The Riemann-Hilbert problem with a vanishing coefficient that arises in nonlinear hydrodynamics

E. Shargorodsky
Department of Mathematics King's College London

Motivation

Variational theory of Stokes waves: it is very important to know whether or not every solution w of the equation

$$
\begin{equation*}
\mathcal{C} w^{\prime}=\lambda\left\{w+w \mathcal{C} w^{\prime}+\mathcal{C}\left(w w^{\prime}\right)\right\}, \quad \lambda>0 \tag{1}
\end{equation*}
$$

satisfies the Bernoulli constant-pressure condition

$$
(1-2 \lambda w)\left\{w^{\prime 2}+\left(1+\mathcal{C} w^{\prime}\right)^{2}\right\}=1 \text { a.e. }
$$

Here $\mathcal{C} u$ denotes the periodic Hilbert transform of a 2π-periodic function $u: \mathbb{R} \rightarrow \mathbb{R}$:

$$
\mathcal{C} u(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u(y) \cot \frac{x-y}{2} d y .
$$

J.F. Toland (2000):

a solution w of (1) satisfies the Bernoulli constantpressure condition if and only if $1-2 \lambda w \geq 0$;
(1) is equivalent to a nonlinear Riemann-Hilbert problem with the coefficient $1-2 \lambda w$.

Aim: Show that the nonlinear Riemann-Hilbert problem does not have solutions such that $1-2 \lambda w$ changes sign.

It is sufficient to show that if $1-2 \lambda w$ changes sign, then the corresponding linear RiemannHilbert problem does not have nontrivial solutions.

Hardy classes

Let \mathbb{D} be the unit disc centred at 0 in the complex plane \mathbb{C}. For any holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$, let

$$
\begin{gathered}
\|f\|_{p}:=\sup _{r \in(0,1)}\left(\int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} d t\right)^{1 / p}, \quad p<\infty \\
\|f\|_{\infty}:=\sup _{|\zeta|<1}|f(\zeta)|
\end{gathered}
$$

The Hardy class $H^{p}=H^{p}(\mathbb{D})$ is the set of all such functions f with $\|f\|_{p}<\infty$.

For any $f \in H^{p}, f^{*}(t):=\lim _{r \rightarrow 1} f\left(r e^{i t}\right)$ is well defined for almost all $t \in \mathbb{R}$ and

$$
\left\|f^{*}\right\|_{L_{p}([0,2 \pi])}=\|f\|_{p}
$$

Linear Riemann-Hilbert problem (homoge-

 neous):Find $\varphi, \psi \in H^{p}$ such that

$$
\begin{equation*}
\varphi^{*}=a \overline{\psi^{*}}, \tag{2}
\end{equation*}
$$

where $a: \mathbb{R} \rightarrow \mathbb{C}$ is a given 2π-periodic continuous function.
(Connection with Stokes waves: $a=1-2 \lambda w$.)

Let $\rho(t)$ denote the distance from $t \in \mathbb{R}$ to the set of zeros of a :

$$
\rho(t):=\operatorname{dist}(t, \mathcal{N}), \quad \mathcal{N}:=\{x \in \mathbb{R} \mid a(x)=0\} .
$$

Theorem. (ES \& J.F. Toland) Suppose $1 \leq$ $p \leq \infty, \quad 0 \leq \mu \leq 1, \quad a: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and

$$
|a(t)| \leq \operatorname{const} \rho(t)^{\mu} \quad \text { for all } \quad t \in \mathbb{R} .
$$

Then the Riemann-Hilbert problem (2) has no nontrivial solutions $\varphi, \psi \in H^{p}$ if

$$
\begin{equation*}
p \geq 2 / \mu \tag{3}
\end{equation*}
$$

Suppose additionally that a changes sign. Then (2) has no nontrivial solutions $\varphi, \psi \in H^{p}$ if

$$
\begin{equation*}
p \geq \frac{2}{1+\mu} \tag{4}
\end{equation*}
$$

Both inequalities (3), (4) are sharp: there are many cases where nontrivial solutions exist for any smaller value of p.
J. Virtanen (2004): If the values of a belong to two rays and the angle between them equals $\gamma \in[0, \pi]$, then the Riemann-Hilbert problem (2) has no nontrivial solutions $\varphi, \psi \in H^{p}$ if

$$
p>\frac{2}{\frac{\gamma}{\pi}+\mu},
$$

and the constant in the right-hand side is sharp.

Definition. We say that $f: \mathbb{R} \rightarrow \mathbb{R}$ is nonoscillating on $E \subset \mathbb{R}$ if the limits

$$
\lim _{E \ni x \rightarrow t-0} f(x), \lim _{E \ni x \rightarrow t+0} f(x)
$$

exist, the former for all t such that $(t-\varepsilon, t) \cap E \neq$ \emptyset for any $\varepsilon>0$ and the latter for all t such that $(t, t+\varepsilon) \cap E \neq \emptyset$ for any $\varepsilon>0$.

Let

$$
S_{0}=\{z \in \mathbb{C} \backslash\{0\} \mid-\alpha \leq \arg z \leq \alpha\}
$$

where $\alpha \in[0, \pi)$. Suppose $a: \mathbb{R} \rightarrow S_{0} \cup\{0\}$ and let

$$
E_{0}:=a^{-1}\left(S_{0}\right)=\left\{x \in \mathbb{R} \mid a(x) \in S_{0}\right\}=\mathbb{R} \backslash \mathcal{N}
$$

E_{0} is an open set of full measure.

Theorem. (ES \& J. Virtanen) Let $1<p<$ ∞ and let $a: \mathbb{R} \rightarrow S_{0} \cup\{0\}$ be a 2π-periodic continuous function such that

$$
|a(t)| \leq \operatorname{const} \rho(t)^{\mu} \quad \text { for all } \quad t \in \mathbb{R}
$$

with

$$
\begin{equation*}
\frac{2}{p}+\frac{2 \alpha}{\pi}<\mu \tag{5}
\end{equation*}
$$

Then the Riemann-Hilbert problem (2) has no nontrivial solutions $\varphi, \psi \in H^{p}$ provided that $\arg a$ is non-oscillating on E_{0} or $\mu \leq 2$.

The condition (5) is sharp.

Let $S_{l}=\left\{z \in \mathbb{C} \backslash\{0\} \mid \alpha_{l} \leq \arg z \leq \beta_{l}\right\}, \quad l=0,1$ and $0 \leq \alpha_{0} \leq \beta_{0}<\alpha_{1} \leq \beta_{1}<2 \pi$. Suppose $a: \mathbb{R} \rightarrow S_{0} \cup S_{1} \cup\{0\}$ and let

$$
\begin{aligned}
E_{0} & =\left\{x \in \mathbb{R} \mid a(x) \in S_{0}\right\}, \\
E_{1} & =\left\{x \in \mathbb{R} \mid a(x) \in S_{1}\right\} .
\end{aligned}
$$

E_{0} and E_{1} are open sets.

Theorem. (ES \& J. Virtanen) Let $1<p<$ $\infty, \mu \geq 0, a: \mathbb{R} \rightarrow S_{0} \cup S_{1} \cup\{0\}$ be a 2π-periodic continuous function such that

$$
|a(t)| \leq \operatorname{const} \rho(t)^{\mu} \quad \text { for all } \quad t \in \mathbb{R}
$$

and let $0<\left|E_{l} \cap[0,2 \pi]\right|<2 \pi$. If

$$
\begin{align*}
p>\max & \left\{\frac{2}{\mu+\frac{\alpha_{1}-\beta_{0}}{\pi}}, \frac{2}{\mu+\frac{\left.2 \pi-\beta_{1}-\alpha_{0}\right)}{\pi}}\right\} \\
& =\frac{2}{\mu+\frac{\min \left\{\alpha_{1}-\beta_{0}, 2 \pi-\left(\beta_{1}-\alpha_{0}\right)\right\}}{\pi}} \tag{6}
\end{align*}
$$

then the Riemann-Hilbert problem (2) has no nontrivial solutions $\varphi, \psi \in H^{p}$ provided that $\arg a$ is non-oscillating on $E_{l}, l=0,1$ or

$$
\mu \leq \min \left\{\frac{\alpha_{1}-\alpha_{0}}{\pi}, \frac{\beta_{1}-\beta_{0}}{\pi}\right\}
$$

The condition (6) is sharp.

Question: can one drop the non-oscillation condition in the above theorems?

Open problem

(which is not really related to my talk)

Let

$$
A w:=\mathcal{C} w^{\prime}
$$

Then

$$
A\left(\sum_{k=-\infty}^{\infty} c_{k} e^{i k t}\right)=\sum_{k=-\infty}^{\infty}|k| c_{k} e^{i k t}
$$

\sim first order $\Psi D O$ on the unit circle \mathbb{T} with the symbol $|\xi|$;
$\sim \sqrt{-\triangle}$ on \mathbb{T}.

Question: Is there a function $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ such that $h(\tau) \rightarrow+\infty$ as $\tau \rightarrow+\infty$ and $\sharp\{$ negative eigenvalues of $A-q I\} \geq h\left(\|q\|_{L^{1}(\mathbb{T})}\right)$, $\forall q \geq 0, \quad q \in L^{1}(\mathbb{T}) ?$

