

On critical behaviour of coupled map lattices

Wolfram Just QMUL London

- 0 Content
 - **1** Introduction
 - 2 CML vs PCA
 - **3** Finite size scaling

1 Introduction

1.1 Phase transition in CMLs

Ising-like phase transition for strong coupling $\varepsilon \geq \varepsilon_c$ in the limit of large system size

1.2 Critical behaviour

Magnetisation ($\sigma^{(\nu)} = \operatorname{sgn}(x^{(\nu)})$)

$$\bar{M} = \sum_{\nu} \sigma^{(\nu)} / L^2$$
, $m_L(\varepsilon) = \langle |\bar{M}| \rangle$

Finite size susceptibility

$$\chi_L(\varepsilon) = L^2(\langle \bar{M}^2 \rangle - \langle |\bar{M}| \rangle^2)$$

Scaling relations and critical exponents $(L \rightarrow \tilde{\infty})$

- $m_{\infty}(\varepsilon) \sim (\varepsilon \varepsilon_c)^{\beta}$
- $\chi_{\infty}(\varepsilon) \sim |\varepsilon \varepsilon_c|^{-\gamma}$
- $\xi(\varepsilon) \sim |\varepsilon \varepsilon_c|^{-\nu}$

Ŵ

Universality class	ses	$(\longrightarrow$	(\longrightarrow P.Marqc et al '97, PRE 55 2606)		
	2D Ising	Miller Huse	MH (async.)		
β	1/8	0.111	0.126		
γ	7/4	1.55	1.79		
u	1	0.887	1.02		
eta/ u	1/8	0.125	0.117		
γ/ u	7/4	1.748	1.76		
$(2eta+\gamma)/ u$	2	2.00	2.01		

2 CML vs PCA

2.1 Symbolic dynamics for CMLs

Piecewise linear model with 2D n.n. symbolic coupling: $\sigma^{(\nu)} = \operatorname{sgn}\left(x^{(\nu)}\right), \quad \nu = (\nu_1, \nu_2)$ $\Sigma^{(\nu)} = \sum_{\mu \in n.n.} \sigma^{(\mu)}$ $a_{\sigma^{(\nu)}} = a_{\sigma^{(\nu)}}\left(\Sigma^{(\nu)}\right)$

Single site transition rates $\sigma^{(\nu)} \rightarrow \tau^{(\nu)}$

$$w^{(\nu)}\left(\sigma^{(\nu)} \to \tau^{(\nu)}\right) = \left(1 + \sigma^{(\nu)}\tau^{(\nu)}a_{\sigma^{(\nu)}}\left(\Sigma^{(\nu)}\right)\right)/2$$

 $p_n(\underline{\sigma})$ probability for symbol state $\underline{\sigma} = \left(\sigma^{(\nu)}\right)$ at time n. Master equation

$$p_{n+1}(\underline{\tau}) = p_n(\underline{\tau}) + \sum_{\underline{\sigma}} \left(W(\underline{\tau}; \underline{\sigma}) p_n(\underline{\sigma}) - W(\underline{\sigma}; \underline{\tau}) p_n(\underline{\tau}) \right)$$
$$W(\underline{\tau}; \underline{\sigma}) = \prod_{\nu} w^{(\nu)} \left(\sigma^{(\nu)} \to \tau^{(\nu)} \right)$$

Probabilistic cellular automaton (simultaneous updates). (\rightarrow G.Gielis and R.S.MacKay '00, Nonl. **13** 867)

2.2 Detailed balance

$$0 = W(\underline{\tau}; \underline{\sigma}) p_*(\underline{\sigma}) - W(\underline{\sigma}; \underline{\tau}) p_*(\underline{\tau})$$

Kolmogorov criterion $(\rightarrow A.Georges and L.P.Doussal '89, JSP 54 1011)$

$$a_{\sigma(\nu)}\left(\Sigma^{(\nu)}\right) = \tanh\left(J_0 + J_{nn}\sigma^{(\nu)}\Sigma^{(\nu)}\right)$$

Stationary density

$$p_*(\underline{\sigma}) = \prod_{\nu} \cosh\left(J_0 + J_{nn}\sigma^{(\nu)}\Sigma^{(\nu)}\right)/Z = \exp(-H(\underline{\sigma}))$$

interactions

$$b_k \sim J_{nn}^k$$

7

- Ising-type phase transition in the strong coupling limit $J_{nn} \ge J_c \approx 0.2203 \dots$
- Detailed balance (reversibility): Hamiltonian with short range coupling (2D Ising universality)
- ◆ Violation of detailed balance: non Ising critical beha-ViOUR?
 (→ G.Grinstein et al '85, PRL 55 2527)

3 Finite size scaling

3.1 Equilibrium model

Binder cumulant (determination of J_c) $U_L(J_{nn}) = \frac{\langle \bar{M}^4 \rangle - 3 \langle \bar{M}^2 \rangle^2}{\langle \bar{M}^2 \rangle^2} = U(L^{1/\nu}(J_{nn} - J_c)) \ (= f(\xi/L))$

critical coupling $J_c = 0.23413 \pm 0.00003$ (for $J_0 = 1.25$).

Critical exponents

$$\partial U / \partial J_{nn} |_{J_c} \sim L^{1/\nu}$$

 $\nu = 0.994 \pm 0.015$
(2D Ising: 1)

$$\langle |\bar{M}| \rangle (J_c) \sim L^{-\beta/\nu}$$

 $\beta/\nu = 0.1245 \pm 0.0005$
(2D Ising: 1/8)

$$\chi(J_c) \sim L^{\gamma/\nu}$$

 $\gamma/\nu = 1.748 \pm 0.0003$
(2D Ising: 7/4)

3.2 Toom PCA

$$\sigma_{n+1}^{(\nu)} = \begin{cases} \operatorname{sgn}\left(\Sigma_n^{(\nu)}\right) & \text{with prob. } (1+\varepsilon)/2 \\ -\operatorname{sgn}\left(\Sigma_n^{(\nu)}\right) & \text{with prob. } (1-\varepsilon)/2 \end{cases}$$

2D "north-east" coupling $\Sigma^{(\nu)} = \sigma^{(\nu_1,\nu_2)} + \sigma^{(\nu_1+1,\nu_2)} + \sigma^{(\nu_1,\nu_2+1)}$

• phase transition at $\varepsilon_c \approx 0.8222$ (\rightarrow D.Makowiec '99, PRE **60** 3787) • $\frac{\nu}{0.85} \left| \begin{array}{c} 0.12 \end{array} \right| 1.59$

CML

$$a_{\sigma^{(\nu)}}\left(\Sigma^{(\nu)}\right) = \left(1 - \varepsilon \sigma^{(\nu)} \mathrm{sgn}\left(\Sigma^{(\nu)}\right)\right) / 2$$

Binder cumulant

$$U_L(\varepsilon) = U(L^{1/\nu}(\varepsilon - \varepsilon_c)) + c/L^{\alpha}$$

$$\varepsilon_c = 0.82250 \pm 0.00001$$

$$\nu = 0.979 \pm 0.014$$

$$\alpha = 1.5$$

+

 \times

ж

·

 \odot

Critical exponents

	$(\varepsilon_c = 0.8225)$	$(\varepsilon_{c} = 0.8222)$	ТСА	2D Ising
β	0.122	0.128	0.12	1/8
γ	1.68	1.618	1.59	7/4
ν	0.979 ± 0.014	0.917 ± 0.007	0.85 ± 0.02	1
eta/ u	0.1243 ± 0.0002	0.140 ± 0.002	0.139	1/8
γ/ u	1.717 ± 0.009	1.764 ± 0.014	1.857	7/4
$(2\beta + \gamma)/\nu$	1.967	2.044	2.135	2