Iterated Function Systems and Randomly Forced PDEs.

D.S. Broomhead,
School of Mathematics, The University of Manchester, P.O.Box 88, Manchester, U.K.

- Collaborations with: Anthony Brown, Jerry Huke, James Montaldi, Mark Muldoon, Nikita Sidorov and Jaroslav Stark.

A Simple Example

- First order system driven by a clocked random pulse sequence:

$$
\begin{gathered}
\frac{d v}{d t}=-v+\xi(t) \\
\xi(t)=\sum_{p} a_{p} g(t-p \tau)
\end{gathered}
$$

$\left\{a_{p}\right\} \in\{0,1\}^{\mathbb{Z}^{+}}$are the input symbols and g is supported on $(0, \tau)$.

- Symbols input at constant rate, τ^{-1}.
- In the examples, g is a raised cosine.

A typical segment of $\xi(t)$

Randomly Forced First Order ODE (cont.)

- Can be solved using elementary undergraduates.
- The important parameter is τ.

A typical response $v(t)$, when $\tau=\log 3$.

Input and output: comparing $\xi(t)$ and $v(t)$.

Sampling the Output

- When processing signals, it is usual to sample the output.
- A simple picture emerges if we sample at the symbol input rate.

The response $v(t)$ (curve) and samples $v(p \tau)$ (dots).

More samples-can you see a pattern?

Sampling the Output

- A pattern becomes clear with a longer time series.
- The samples $\{v(p \tau)\}$ seem to be distributed as a middle thirds Cantor set.

A longer time series—red shows data of previous figure.

From Another Point of View

- Integrate the ODE for one sample period, τ.
- Depending on the input symbol the output changes according to:

$$
\begin{aligned}
v & \mapsto \lambda v \\
v & \mapsto \lambda v+b
\end{aligned}
$$

where $\lambda=e^{-\tau}$ and $b=e^{-\tau} \int_{0}^{\tau} e^{t} g(t) d t$

- The sampled output is given by random composition of these maps.
- A skew product system: base dynamics a full shift on $\{0,1\}^{\mathbb{Z}^{+}}$; fibre dynamics given by ODE.
- An Iterated Function System (IFS)

Iterated Function Systems

- Let \mathcal{C} be the set of nonempty compact subsets of a complete metric space, (\mathbf{X}, \mathbf{d})
- Equipped with the Hausdorff metric, \mathcal{C} is a complete metric space
- Define the map $F: \mathcal{C} \rightarrow \mathcal{C}$

$$
F U=\bigcup_{a=1}^{|\mathcal{A}|} f_{a} U
$$

were \mathcal{A} is a finite alphabet and the maps $\left\{f_{a}: a \in \mathcal{A}\right\}$ act on \mathbf{X}.

Theorem 1 Given that the $\left\{f_{a}\right\}$ are contraction maps, $F: \mathcal{C} \rightarrow \mathcal{C}$ has a unique fixed point K, and for any $A \in \mathcal{C}$, the sequence $F^{n} A \rightarrow K$ in the Hausdorff metric.

Parameter Dependence of Attractor

- Rescale $v \mapsto v / b$:

$$
\left\{v \mapsto \lambda v, v \mapsto \lambda v+1: \lambda=e^{-\tau} \in[0,1)\right\}
$$

The Basic Model

- The cable equation:

$$
R C \partial_{t} v=\partial_{x}^{2} v-R A v+R I_{e}
$$

with R the resistance per unit length of the conductor, C and A the capacitance and conductance per unit length of the insulation and I_{e} is the input current.

- IFS model of digital channels.
- The cable equation is used to model (passive) sections of axon or dendrite: where the term $A v$ is a linear approximation of the membrane current.
- Within each τ second interval, input one of a finite number of possible finiteduration pulse-assume no overlap of inputs.

Specifying the Model

- Finite cable $x \in \Omega=[0, l]$ with zero current boundary conditions:

$$
\partial_{x} v(0, t)=0 \text { and } \partial_{x} v(l, t)=0 \quad \forall t
$$

- Rescale time $t \mapsto t / R C$ and introduce the dimensionless parameter $\rho=R A$.
- The cable equation (with $J_{e}(x, t)=R I_{e}(x, t)$):

$$
\begin{equation*}
\partial_{t} v=\partial_{x}^{2} v-\rho v+J_{e} \tag{1}
\end{equation*}
$$

- The input $J_{e}(x, t)$ is supplied as a spatiallycoded, pulse sequence

The IFS Consists of Contractions

- IFS consists of a finite set of maps $\left\{f_{a}\right.$: $\left.L^{2}(\Omega) \rightarrow L^{2}(\Omega), a \in \mathcal{A}\right\}$
- Given $v(x, 0) \in L^{2}(\Omega)$ integrate for time τ with input $J_{e}^{a}(x, t), t \in(0, \tau)$ corresponding to a symbol $a \in \mathcal{A}$ to obtain $v(x, \tau) \in L^{2}(\Omega)$ and write

$$
v(x, \tau) \stackrel{\text { def }}{=} f_{a} v
$$

Lemma 2 If $\rho>0$, the $\left\{f_{a}: a \in \mathcal{A}\right\}$ are contractions in the $L^{2}(\Omega)$ norm.

- For two arbitrary states v_{1}, v_{2}; by linearity of PDE:

$$
\partial_{t}\left\|v_{1}-v_{2}\right\|^{2}=-2 \rho\left\|v_{1}-v_{2}\right\|^{2}-2\left\|\partial_{x}\left(v_{1}-v_{2}\right)\right\|^{2}
$$

from which it follows that:

$$
\left\|v_{1}(\tau)-v_{2}(\tau)\right\|=\left\|\left(f_{a} v_{1}-f_{a} v_{2}\right)\right\| \leq e^{-\rho \tau}\left\|\left(v_{1}-v_{2}\right)\right\|
$$

Existence of a Unique Attractor

- Let \mathcal{B} be the set of nonempty, closed bounded subsets of (\mathbf{X}, \mathbf{d}) and extend F to act on \mathcal{B}
- Equipped with the Hausdorff metric, \mathcal{B} is a complete metric space and $\mathcal{C} \subseteq \mathcal{B}$

Theorem 3 Given hypotheses in Theorem 1, for any $A \in \mathcal{B}, F^{n} A \rightarrow K$ in the Hausdorff metric.

- Proof by approximating $A \in \mathcal{B}$ by an r-net $P_{r}(A)$ and showing that

$$
F P_{r}(A)=P_{r \lambda_{0}}(F A)
$$

where $\lambda_{0}=e^{-\rho \tau}<1$ is the contractivity of F. Note that by Theorem 1,

$$
F^{n} P_{r}(A) \rightarrow K
$$

The Cable Equation Attractor

- So we have a compact attractor, K, for the forced cable equation.
- A simple corollary to Theorem 3 shows the attractor is finite-dimensional

Corollary 4 The box-counting dimensionand hence the Hausdorff dimension-of K is bounded

$$
\operatorname{dim}_{H}(K) \leq \operatorname{dim}_{B}(K) \leq \frac{\log |\mathcal{A}|}{\left|\log \lambda_{0}\right|}
$$

- This bound is linear in the symbol input rate:

$$
\operatorname{dim}_{H}(K) \leq \operatorname{dim}_{B}(K) \leq \frac{\log |\mathcal{A}|}{\rho \tau}
$$

Being More Explicit

- Write the input as:

$$
J_{e}(x, t)=\frac{1}{2} J_{0}(t)+\sum_{k=1}^{\infty} J_{k}(t) \cos \left(\frac{\pi k x}{l}\right)
$$

- with spatio-temporal symbols:

$$
J_{k}(t)=\sum_{p} J_{k}^{\left(a_{p}\right)} g(t-p \tau)
$$

- Introduce a Fourier series solution:

$$
v(x, t)=\frac{1}{2} v_{0}(t)+\sum_{k=1}^{\infty} v_{k}(t) \cos \left(\frac{\pi k x}{l}\right)
$$

- Evolution of Fourier coefficients:

$$
\dot{v}_{k}(t)=-\left(\rho+(\pi k / l)^{2}\right) v_{k}(t)+J_{k}(t)
$$

An Infinite-dimensional Affine IFS

- Gives an infinite-dimensional IFS:

$$
\left\{v_{k} \mapsto \lambda_{k} v_{k}+b_{k} J_{k}^{(a)}: k \in \mathbb{Z}^{+}, a \in \mathcal{A}\right\}
$$

- Where the contractions are given by:

$$
\lambda_{k}=\exp \left[-\tau\left(\rho+(\pi k / l)^{2}\right)\right]
$$

- and the offsets $b_{k} J_{k}^{(a)}$ contain the term:

$$
b_{k}=e^{\left[-\tau\left(\rho+(\pi k / l)^{2}\right)\right]} \int_{0}^{\tau} e^{\left[t\left(\rho+(\pi k / l)^{2}\right)\right]} g(t) d t
$$

- Later we truncate to get IFSs of affine $\operatorname{maps} \tilde{f}_{a}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\tilde{f}_{a} x=T x+\beta_{a}
$$

- T is diagonal with elements $\left\{\lambda_{k}\right\}_{k=0}^{n-1}$
- Note that T is independent of the symbol being input.

Dimension of Self-affine Attractors

Theorem 5 (Falconer,Solomyak) Let $\left\{T_{a}\right.$:

$a \in \mathcal{A}\}$ be linear contractions such that $\max \left\{\left\|T_{a}\right\|: a \in \mathcal{A}\right\}<1 / 2$ and let $\left\{\beta_{a} \in\right.$ $\left.\mathbb{R}^{n}: a \in \mathcal{A}\right\}$ be vectors. If K is an affine invariant set satisfying:

$$
K=\bigcup_{a=1}^{|\mathcal{A}|}\left(T_{a}(K)+\beta_{a}\right)
$$

Then $\operatorname{dim}_{H} K=\operatorname{dim}_{B} K=d\left(T_{1}, T_{2}, \ldots T_{|\mathcal{A}|}\right)$ for almost all $\left(\beta_{1}, \beta_{2}, \ldots \beta_{|\mathcal{A}|}\right) \in \mathbb{R}^{|\mathcal{A}| n}$ in the sense of $|\mathcal{A}| n$-dimensional Lebesgue measure.

- $d\left(T_{1}, T_{2}, \ldots T_{|\mathcal{A}|}\right)$ is the singularity dimension (next slide).

Theorem 6 (Solomyak) Let $T_{a}=T \forall a \in$ \mathcal{A}. If the eigenvalues of T are such that all the images $T K+\beta_{a}$ of the attractor K are pairwise disjoint, then Falconer's formula holds for almost all $\left(\beta_{1}, \beta_{2}, \ldots \beta_{|\mathcal{A}|}\right) \in \mathbb{R}^{|\mathcal{A}| n}$.

The Singularity Dimension

- Think of the following as a multiplicative interpolation:

$$
\phi^{s}(T)=\sigma_{1} \sigma_{2} \ldots \sigma_{r-1} \sigma_{r}^{s-r+1}
$$

where the σ_{i} are the ordered singular values of T and $r \in \mathbb{Z}^{+}$is such that $r-1<s \leq r$.

- ϕ^{s} is strictly decreasing and continuous.
- Now we sum over words of length q :

$$
\Sigma_{q}^{s}=\sum_{a_{1}, \ldots a_{q}} \phi^{s}\left(T_{a_{1}} \circ T_{a_{2}} \circ \ldots T_{a_{q}}\right)
$$

- Submultiplicative: $\Sigma_{q_{1}+q_{2}}^{s} \leq \Sigma_{q_{1}}^{s} \Sigma_{q_{2}}^{s}$.
- Therefore, $\Sigma_{\infty}^{s}=\lim _{q \rightarrow \infty}\left(\Sigma_{q}^{s}\right)^{\frac{1}{q}}$ exists.
- If $\Sigma_{\infty}^{n} \leq 1$, there is a unique value of s called d-such that $\Sigma_{\infty}^{d}=1$.

The Cable Equation Attractor Dimension

- Use an n-dimensional truncation (n arbitrarily large).
- Then: $\Sigma_{q}^{s}=|\mathcal{A}|^{q} \phi^{s}\left(T^{q}\right)$
- Where $\phi^{s}\left(T^{q}\right)=\left(\phi^{s}(T)\right)^{q}$ can be written explicitly.
- It follows taking the limiting geometric mean gives: $\Sigma_{\infty}^{s}=|\mathcal{A}| \phi^{s}(T)$
- The required value of d is the solution of

$$
|\mathcal{A}| \phi^{d}(T)=1
$$

- Linear interpolation of the cumulative sum of the ordered list of Lyapunov exponents and $\log |\mathcal{A}|$ (the maximal entropy of the shift invariant measures on $\mathcal{A}^{\mathbb{Z}^{+}}$).

Testing the Hypotheses

Proposition 7 Consider the IFS consisting of $|\mathcal{A}|=2$ maps $\tilde{f}_{a}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ where $\tilde{f}_{a} x=T x+\beta_{a}$ and T is diagonal with nonvanishing elements $T_{k k}=\lambda_{k-1}$. Then for sufficiently large n, all the images $T K+\beta_{a}$ of the attractor K are pairwise disjoint for almost all $\left(\beta_{1}, \beta_{2}\right) \in \mathbb{R}^{2 n}$ in the sense of $2 n$-dimensional Lebesgue measure.

- For a proof, take the nth component of the IFS.
- Problem reduces to case at very beginning of talk
- So no overlap iff $\lambda_{n}<1 / 2$.
- This can always be arranged for large enough n.

Numerical Values of the Attractor Dimension

- For almost all forms of input current distribution, we can, therefore, find $\operatorname{dim}_{H} K$ using a simple numerical root finder.

Red: $\operatorname{dim}_{H} K$ vs τ in the case $\rho=2.0$
Blue: The upper bound from Corollary 4

Red: $\operatorname{dim}_{H} K$ vs τ in the case $\rho=0.5$
Blue:: The upper bound from Corollary 4

The Effect of Noise

- Things are easier with noise.
- Add i.i.d. random shifts $y_{i} \in D \subset \mathbb{R}^{n}$ at each application of a map from the IFS.
- Where the y_{i} have a.c. distribution with bdd density, supported on an arbitrarily small disc D at the origin.
- For sample path y the attractor is K^{y}

Theorem 8 (Jordan,Pollicott,Simon) Given a contracting self-affine IFS of the form assumed in Theorem 5. For \mathbb{P}-almost all $y \in \mathcal{D}^{\infty}$ then:

1. if $d\left(T_{1}, \ldots, T_{|\mathcal{A}|}\right) \leq n$ then

$$
\operatorname{dim}_{H}\left(K^{y}\right)=d\left(T_{1}, \ldots, T_{|\mathcal{A}|}\right)
$$

2. if $d\left(T_{1}, \ldots, T_{|\mathcal{A}|}\right)>n$ then $m\left(K^{y}\right)>0$.

Concluding Remarks

- Finite-dimensional attractors for randomly forced, noisy, extended systems.
- Generalise the noise model?
- Generalise to neural systems where the timing is random?
- Also can introduce nonlinearities-maybe need to extend Theorems 1 and 3 to allow for non-contracting flows.
- Information theory-channel capacity?
- Delay embedding for IFSs-results of Robinson.

