Dirichlet spaces with no reference measure

Zeev Sobol, Swansea University, z.sobol@swan.ac.uk

Weak solutions

$$\sum_{|lpha|,|eta|\leq m} (-1)^{|lpha|} \partial_{lpha} \Big(a_{lphaeta} \partial_{eta} u \Big) = F$$
 (a measure)

$$\begin{split} \mathcal{E}[\mathbf{u},\phi] &= \sum_{|\alpha|,|\beta| \le m} \int a_{\alpha\beta}(\partial_{\beta}u)(\partial_{\alpha}\phi)dx = \mathbf{F}(\phi), \\ &\quad \forall \phi \in \mathcal{D} \text{ - test functions} \end{split}$$

Green function $G : \mathcal{E}[G(\cdot, x), \phi] = \phi(x), \ \forall \phi \in \mathcal{D}$

Super-harmonic $u : \mathcal{E}[u, \phi] \ge 0$, $\forall \phi \in \mathcal{D}^+$

The Fukushima construction

m - a full support measure

 $(\mathcal{E}, \mathcal{D})$ - a closable Markov form in $L^2(m)$, associates Markov SG P_t on $L^p(m)$, $p \in [1, \infty]$

 P_t is transient $\Leftrightarrow \forall f \in L^1_+(m) : Gf = \int_0^\infty P_t f \, dt < \infty m$ -a.e.

$$\begin{split} m(\phi f) &- m(\phi P_T f) \quad \left(\to m(\phi f) \right) \\ &= \int_0^T \mathcal{E}[P_t f, \phi] dt \quad \left(\to \mathcal{E}\left[\int_0^\infty P_t f \, dt, \phi \right] \right) \\ \exists g \in L^1(m), \ g > 0 \ m\text{-a.e.:} \ \sqrt{\mathcal{E}[\phi]} \geq \int |\phi| dm, \\ &\quad \forall \phi \in \mathcal{D} \end{split}$$

Fukushima: transience (recurrence) depends of measure m.

Examples

$$\Omega \subset \mathbb{R}^N$$
 smooth bdd connected

$$\mathcal{E}(u) := \int_{\Omega} |\nabla u|^2 dx$$
, $\mathcal{D}_0 = H_0^1(\Omega)$, $\mathcal{D}_1 = H^1(\Omega)$.

 λ be the $\mathit{N}\text{-dim}$ Lebesgue measure on Ω

$$\Delta := \sum_{q \in \mathbb{Q}^N \cap \Omega} c_q \delta_q.$$

 H^1 is recurrent wr to any reference measure it is closable.

 H_0^1 is transient wr to $m = \lambda$.

 H_0^1 is recurrent wr to $m = \lambda + \Delta$.

 H^1 and H^1_0 are not closable wr to $m = \Delta$, $N \ge 3$.

Philosophy: measure as a clocking device

Let
$$m_0 \longleftrightarrow \frac{du}{dt} = Au$$
.

Then
$$dm := \rho dm_0 \longleftrightarrow \frac{du}{d\tau} = \frac{1}{\rho} Au$$
, i.e., $t = \frac{\tau}{\rho}$.

Fukushima: for m not charging sets of zero capacity,

$$t = T_{\tau}(\omega)$$
:
 $\frac{1}{\tau} \mathbb{E}_{m_0} \int_{0}^{\tau} f(X_{\tau}) dT_{\tau} \to m(f), \ \tau \to 0$

 $X_t(\omega)$: $\mathbb{E}_x f(X_t) = P_t f(x), P_t \longleftrightarrow (\mathcal{E}, \mathcal{D}) \text{ on } L^2(m_0).$

Transient Dirichlet space $(\mathcal{H}, [\cdot, \cdot])$

Given: state space Ω , \mathcal{B} - Borel σ -algebra on Ω , $\mathcal{B}(\Omega)$ - \mathcal{B} -measurable functions of Ω

- 1. \mathcal{H} is a separable Hilbert space.
- 2. \mathcal{H} is a ordered vector space \mathcal{H}^+ closed, $\mathcal{H}^+ \cap (-\mathcal{H}^+) = \{0\}.$
- 3. \mathcal{H} is a *Stone lattice* i.e. a vector lattice with an order-convex sub-lattice $\mathcal{H}^{\wedge} \subset \mathcal{H}^{+}$ of "positive elements not exceeding the unit". \mathcal{H}^{\wedge} is closed.
- 4. $\mathcal{H} \stackrel{\text{dense}}{\longleftrightarrow} \mathcal{D} \subset \mathcal{B}(\Omega)$, a Stone sub-lattice in the pointwise order, generating \mathcal{B} .
- 5. For all $\in \mathcal{H} : ||(u^+)^{\wedge}||_{\mathcal{H}} \le ||u||_{\mathcal{H}}$.

Stone lattice $\ensuremath{\mathcal{V}}$

- vector lattice (= ordered vector space with ∧, ∨ operations);
- countable type (= a majorized family of disjoint elements is at most countable);
- \exists order-convex sub-lattice $\mathcal{V}^{\wedge} \subset \mathcal{V}^{+}$ such that: 0 = min \mathcal{V}^{\wedge} ; $\forall u \in \mathcal{H}^{+}$: $\exists u^{\wedge} := \sup\{v \in \mathcal{H}^{\wedge}, v \leq u\}$; $\forall u \in \mathcal{H}^{+}$: $(\forall \alpha \in \mathbb{R}^{+} : \alpha u \in \mathcal{H}^{\wedge}) \Rightarrow u = 0$.

Daniell Stone integral

A Stone lattice allows for an abstract version of the Lebesgue (Daniell-Stone) integral:

- order completion $\hat{\mathcal{V}}$ ($\hat{\mathcal{V}}^+$ = limits of increasing positive sequences) is an analog of the measurable functions space;
- $\sigma(\mathcal{V}) := \left\{ \sup_{n \in \mathcal{V}} | u \in \mathcal{V}^+ \right\} \subset \widehat{\mathcal{V}}$ is a (Boolean) σ -algebra of "(indicators of) supports of elements of \mathcal{V} "
- Daniell-Stone theorem: an order continuous positive linear functional on \mathcal{V} is a positive measure on $\sigma(\mathcal{V})$.

Properties of a transient Dirichlet space

- 1. $\sigma(\mathcal{H}) \supset \mathcal{B}$.
- 2. $S^+ := (\mathcal{H}^*)^+$ separates points on \mathcal{H} . They are positive measures on $\sigma(\mathcal{H})$ satisfying $\mu(u) \le c \|u\|_{\mathcal{H}}, \ u \in \mathcal{D}^+$
- 3. $\exists m \in S^+$ of a full support. $([,], \mathcal{H} \cap L^2(m))$ is a transient Dirichlet form in $L^2(m)$ in the Fukushima sense.
- 4. The Green operator G is the Riesz isometry $\mathcal{H}^* \to \mathcal{H}$ restricted to (signed) measures on $\sigma(\mathcal{H})$.

Construction

$\mathcal{D} \subset C_c(\Omega)$

- Stone lattice with the pointwise order;
- dense in $C_c(\Omega)$;
- $\forall v \in \mathcal{D}^+ \exists u \in \mathcal{D}^\wedge$ such that $\forall \epsilon > 0$ $(u + \epsilon v)^\wedge = u$ ("u = 1 on supp v");
- $||(u^+)^{\wedge}||\mathcal{H} \leq ||u||_{\mathcal{H}};$
- for any $||u_n||_{\mathcal{H}} \to 0$, $\sup_n ||v_n||_{\mathcal{H}} < \infty$: $0 \le v_n \le u_n \Rightarrow v_n \to 0$ (weakly) in \mathcal{H} .