The Riemann-Hilbert problem with a vanishing coefficient that arises in nonlinear hydrodynamics

E. Shargorodsky Department of Mathematics King's College London

Motivation

Variational theory of Stokes waves: it is very important to know whether or not every solution w of the equation

$$\mathcal{C}w' = \lambda \{ w + w\mathcal{C}w' + \mathcal{C}(ww') \}, \quad \lambda > 0 \quad (1)$$

satisfies the Bernoulli constant-pressure condition

$$(1 - 2\lambda w)\{{w'}^2 + (1 + Cw')^2\} = 1$$
 a.e.

Here Cu denotes the periodic Hilbert transform of a 2π -periodic function $u : \mathbb{R} \to \mathbb{R}$:

$$\mathcal{C}u(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(y) \cot \frac{x-y}{2} dy.$$

J.F. Toland (2000):

a solution w of (1) satisfies the Bernoulli constantpressure condition if and only if $1 - 2\lambda w \ge 0$;

(1) is equivalent to a nonlinear Riemann-Hilbert problem with the coefficient $1 - 2\lambda w$.

<u>Aim</u>: Show that the nonlinear Riemann-Hilbert problem does not have solutions such that $1 - 2\lambda w$ changes sign.

It is sufficient to show that if $1 - 2\lambda w$ changes sign, then the corresponding **linear** Riemann-Hilbert problem does not have nontrivial solutions.

Hardy classes

Let \mathbb{D} be the unit disc centred at 0 in the complex plane \mathbb{C} . For any holomorphic function $f: \mathbb{D} \to \mathbb{C}$, let

$$||f||_{p} := \sup_{r \in (0,1)} \left(\int_{0}^{2\pi} |f(re^{it})|^{p} dt \right)^{1/p}, \quad p < \infty,$$
$$||f||_{\infty} := \sup_{|\zeta| < 1} |f(\zeta)|.$$

The Hardy class $H^p = H^p(\mathbb{D})$ is the set of all such functions f with $||f||_p < \infty$.

For any $f \in H^p$, $f^*(t) := \lim_{r \to 1} f(re^{it})$ is well defined for almost all $t \in \mathbb{R}$ and

 $||f^*||_{L_p([0,2\pi])} = ||f||_p.$

Linear Riemann-Hilbert problem (homogeneous):

Find $\varphi, \psi \in H^p$ such that

$$\varphi^* = a \,\overline{\psi^*},\tag{2}$$

where $a : \mathbb{R} \to \mathbb{C}$ is a given 2π -periodic continuous function.

(Connection with Stokes waves: $a = 1 - 2\lambda w$.)

Let $\rho(t)$ denote the distance from $t \in \mathbb{R}$ to the set of zeros of a:

 $\rho(t) := \operatorname{dist}(t, \mathcal{N}), \quad \mathcal{N} := \{ x \in \mathbb{R} | a(x) = 0 \}.$

Theorem. (ES & J.F. Toland) Suppose $1 \le p \le \infty$, $0 \le \mu \le 1$, $a : \mathbb{R} \to \mathbb{R}$ is continuous and

 $|a(t)| \leq \operatorname{const} \rho(t)^{\mu}$ for all $t \in \mathbb{R}$.

Then the Riemann-Hilbert problem (2) has no nontrivial solutions $\varphi, \psi \in H^p$ if

$$p \ge 2/\mu.$$
 (3)

Suppose additionally that a changes sign. Then (2) has no nontrivial solutions $\varphi, \psi \in H^p$ if

$$p \ge \frac{2}{1+\mu}.\tag{4}$$

Both inequalities (3), (4) are sharp: there are many cases where nontrivial solutions exist for any smaller value of p. J. Virtanen (2004): If the values of a belong to two rays and the angle between them equals $\gamma \in [0, \pi]$, then the Riemann-Hilbert problem (2) has no nontrivial solutions $\varphi, \psi \in H^p$ if

$$p > \frac{2}{\frac{\gamma}{\pi} + \mu},$$

and the constant in the right-hand side is sharp.

Definition. We say that $f : \mathbb{R} \to \mathbb{R}$ is nonoscillating on $E \subset \mathbb{R}$ if the limits

 $\lim_{E \ni x \to t-0} f(x), \quad \lim_{E \ni x \to t+0} f(x)$

exist, the former for all t such that $(t-\varepsilon, t) \cap E \neq \emptyset$ for any $\varepsilon > 0$ and the latter for all t such that $(t, t + \varepsilon) \cap E \neq \emptyset$ for any $\varepsilon > 0$.

Let

 $S_0 = \{ z \in \mathbb{C} \setminus \{ 0 \} | -\alpha \le \arg z \le \alpha \},\$

where $\alpha \in [0, \pi)$. Suppose $a : \mathbb{R} \to S_0 \cup \{0\}$ and let

 $E_0 := a^{-1}(S_0) = \{x \in \mathbb{R} | a(x) \in S_0\} = \mathbb{R} \setminus \mathcal{N}.$ E_0 is an open set of full measure.

Theorem. (ES & J. Virtanen) Let $1 and let <math>a : \mathbb{R} \to S_0 \cup \{0\}$ be a 2π -periodic continuous function such that

 $|a(t)| \leq \operatorname{const} \rho(t)^{\mu}$ for all $t \in \mathbb{R}$

with

$$\frac{2}{p} + \frac{2\alpha}{\pi} < \mu. \tag{5}$$

Then the Riemann-Hilbert problem (2) has no nontrivial solutions $\varphi, \psi \in H^p$ provided that arg *a* is non-oscillating on E_0 or $\mu \leq 2$.

The condition (5) is sharp.

Let $S_l = \{z \in \mathbb{C} \setminus \{0\} | \alpha_l \leq \arg z \leq \beta_l\}, \quad l = 0, 1$ and $0 \leq \alpha_0 \leq \beta_0 < \alpha_1 \leq \beta_1 < 2\pi$. Suppose $a : \mathbb{R} \to S_0 \cup S_1 \cup \{0\}$ and let

$$E_{0} = \{ x \in \mathbb{R} | a(x) \in S_{0} \},\$$

$$E_{1} = \{ x \in \mathbb{R} | a(x) \in S_{1} \}.\$$

 E_0 and E_1 are open sets.

Theorem. (ES & J. Virtanen) Let $1 , <math>\mu \ge 0$, $a : \mathbb{R} \to S_0 \cup S_1 \cup \{0\}$ be a 2π -periodic continuous function such that

 $|a(t)| \leq \operatorname{const} \rho(t)^{\mu}$ for all $t \in \mathbb{R}$ and let $0 < |E_l \cap [0, 2\pi]| < 2\pi$. If

$$p > \max\left\{\frac{2}{\mu + \frac{\alpha_1 - \beta_0}{\pi}}, \frac{2}{\mu + \frac{2\pi - \beta_1 - \alpha_0}{\pi}}\right\} = \frac{2}{\mu + \frac{\min\{\alpha_1 - \beta_0, 2\pi - (\beta_1 - \alpha_0)\}}{\pi}}, \quad (6)$$

then the Riemann-Hilbert problem (2) has no nontrivial solutions $\varphi, \psi \in H^p$ provided that arg *a* is non-oscillating on E_l , l = 0, 1 or

$$\mu \leq \min\left\{\frac{\alpha_1 - \alpha_0}{\pi}, \ \frac{\beta_1 - \beta_0}{\pi}\right\}.$$

The condition (6) is sharp.

Question: can one drop the non-oscillation condition in the above theorems?

Open problem

(which is not really related to my talk)

Let

$$Aw := \mathcal{C}w'.$$

Then

$$A\left(\sum_{k=-\infty}^{\infty} c_k e^{ikt}\right) = \sum_{k=-\infty}^{\infty} |k| c_k e^{ikt};$$

~ first order ΨDO on the unit circle \mathbb{T} with the symbol $|\xi|$;

$$\sim \sqrt{-\Delta}$$
 on \mathbb{T} .

Question: Is there a function $h : \mathbb{R}_+ \to \mathbb{R}_+$ such that $h(\tau) \to +\infty$ as $\tau \to +\infty$ and \sharp {negative eigenvalues of A-qI} $\geq h\left(||q||_{L^1(\mathbb{T})}\right)$, $\forall q \geq 0, \ q \in L^1(\mathbb{T})$?