^{\prime}-\mu^{\prime \prime}$.

$$
\mu=\sum_{p \in \Lambda_{\text {signed measure }}}^{\mu_{p}} \text { where } \quad \mu_{p}(f)=0 \text { if } \partial_{p} f=0
$$

Ingredients of the proof

Telescoping Let $\mu=\mu^{\prime}-\mu^{\prime \prime}$.

$$
\mu=\sum_{p \in \Lambda} \underbrace{\mu_{p}}_{\text {signed measure }} \text { where } \quad \mu_{p}(f)=0 \text { if } \partial_{p} f=0
$$

Example: $\Lambda=\{1,2,3\}, d \mu\left(x_{1}, x_{2}, x_{3}\right)=h\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3}$,

$$
\begin{aligned}
h_{1}\left(x_{1}, x_{2}, x_{3}\right) & :=\int h\left(u, x_{2}, x_{3}\right) d u \\
h_{2}\left(x_{1}, x_{2}, x_{3}\right) & :=\int h\left(u, v, x_{3}\right) d u d v \\
h_{3}\left(x_{1}, x_{2}, x_{3}\right) & :=\int h(u, v, w) d u d v d w=0
\end{aligned}
$$

Then

$$
h=\left(h-h_{1}\right)+\left(h_{1}-h_{2}\right)+\left(h_{2}-h_{3}\right)
$$

Ingredients of the proof
Telescoping Let $\mu=\mu^{\prime}-\mu^{\prime \prime}$.

$$
\begin{aligned}
& \mu=\sum_{p \in \Lambda_{\text {signed measure }}}^{\mu_{p}} \text { where } \quad \mu_{p}(f)=0 \text { if } \partial_{p} f=0 \\
& \text { Let } \bar{\mu}:=\left(\mu_{p}\right)_{p \in \Lambda}, \quad\|\bar{\mu}\|:=\sup _{p}\left\|\mu_{p}\right\|
\end{aligned}
$$

Ingredients of the proof
Telescoping Let $\mu=\mu^{\prime}-\mu^{\prime \prime}$.

$$
\begin{aligned}
& \mu=\sum_{p \in \Lambda_{\text {signed measure }}}^{\mu_{p}} \text { where } \quad \mu_{p}(f)=0 \text { if } \partial_{p} f=0 \\
& \text { Let } \bar{\mu}:=\left(\mu_{p}\right)_{p \in \Lambda}, \quad\|\bar{\mu}\|:=\sup _{p}\left\|\mu_{p}\right\|
\end{aligned}
$$

Conclusion

Ingredients of the proof

Telescoping Let $\mu=\mu^{\prime}-\mu^{\prime \prime}$.

$$
\begin{gathered}
\mu=\sum_{p \in \Lambda_{\text {signed measure }}}^{\underbrace{}_{p}} \text { where } \quad \mu_{p}(f)=0 \text { if } \partial_{p} f=0 \\
\text { Let } \bar{\mu}:=\left(\mu_{p}\right)_{p \in \Lambda}, \quad\|\bar{\mu}\|:=\sup _{p}\left\|\mu_{p}\right\|
\end{gathered}
$$

Conclusion

$\left\|T_{\epsilon, p}^{* N} \mu_{p}\right\| \leq C \cdot \sigma_{0}^{N} \cdot\left\|\mu_{p}\right\|, \quad\left\|\bar{T}_{\epsilon}^{* N} \bar{\mu}\right\| \leq C \cdot\left(N^{d} \sigma_{0}^{N}+N^{d+1} \epsilon\right) \cdot\|\bar{\mu}\|$

Ingredients of the proof

Telescoping Let $\mu=\mu^{\prime}-\mu^{\prime \prime}$.

$$
\begin{gathered}
\mu=\sum_{p \in \Lambda} \underbrace{\mu_{p}}_{\text {signed measure }} \text { where } \quad \mu_{p}(f)=0 \text { if } \partial_{p} f=0 \\
\text { Let } \bar{\mu}:=\left(\mu_{p}\right)_{p \in \Lambda}, \quad\|\bar{\mu}\|:=\sup _{p}\left\|\mu_{p}\right\|
\end{gathered}
$$

Conclusion

$$
\left\|T_{\epsilon, p}^{* N} \mu_{p}\right\| \leq C \cdot \sigma_{0}^{N} \cdot\left\|\mu_{p}\right\|, \quad\left\|\bar{T}_{\epsilon}^{* N} \bar{\mu}\right\| \leq \underbrace{C \cdot\left(N^{d} \sigma_{0}^{N}+N^{d+1} \epsilon\right)}_{<\frac{1}{2} \text { by choice of } N \text { and } \epsilon} \cdot\|\bar{\mu}\|
$$

Ingredients of the proof

Telescoping Let $\mu=\mu^{\prime}-\mu^{\prime \prime}$.

$$
\begin{gathered}
\mu=\sum_{p \in \Lambda} \underbrace{\mu_{p}}_{\text {signed measure }} \text { where } \quad \mu_{p}(f)=0 \text { if } \partial_{p} f=0 \\
\text { Let } \bar{\mu}:=\left(\mu_{p}\right)_{p \in \Lambda}, \quad\|\bar{\mu}\|:=\sup _{p}\left\|\mu_{p}\right\|
\end{gathered}
$$

Conclusion

$$
\begin{gathered}
\left\|T_{\epsilon, p}^{* N} \mu_{p}\right\| \leq C \cdot \sigma_{0}^{N} \cdot\left\|\mu_{p}\right\|, \quad\left\|\bar{T}_{\epsilon}^{* N} \bar{\mu}\right\| \leq \underbrace{C \cdot\left(N^{d} \sigma_{0}^{N}+N^{d+1} \epsilon\right)}_{<\frac{1}{2} \text { by choice of } N \text { and } \epsilon} \cdot\|\bar{\mu}\| \\
\left\|\bar{T}_{\epsilon}^{n} \bar{\mu}\right\| \leq C \cdot \sigma^{n} \cdot\|\bar{\mu}\| \quad \text { for all } n
\end{gathered}
$$

Attention! $\left|T_{\epsilon}^{n} \mu\right| \nrightarrow 0$

Example for a phase transition

- $\Lambda=\mathbb{Z}^{2}, \quad\left(\Phi_{\epsilon} x\right)_{p}=(1-\epsilon) x_{p}+\frac{\epsilon}{2}\left(x_{p+e_{1}}+x_{p+e_{2}}\right)$

Example for a phase transition

- $\Lambda=\mathbb{Z}^{2}, \quad\left(\Phi_{\epsilon} x\right)_{p}=(1-\epsilon) x_{p}+\frac{\epsilon}{2}\left(x_{p+e_{1}}+x_{p+e_{2}}\right)$
- $\tau=\frac{1}{v} \tilde{\tau}^{k}$

Example for a phase transition

- $\Lambda=\mathbb{Z}^{2}, \quad\left(\Phi_{\epsilon} x\right)_{p}=(1-\epsilon) x_{p}+\frac{\epsilon}{2}\left(x_{p+e_{1}}+x_{p+e_{2}}\right)$
- $\tau=\left(\frac{1}{v} \tilde{\tau}^{k}\right)^{3}$

Theorem (Bardet/K., to appear in Nonlinearity)
There are $0<\epsilon_{1}<\epsilon_{2}<\eta<\frac{1}{4}$ such that the following hold:
a) For $\epsilon \in\left[0, \frac{1}{4}\right]$, the map T_{ϵ} has at least one invariant probability measure in $\mathcal{B}(\Omega)$ which is also translation invariant.

Theorem (Bardet/K., to appear in Nonlinearity)
There are $0<\epsilon_{1}<\epsilon_{2}<\eta<\frac{1}{4}$ such that the following hold:
a) For $\epsilon \in\left[0, \frac{1}{4}\right]$, the map T_{ϵ} has at least one invariant probability measure in $\mathcal{B}(\Omega)$ which is also translation invariant.
b) For $\epsilon \in\left[0, \epsilon_{1}\right]$, the map T_{ϵ} has a unique invariant probability measure in $\mathcal{B}(\Omega)$. (This measure is necessarily also translation invariant.)

Theorem (Bardet/K., to appear in Nonlinearity)
There are $0<\epsilon_{1}<\epsilon_{2}<\eta<\frac{1}{4}$ such that the following hold:
a) For $\epsilon \in\left[0, \frac{1}{4}\right]$, the map T_{ϵ} has at least one invariant probability measure in $\mathcal{B}(\Omega)$ which is also translation invariant.
b) For $\epsilon \in\left[0, \epsilon_{1}\right]$, the map T_{ϵ} has a unique invariant probability measure in $\mathcal{B}(\Omega)$. (This measure is necessarily also translation invariant.)
c) For $\epsilon \in\left[\epsilon_{2}, \eta\right]$, the map T_{ϵ} has at least two invariant probability measures μ_{ϵ}^{+}and μ_{ϵ}^{-}in $\mathcal{B}(\Omega)$.

Theorem (Bardet/K., to appear in Nonlinearity)

There are $0<\epsilon_{1}<\epsilon_{2}<\eta<\frac{1}{4}$ such that the following hold:
a) For $\epsilon \in\left[0, \frac{1}{4}\right]$, the map T_{ϵ} has at least one invariant probability measure in $\mathcal{B}(\Omega)$ which is also translation invariant.
b) For $\epsilon \in\left[0, \epsilon_{1}\right]$, the map T_{ϵ} has a unique invariant probability measure in $\mathcal{B}(\Omega)$. (This measure is necessarily also translation invariant.)
c) For $\epsilon \in\left[\epsilon_{2}, \eta\right]$, the map T_{ϵ} has at least two invariant probability measures μ_{ϵ}^{+}and μ_{ϵ}^{-}in $\mathcal{B}(\Omega)$.
d) For $\epsilon \in\left[0, \frac{1}{4}\right]$ and each $L \in \mathbb{N}$ there is a unique a.c. $\mu_{\epsilon, L}$.

Theorem (Bardet/K., to appear in Nonlinearity)

There are $0<\epsilon_{1}<\epsilon_{2}<\eta<\frac{1}{4}$ such that the following hold:
a) For $\epsilon \in\left[0, \frac{1}{4}\right]$, the map T_{ϵ} has at least one invariant probability measure in $\mathcal{B}(\Omega)$ which is also translation invariant.
b) For $\epsilon \in\left[0, \epsilon_{1}\right]$, the map T_{ϵ} has a unique invariant probability measure in $\mathcal{B}(\Omega)$. (This measure is necessarily also translation invariant.)
c) For $\epsilon \in\left[\epsilon_{2}, \eta\right]$, the map T_{ϵ} has at least two invariant probability measures μ_{ϵ}^{+}and μ_{ϵ}^{-}in $\mathcal{B}(\Omega)$.
d) For $\epsilon \in\left[0, \frac{1}{4}\right]$ and each $L \in \mathbb{N}$ there is a unique a.c. $\mu_{\epsilon, L}$.

Remark: τ can be chosen to be an analytic circle endomorphism.

Theorem (Bardet/K., to appear in Nonlinearity)

There are $0<\epsilon_{1}<\epsilon_{2}<\eta<\frac{1}{4}$ such that the following hold:
a) For $\epsilon \in\left[0, \frac{1}{4}\right]$, the map T_{ϵ} has at least one invariant probability measure in $\mathcal{B}(\Omega)$ which is also translation invariant.
b) For $\epsilon \in\left[0, \epsilon_{1}\right]$, the map T_{ϵ} has a unique invariant probability measure in $\mathcal{B}(\Omega)$. (This measure is necessarily also translation invariant.)
c) For $\epsilon \in\left[\epsilon_{2}, \eta\right]$, the map T_{ϵ} has at least two invariant probability measures μ_{ϵ}^{+}and μ_{ϵ}^{-}in $\mathcal{B}(\Omega)$.
d) For $\epsilon \in\left[0, \frac{1}{4}\right]$ and each $L \in \mathbb{N}$ there is a unique a.c. $\mu_{\epsilon, L}$.

Remark: τ can be chosen to be an analytic circle endomorphism.
Proof by approximating Toom's PCA (cf. Gielis/MacKay)
Combinatorics: Lebowitz/Maes/Speer, Analytic estimates: transfer operator, bounded variation

Summary

- For locally coupled piecewise expanding interval maps we proved

Uniqueness of an SRB measure for small coupling

- Possibility of phase transition on $\Lambda=\mathbb{Z}^{2}$

Summary

- For locally coupled piecewise expanding interval maps we proved Uniqueness of an SRB measure for small coupling Possibility of phase transition on $\Lambda=\mathbb{Z}^{2}$
- Method extends to other "systems" where the local system can be described in terms of a linear operator with spectral gap.

Summary

- For locally coupled piecewise expanding interval maps we proved Uniqueness of an SRB measure for small coupling Possibility of phase transition on $\Lambda=\mathbb{Z}^{2}$
- Method extends to other "systems" where the local system can be described in terms of a linear operator with spectral gap.

Questions

- Uniqueness in $\mathcal{B}(\Omega)$, not in AC. Is ACC a good class?
- Invariant measures determined by restriction to spatial tail field?
- Phase transitions when also Φ_{ϵ} bi-analytic?
- Phase transitions on $\Lambda=\mathbb{Z}$?

