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A Simple Example

• First order system driven by a clocked

random pulse sequence:

dv

dt
= −v + ξ(t)

ξ(t) =
∑
p

apg(t − pτ)

{ap} ∈ {0,1}Z+
are the input symbols

and g is supported on (0, τ).

• Symbols input at constant rate, τ−1.

• In the examples, g is a raised cosine.
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A typical segment of ξ(t)
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Randomly Forced First Order ODE
(cont.)

• Can be solved using elementary under-
graduates.

• The important parameter is τ .
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A typical response v(t), when τ = log3.
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Input and output: comparing ξ(t) and v(t).
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Sampling the Output

• When processing signals, it is usual to

sample the output.

• A simple picture emerges if we sample at

the symbol input rate.
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Sampling the Output

• A pattern becomes clear with a longer

time series.

• The samples {v(pτ)} seem to be distributed

as a middle thirds Cantor set.
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From Another Point of View

• Integrate the ODE for one sample pe-

riod, τ .

• Depending on the input symbol the out-

put changes according to:

v 7→ λv

v 7→ λv + b

where λ = e−τ and b = e−τ ∫ τ
0 etg(t)dt

• The sampled output is given by random

composition of these maps.

• A skew product system: base dynamics

a full shift on {0,1}Z+
; fibre dynamics

given by ODE.

• An Iterated Function System (IFS)
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Iterated Function Systems

• Let C be the set of nonempty compact

subsets of a complete metric space, (X,d)

• Equipped with the Hausdorff metric, C is

a complete metric space

• Define the map F : C → C

FU =

|A|⋃
a=1

faU

were A is a finite alphabet and the maps

{fa : a ∈ A} act on X.

Theorem 1 Given that the {fa} are con-

traction maps, F : C → C has a unique fixed

point K, and for any A ∈ C, the sequence

FnA → K in the Hausdorff metric.
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Parameter Dependence of Attractor

• Rescale v 7→ v/b:

{v 7→ λv, v 7→ λv + 1 : λ = e−τ ∈ [0,1)}
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The Basic Model

• The cable equation:

RC∂tv = ∂2
xv − RAv + RIe

with R the resistance per unit length of

the conductor, C and A the capacitance

and conductance per unit length of the

insulation and Ie is the input current.

• IFS model of digital channels.

• The cable equation is used to model (pas-

sive) sections of axon or dendrite: where

the term Av is a linear approximation of

the membrane current.

• Within each τ second interval, input one

of a finite number of possible finite-

duration pulse—assume no overlap of

inputs.

9



Specifying the Model

• Finite cable x ∈ Ω = [0, l] with zero cur-

rent boundary conditions:

∂xv(0, t) = 0 and ∂xv(l, t) = 0 ∀t

• Rescale time t 7→ t/RC and introduce the

dimensionless parameter ρ = RA.

• The cable equation (with Je(x, t) = RIe(x, t)):

∂tv = ∂2
xv − ρv + Je (1)

• The input Je(x, t) is supplied as a spatially-

coded, pulse sequence
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The IFS Consists of Contractions

• IFS consists of a finite set of maps {fa :

L2(Ω) → L2(Ω), a ∈ A}

• Given v(x,0) ∈ L2(Ω) integrate for time

τ with input Ja
e (x, t), t ∈ (0, τ) corre-

sponding to a symbol a ∈ A to obtain

v(x, τ) ∈ L2(Ω) and write

v(x, τ)
def
= fav

Lemma 2 If ρ > 0, the {fa : a ∈ A} are

contractions in the L2(Ω) norm.

• For two arbitrary states v1, v2; by linearity

of PDE:

∂t‖v1−v2‖
2 = −2ρ‖v1−v2‖

2−2‖∂x(v1−v2)‖
2

from which it follows that:

‖v1(τ)−v2(τ)‖ = ‖(fav1−fav2)‖ ≤ e−ρτ‖(v1−v2)‖
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Existence of a Unique Attractor

• Let B be the set of nonempty, closed

bounded subsets of (X,d) and extend

F to act on B

• Equipped with the Hausdorff metric, B is

a complete metric space and C ⊆ B

Theorem 3 Given hypotheses in Theorem 1,

for any A ∈ B, FnA → K in the Hausdorff

metric.

• Proof by approximating A ∈ B by an r-net

Pr(A) and showing that

FPr(A) = Prλ0
(FA)

where λ0 = e−ρτ < 1 is the contractivity

of F . Note that by Theorem 1,

FnPr(A) → K
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The Cable Equation Attractor

• So we have a compact attractor, K, for

the forced cable equation.

• A simple corollary to Theorem 3 shows

the attractor is finite-dimensional

Corollary 4 The box-counting dimension—

and hence the Hausdorff dimension—of K

is bounded

dimH(K) ≤ dimB(K) ≤
log |A|

| logλ0|

• This bound is linear in the symbol input

rate:

dimH(K) ≤ dimB(K) ≤
log |A|

ρτ
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Being More Explicit

• Write the input as:

Je(x, t) =
1

2
J0(t) +

∞∑
k=1

Jk(t) cos(
πkx

l
)

• with spatio-temporal symbols:

Jk(t) =
∑
p

J
(ap)
k g(t − pτ)

• Introduce a Fourier series solution:

v(x, t) =
1

2
v0(t) +

∞∑
k=1

vk(t) cos(
πkx

l
)

• Evolution of Fourier coefficients:

v̇k(t) = −(ρ + (πk/l)2)vk(t) + Jk(t)
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An Infinite-dimensional Affine IFS

• Gives an infinite-dimensional IFS:

{vk 7→ λkvk + bkJ
(a)
k : k ∈ Z

+, a ∈ A}

• Where the contractions are given by:

λk = exp[−τ(ρ + (πk/l)2)]

• and the offsets bkJ
(a)
k contain the term:

bk = e[−τ(ρ+(πk/l)2)]
∫ τ

0
e[t(ρ+(πk/l)2)]g(t)dt

• Later we truncate to get IFSs of affine

maps f̃a : Rn → Rn

f̃ax = Tx + βa

• T is diagonal with elements {λk}
n−1
k=0

• Note that T is independent of the symbol

being input.
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Dimension of Self-affine Attractors

Theorem 5 (Falconer,Solomyak) Let {Ta :

a ∈ A} be linear contractions such that

max{‖Ta‖ : a ∈ A} < 1/2 and let {βa ∈

R
n : a ∈ A} be vectors. If K is an affine

invariant set satisfying:

K =

|A|⋃
a=1

(Ta(K) + βa)

Then dimH K = dimB K = d(T1, T2, . . . T|A|)

for almost all (β1, β2, . . . β|A|) ∈ R
|A|n in the

sense of |A|n-dimensional Lebesgue mea-

sure.

• d(T1, T2, . . . T|A|) is the singularity dimen-

sion (next slide).

Theorem 6 (Solomyak) Let Ta = T ∀ a ∈

A. If the eigenvalues of T are such that all

the images TK + βa of the attractor K are

pairwise disjoint, then Falconer’s formula

holds for almost all (β1, β2, . . . β|A|) ∈ R|A|n.
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The Singularity Dimension

• Think of the following as a multiplicative

interpolation:

φs(T) = σ1σ2 . . . σr−1σs−r+1
r

where the σi are the ordered singular

values of T and r ∈ Z
+ is such that

r − 1 < s ≤ r.

• φs is strictly decreasing and continuous.

• Now we sum over words of length q:

Σs
q =

∑
a1,...aq

φs(Ta1 ◦ Ta2 ◦ . . . Taq)

• Submultiplicative: Σs
q1+q2

≤ Σs
q1

Σs
q2

.

• Therefore, Σs
∞ = limq→∞(Σs

q)
1
q exists.

• If Σn
∞ ≤ 1, there is a unique value of s—

called d—such that Σd
∞ = 1.
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The Cable Equation Attractor Dimension

• Use an n-dimensional truncation (n arbi-

trarily large).

• Then: Σs
q = |A|qφs(T q)

• Where φs(T q) = (φs(T))q can be written

explicitly.

• It follows taking the limiting geometric

mean gives: Σs
∞ = |A|φs(T)

• The required value of d is the solution of

|A|φd(T) = 1

• Linear interpolation of the cumulative sum

of the ordered list of Lyapunov expo-

nents and log |A| (the maximal entropy

of the shift invariant measures on AZ+
).
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Testing the Hypotheses

Proposition 7 Consider the IFS consist-

ing of |A| = 2 maps f̃a : Rn → Rn where

f̃ax = Tx + βa and T is diagonal with non-

vanishing elements Tkk = λk−1. Then for

sufficiently large n, all the images TK + βa

of the attractor K are pairwise disjoint for

almost all (β1, β2) ∈ R2n in the sense of

2n-dimensional Lebesgue measure.

• For a proof, take the nth component of

the IFS.

• Problem reduces to case at very begin-

ning of talk

• So no overlap iff λn < 1/2.

• This can always be arranged for large

enough n.
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Numerical Values of the Attractor

Dimension

• For almost all forms of input current dis-

tribution, we can, therefore, find dimH K

using a simple numerical root finder.
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Red: dimH K vs τ in the case ρ = 2.0

Blue: The upper bound from Corollary 4
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Red: dimH K vs τ in the case ρ = 0.5

Blue:: The upper bound from Corollary 4
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The Effect of Noise

• Things are easier with noise.

• Add i.i.d. random shifts yi ∈ D ⊂ Rn at

each application of a map from the IFS.

• Where the yi have a.c. distribution with

bdd density, supported on an arbitrarily

small disc D at the origin.

• For sample path y the attractor is Ky

Theorem 8 (Jordan,Pollicott,Simon) Given

a contracting self-affine IFS of the form

assumed in Theorem 5. For P-almost all

y ∈ D∞ then:

1. if d(T1, . . . , T|A|) ≤ n then

dimH(Ky) = d(T1, . . . , T|A|)

2. if d(T1, . . . , T|A|) > n then m(Ky) > 0.
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Concluding Remarks

• Finite-dimensional attractors for randomly

forced, noisy, extended systems.

• Generalise the noise model?

• Generalise to neural systems where the

timing is random?

• Also can introduce nonlinearities—maybe

need to extend Theorems 1 and 3 to al-

low for non-contracting flows.

• Information theory—channel capacity?

• Delay embedding for IFSs—results of Robin-

son.
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