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A Simple Example

e First order system driven by a clocked
random pulse sequence:

dv
a = —v+ E(t)

§(t) =) _apg(t — pr)
p

{ap} € {O,l}ZjL are the input symbols
and g is supported on (0, 7).

e Symbols input at constant rate, = 1.

e In the examples, g is a raised cosine.
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A typical segment of £(t)



Randomly Forced First Order ODE
(cont.)

e Can be solved using elementary under-
graduates.

e [ he important parameter is 7 .
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A typical response v(t), when 7 = log 3.
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Input and output: comparing £(¢) and v(t).

3



Sampling the Output

e \When processing signals, it is usual to
sample the output.

e A simple picture emerges if we sample at
the symbol input rate.
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The response v(t) (curve) and samples v(pr) (dots).
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More samples—can you see a pattern?



Sampling the Output

e A pattern becomes clear with a longer
time series.

e Thesamples {v(pr)} seem to be distributed
as a middle thirds Cantor set.
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A longer time series—red shows data of previous figure.



From Another Point of View

e Integrate the ODE for one sample pe-
riod, T.

e Depending on the input symbol the out-
put changes according to:

VvV o— A\

v — Av+b

where A =e 7 and b=-e 7 [§ elg(t)dt

e [ he sampled output is given by random
composition of these maps.

e A skew product system: base dynamics
a full shift on {0,127 fibre dynamics
given by ODE.

e An Iterated Function System (IFS)



Iterated Function Systems

o Let C be the set of nonempty compact
subsets of a complete metric space, (X, d)

e Equipped with the Hausdorff metric, C is
a complete metric space

e Define the map F :C —C

A
FU = |J faU

a=1
were A is a finite alphabet and the maps
{fa :a € A} act on X.

Theorem 1 Given that the {f,} are con-
traction maps, F' . C — C has a unique fixed
point K, and for any A € C, the sequence
F"A — K in the Hausdorff metric.



Parameter Dependence of Attractor

e Rescale v — v/b:

{fv—A,v—X+1:A=e " €][0,1)}

0.4

state (v)
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The Basic Model

e [ he cable equation:

RC0Owv = 65%1) — RAv+ R,

with R the resistance per unit length of
the conductor, C and A the capacitance
and conductance per unit length of the
insulation and I is the input current.

e IFS model of digital channels.

e The cable equation is used to model (pas-
sive) sections of axon or dendrite: where
the term Av is a linear approximation of
the membrane current.

e Within each 7 second interval, input one
of a finite number of possible finite-
duration pulse—assume no overlap of
inputs.



Specifying the Model
Finite cable z € 2 = [0, 1] with zero cur-
rent boundary conditions:

8,v(0,t) = 0 and dyv(l,t) = 0 Vi

Rescale time ¢t — t/RC and introduce the
dimensionless parameter p = RA.

The cable equation (with Je(x,t) = Rlc(x,t)):

Oy = 8£v—pv—|—Je (1)

The input Je(x,t) is supplied as a spatially-
coded, pulse sequence
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The IFS Consists of Contractions

e IFS consists of a finite set of maps {f, :
L2() — L?(2),a € A}

e Given v(z,0) € L2(S) integrate for time
7 with input J%(z,t), t € (0,7) corre-
sponding to a symbol ¢ € A to obtain
v(z,7) € L2(2) and write

def
U($, T> — fan

Lemma 2 If p > 0O, the {fs, : a € A} are
contractions in the L?(2) norm.

e For two arbitrary states vq, vo; by linearity
of PDE:

A|lv1—va||? = —2p|lv1—va||? =20z (v1—v2)]|?

from which it follows that:
|v1(7)=va(T)|| = [[(favi—fav2)| < e 77 |[(vi—v2)||
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Existence of a Unique Attractor

o Let B be the set of nonempty, closed
bounded subsets of (X,d) and extend
F to acton B

e Equipped with the Hausdorff metric, B is
a complete metric space and C C B

Theorem 3 Given hypotheses in Theorem 1,
for any A € B, F"A — K in the Hausdorff
metric.

e Proof by approximating A € B by an r-net
Pr(A) and showing that

FP(A) = Py, (FA)

where A\g = e P7 < 1 is the contractivity
of F'. Note that by Theorem 1,

F"P(A) — K
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The Cable Equation Attractor

e SO we have a compact attractor, K, for
the forced cable equation.

e A simple corollary to Theorem 3 shows
the attractor is finite-dimensional

Corollary 4 T he box-counting dimension—
and hence the Hausdorff dimension—of K
iIs bounded

|
o log|A|

e [ his bound is linear in the symbol input
rate:

log | A]
pT

dimy(K) < dimp(K) <
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Being More Explicit

Write the input as:

Jo(e,t) = ZJo() + - Tyt cos("h)
k=1

with spatio-temporal symbols:

Te(t) = S0 gt — pr)
p

Introduce a Fourier series solution:

wkx

o( 1) = o) + 3 vy(t) cos(">)
k=1

Evolution of Fourier coefficients:

op(t) = —(p + (k/1)?)vp(t) + Ji(t)
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An Infinite-dimensional Affine IFS

Gives an infinite-dimensional IFS:

{Uk — A\LUL + bkjlga) Lk € Z+,CL c A}

Where the contractions are given by:

A, = exp[—7(p + (7k/1)?)]

and the offsets bkjlga) contain the term:

b, = el=T(oH(k/1)?)] /O " etk /DD g (1)t

Later we truncate to get IFSs of affine
maps f, : R” — R"

fax :TCE"‘ﬁa

: : : 1
T is diagonal with elements {\;}; g

Note that 7' is independent of the symbol
being input.
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Dimension of Self-affine Attractors

Theorem 5 (Falconer,Solomyak) Let{T, :
a € A} be linear contractions such that
max{||Tu|| : a € A} < 1/2 and let {84 €
R™ : a € A} be vectors. If K is an affine
invariant set satisfying:

Al
K = U (Tu(K) + Ba)

a=1
Thendimy K =dimg K = d(Tl,TQ,...T|A|)
for almost all (61,52, - B[A]) c R|'A|n in the

sense of |A|ln-dimensional Lebesgue mea-
sure.

o d(Ty,T»,. --T\A\) is the singularity dimen-
sion (next slide).

Theorem 6 (Solomyak) LetT, =T Vac
A. If the eigenvalues of T are such that all
the images T' K + (B, of the attractor K are
pairwise disjoint, then Falconer’s formula
holds for almost all (81,82, ... 8 )) € RIAIn,
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The Singularity Dimension

e T hink of the following as a multiplicative
interpolation:

¢5(T) = 0102...0p_108 "T1

where the o; are the ordered singular
values of T and r € ZT is such that
r—1<s<r.

e ¢° is strictly decreasing and continuous.

e Now we sum over words of length gq:

Zf]: Z ¢S(TaloTa20...Taq)

ai,...aq
1 1 1 . S S S
e Submultiplicative: Zq1—|—q2 < quzqz.
1
e Therefore, >3, = limg—oo(37)9 exists.

o If > <1, there is a unique value of s—
called d—such that ¥% = 1.
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The Cable Equation Attractor Dimension

e Use an n-dimensional truncation (n arbi-
trarily large).

e Then: 37 = [A]1¢%(TY)

e Where ¢°(T7) = (¢°(717))4 can be written
explicitly.

e It follows taking the limiting geometric
mean gives: >3 = |A|¢°(T)

e [ he required value of d is the solution of

Alp?(T) = 1

e Linear interpolation of the cumulative sum
of the ordered list of Lyapunov expo-
nents and log | A| (the maximal entropy
of the shift invariant measures on AZ").
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Testing the Hypotheses

Proposition 7 Consider the IFS consist-
ing of |[A| = 2 maps f, : R® — R" where
foxr = Tx + B, and T is diagonal with non-
vanishing elements Ty, = M\._1. Then for
sufficiently large n, all the images T K + (3,
of the attractor K are pairwise disjoint for
almost all (B81,32) € R2™ in the sense of
2n-dimensional Lebesgue measure.

e For a proof, take the nth component of
the IFS.

e Problem reduces to case at very begin-
ning of talk

e SO no overlap iff A\, < 1/2.
e T his can always be arranged for large

enough n.
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Numerical Values of the Attractor
Dimension

e For almost all forms of input current dis-
tribution, we can, therefore, find dimy K
using a simple numerical root finder.
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Red: dimy K vs 7 in the case p = 2.0
Blue: The upper bound from Corollary 4
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Blue:: The upper bound from Corollary 4
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The Effect of Noise
e [ hings are easier with noise.

e Add i.i.d. random shifts y; € D C R" at
each application of a map from the IFS.

e Where the y, have a.c. distribution with
bdd density, supported on an arbitrarily
small disc D at the origin.

e For sample path y the attractor is KY

Theorem 8 (Jordan,Pollicott,Simon) Given
a contracting self-affine IFS of the form
assumed in Theorem 5. For P-almost all

y € D then:

1. if d(Ty,...,T4) <n then
dimH(Ky) :d(Tl,...,’I]Ap

2. ifd(Tl,...,T‘A‘) > n then m(KY) > 0.
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Concluding Remarks

e Finite-dimensional attractors for randomly
forced, noisy, extended systems.

e Generalise the noise model?

e Generalise to neural systems where the
timing is random?

e AIlsSo can introduce nonlinearities—maybe
need to extend Theorems 1 and 3 to al-
low for non-contracting flows.

e Information theory——channel capacity?

e Delay embedding for IFSs—results of Robin-
son.
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