The spectral function and the

 remainder in local Weyl's law:
View from below

Iosif Polterovich

(Université de Montréal)
joint with Dmitry Jakobson (McGill)
$X^{n}, n \geq 2$ - compact manifold
$g_{i j}-$ Riemannian metric
Δ - Laplace operator
$\Delta \phi_{i}=\lambda_{i} \phi_{i}, \quad\left\{\phi_{i}\right\}$ - orthonormal basis of eigenfunctions
$0<\lambda_{1} \leq \lambda_{2} \leq \ldots-$ spectrum

Spectral function:

$$
N_{x, y}(\lambda)=\sum_{\sqrt{\lambda_{i} \leq \lambda}} \phi_{i}(x) \phi_{i}(y)
$$

If $x \neq y, N_{x, y}(\lambda)=O\left(\lambda^{n-1}\right)$

$$
\text { If } x=y, \text { set } N_{x, y}(\lambda):=N_{x}(\lambda)
$$

Weyl's law:
$N(\lambda)=C \operatorname{Vol}(X) \lambda^{n}+R(\lambda)$,
$R(\lambda)=O\left(\lambda^{n-1}\right)$

Local Weyl's Iaw:

$N_{x}(\lambda)=C \lambda^{n}+R_{x}(\lambda), \quad R_{x}(\lambda)=O\left(\lambda^{n-1}\right)$

Remainder estimates are sharp (attained on a round sphere)

MAIN RESULTS: lower bounds for $N_{x, y}(\lambda)$ and $R_{x}(\lambda)$

Notation: $f_{1}(\lambda)=\Omega\left(f_{2}(\lambda)\right), f_{2}>0$ iff

$$
\limsup _{\lambda \rightarrow \infty} \frac{\left|f_{1}(\lambda)\right|}{f_{2}(\lambda)}>0
$$

Theorem 1 If $x, y \in X$ are not conjugate along any shortest geodesic joining them, then

$$
N_{x, y}(\lambda)=\Omega\left(\lambda^{\frac{n-1}{2}}\right)
$$

On-diagonal version:

Set $u_{j}(x, x)-j$-th local heat invariant

For example, $u_{1}(x, x)=\frac{\tau(x)}{6}$, where τ is scalar curvature

Denote $\kappa_{x}=\min \left\{j \geq 1 \mid u_{j}(x, x) \neq 0\right\}$.

$$
\text { If } u_{j}(x, x)=0 \text { for all } j \geq 1 \text {, set } \kappa_{x}=\infty
$$

Theorem 2 If $n-2 \kappa_{x}-1>0$ then

$$
R_{x}(\lambda)=\Omega\left(\lambda^{n-2 \kappa_{x}-1}\right)
$$

If $n-4 \kappa_{x}-1<0$, and X has no conjugate points, then

$$
R_{x}(\lambda)=\Omega\left(\lambda^{\frac{n-1}{2}}\right)
$$

Example: flat square 2-torus

$$
\begin{gathered}
\lambda_{j}=4 \pi^{2}\left(n_{1}^{2}+n_{2}^{2}\right), \quad n_{1}, n_{2} \in \mathbf{Z} \\
\phi_{j}(x)=e^{2 \pi i\left(n_{1} x_{1}+n_{2} x_{2}\right)}, x=\left(x_{1}, x_{2}\right) \\
\left|\phi_{j}(x)\right|=1 \Rightarrow N(\lambda) \equiv N_{x}(\lambda)
\end{gathered}
$$

Gauss's circle problem: estimate $R(\lambda)$

$$
\text { Theorem } 2 \Rightarrow R(\lambda)=\Omega(\sqrt{\lambda})
$$

This is classical Hardy-Landau bound.

Theorem $2 \Rightarrow$ Hardy-Landau bound for the local remainder on any surface without conjugate points.

Manifolds of negative curvature

Suppose sectional curvatures satisfy

$$
-K_{1}^{2} \leq K(\xi, \eta) \leq-K_{2}^{2}
$$

Theorem (Berard '77) $R_{x}(\lambda)=O\left(\frac{\lambda^{n-1}}{\log \lambda}\right)$
Conjecture (Randol' 81) On a surface of constant negative curvature

$$
R(\lambda)=O\left(\lambda^{\frac{1}{2}+\epsilon}\right)
$$

Conjecture (attributed to ?) On a generic negatively curved surface

$$
R(\lambda)=O\left(\lambda^{\epsilon}\right) \text { for any } \epsilon>0 .
$$

Theorem On a negatively curved surface

$$
R_{x}(\lambda)=\Omega(\sqrt{\lambda})
$$

This result was proved in an unpublished Ph.D. thesis of A. Karnaukh (Princeton, 1996) under the supervision of P. Sarnak.

It served as a starting point and a motivation for our work.

Thermodynamic formalism

G^{t} - geodesic flow on a unit tangent bundle $S X$. Topological pressure of $f: S X \rightarrow \mathbf{R}$:

$$
P(f)=\sup _{\mu}\left(h_{\mu}+\int f d \mu\right),
$$

μ is G^{t}-invariant, h_{μ} - measure-theoretic entropy.

Variational principle: $P(0)=h$,
h - topological entropy of G^{t}.

On negatively curved manifolds geodesic flows are Anosov.
$U(\xi)-$ unstable subspace of $T_{\xi} S X$

Sinai-Ruelle-Bowen potential

$$
\mathcal{H}(\xi)=\left.\left.\frac{d}{d t}\right|_{t=0} \operatorname{In} \operatorname{det} d G^{t}\right|_{U(\xi)}
$$

$P(-\mathcal{H})=0$ and the equilibrium measure (attaining the supremum) for \mathcal{H} is the Liouville measure μ_{L} on $S X$. Thus

$$
h_{\mu_{L}}=\int_{S X} \mathcal{H} d \mu_{L}
$$

Off-diagonal:

Theorem 3. If X is negatively curved then for any $\delta>0$ and $x \neq y$

$$
N_{x, y}(\lambda)=\Omega\left(\lambda^{\frac{n-1}{2}}(\log \lambda)^{\frac{P(-\mathcal{H} / 2)}{h}-\delta}\right)
$$

Power of the logarithm is positive

$$
\frac{P(-\mathcal{H} / 2)}{h} \geq \frac{K_{2}}{2 K_{1}},
$$

and equals $\frac{1}{2}$ if curvature is constant.

On-diagonal:

Theorem 4. X - negatively curved. If $n \leq 5$ then for any $\delta>0$

$$
R_{x}(\lambda)=\Omega\left(\lambda^{\frac{n-1}{2}}(\log \lambda)^{\frac{P(-\mathcal{H} / 2)}{h}-\delta}\right)
$$

If $n \geq 6$ then

$$
R_{x}(\lambda)=\Omega\left(\lambda^{n-3}\right)
$$

Note different asymptotics for small and large n.

Sketch of Proofs

Wave kernel on X :

$$
e(t, x, y)=\sum_{i=0}^{\infty} \cos \left(\sqrt{\lambda_{i}} t\right) \phi_{i}(x) \phi_{i}(y)
$$

Let $\psi \in C_{0}^{\infty}([-1,1])$, even, monotone decreasing on $[0,1], \psi \geq 0, \psi(0)=1$. Fix $\lambda, T \gg 0$, consider the function

$$
\frac{1}{T} \psi\left(\frac{t}{T}\right) \cos (\lambda t)
$$

For $x, y \in M$, let
$k_{\lambda, T}(x, y)=\int_{-\infty}^{\infty} \frac{\psi(t / T)}{T} \cos (\lambda t) e(t, x, y) d t$

Off-diagonal case: $x \neq y$.

The following lemma is used in the proofs:

Lemma 5 If $N_{x, y}(\lambda)=o\left(\lambda^{a}\right), a>0$ then

$$
k_{\lambda, T}(x, y)=o\left(\lambda^{a}\right)
$$

If $N_{x, y}(\lambda)=O\left(\lambda^{a}(\log \lambda)^{b}\right), a, b>0$ then

$$
k_{\lambda, T}(x, y)=O\left(\lambda^{a}(\log \lambda)^{b}\right)
$$

Let us start with Theorem 3:
X - negatively curved.

Pretrace formula. Let $E(t, x, y)$ be the wave kernel on the universal cover M.

Given $x, y \in X$, we have

$$
e(t, x, y)=\sum_{\omega \in \Gamma=\pi_{1}(X)} E(t, x, \omega y)
$$

Given $x, y \in M$, define $K_{\lambda, T}(x, y)$ by

$$
K_{\lambda, T}(x, y)=\int_{-\infty}^{\infty} \frac{\psi(t / T)}{T} \cos (\lambda t) E(t, x, y) d t
$$

Then for $x, y \in X$

$$
k_{\lambda, T}(x, y)=\sum_{\omega \in \Gamma} K_{\lambda, T}(x, \omega y)
$$

Hadamard parametrix

$$
\begin{aligned}
& \text { Let } x, y \in M, r=d(x, y) . \\
& \qquad E(t, x, y)=\frac{1}{\pi^{\frac{n-1}{2}}|t|} \sum_{j=0}^{\infty} u_{j}(x, y) \frac{\left(r^{2}-t^{2}\right)_{-}^{j-\frac{n-3}{2}-2}}{4 j \Gamma\left(j-\frac{n-3}{2}-1\right)}
\end{aligned}
$$

modulo a smooth function.

Here $u_{j}(x, y)$ solve transport equations along the geodesic joining x and y.

Leading term asymptotics

Proposition 6 Let $x \neq y \in M, r=d(x, y)$. Then $K_{\lambda, T}(x, y)$ satisfies as $\lambda \rightarrow \infty$:

$$
\begin{gathered}
K_{\lambda, T}(x, y)=\frac{Q \lambda^{\frac{n-1}{2}} \psi(r / T)}{T \sqrt{g(x, y) r^{n-1}}} \sin \left(\lambda r+\phi_{n}\right)+ \\
O\left(\lambda^{\frac{n-3}{2}}\right) .
\end{gathered}
$$

Here $g=\sqrt{\operatorname{det} g_{i j}}$ in normal coordinates centered at x,

$$
\phi_{n}=\frac{\pi}{4}(3-(n \bmod 4))
$$

and $Q \neq 0$.

Proof of Theorem 3. Assume for contradiction that for some $\delta>0$,

$$
N_{x, y}(\lambda)=O\left(\lambda^{\frac{n-1}{2}}(\log \lambda)^{\frac{P(-\mathcal{H} / 2)}{h}-\delta}\right)
$$

Lemma 5 implies a similar bound for $k_{\lambda, T}(x, y)$.

Proposition 6 implies

$$
\begin{aligned}
k_{\lambda, T}(x, y)= & \sum_{r_{\omega}<T} \frac{\lambda^{\frac{n-1}{2}} A \psi\left(\frac{r_{\omega}}{T}\right)}{T \sqrt{g(x, \omega y) r_{\omega}^{n-1}}} \sin \left(\lambda r_{\omega}+\phi_{n}\right) \\
& +O\left(\lambda^{\frac{n-3}{2}}\right) \exp (O(T)),
\end{aligned}
$$

for some $A \neq 0$.

Consider the sum

$$
S_{x, y}(T)=\sum_{r_{\omega} \leq T} \frac{1}{\sqrt{g(x, \omega y) r_{\omega}^{n-1}}}
$$

It follows from results of Parry and Pollicott that

Theorem 7 As $T \rightarrow \infty$,

$$
S_{x, y}(T) \geq C_{0} e^{P\left(-\frac{\mathcal{H}}{2}\right) \cdot T}
$$

Here $P\left(-\frac{H}{2}\right) \geq \frac{(n-1) K_{2}}{2}$.

Case $n \neq 3(\bmod 4) \Rightarrow \phi_{n} \neq 0(\bmod \pi)$.

Dirichlet box principle \Rightarrow can choose λ large so that

$$
\left|e^{i \lambda r_{\omega}}-1\right|<\epsilon, \epsilon \text { small, }
$$

for all $r_{\omega} \leq T$. Then

$$
\left|\sin \left(\lambda r_{\omega}+\phi_{n}\right)\right| \approx\left|\sin \phi_{n}\right|>0 .
$$

For Dirichlet principle need

$$
T \approx \frac{1}{h} \log \log \lambda
$$

Thus, exponential bound in Theorem 7 yields log-improvement in Theorem 3.

Case $n=3(\bmod 4) \Rightarrow \phi_{n}=0(\bmod \pi)$.

Need a separate argument to establish

$$
\sin \left(\lambda r_{\omega}\right)>\frac{\nu}{T}, \quad \forall \omega: \frac{T}{\alpha} \leq r_{\omega} \leq T,
$$ $\alpha>0$ some constant.

Combined with Theorem 7, this contradicts Lemma 5 and proves Theorem 3 in all dimensions.

Proof of Theorem 1 Assume

$$
N_{x, y}(\lambda)=o\left(\lambda^{\frac{n-1}{2}}\right)
$$

Lemma $5 \Rightarrow k_{\lambda, T}(x, y)=o\left(\lambda^{\frac{n-1}{2}}\right)$.

Work directly on X and adapt parametrix construction.

Let $x, y \in X$ not conjugate along any shortest geodesic \Rightarrow finitely many shortest geodesics of length $r=d(x, y)$.

Also, there are no geodesics from x to y of length $l \in] r, r+\epsilon]$ for some $\epsilon>0$.

Let $T=r+\frac{\epsilon}{2}$. Sum the parametrices along shortest geodesics and get
$k_{\lambda, T}(x, y)=\beta \lambda^{\frac{n-1}{2}} \sin \left(\lambda r+\phi_{n}\right)+O\left(\lambda^{\frac{n-3}{2}}\right)$,
where β is a non-zero constant.

Choose a sequence $\lambda_{k} \rightarrow \infty$ such that
$\left|\sin \left(\lambda_{k} r+\phi_{n}\right)\right|>\nu>0$

Contradiction with $k_{\lambda, T}(x, y)=o\left(\lambda^{\frac{n-1}{2}}\right)$

On-diagonal case, $x=y$. Theorems 2 and 4 are proved similarly to Theorems 1 and 3 using the on-diagonal counterparts of Lemma 5 and Proposition 6.

The 0-th term of the parametrix on the diagonal cancels out with the main term in the Weyl's law.

Consider Theorem 4 in more detail.

First on-diagonal term of the parametrix: $c \lambda^{n-3}$ (for $n>3$).

Sum of the 0-th off-diagonal terms (by Theorem 3):

$$
O\left(\lambda^{\frac{n-1}{2}}(\log \lambda)^{\frac{P(-\mathcal{H} / 2)}{h}-\delta}\right)
$$

Dimension $n \leq 4$:

$$
n-3<\frac{n-1}{2}
$$

so "diagonal<off-diagonal."

Dimension $n=5$:

$$
n-3=\frac{n-1}{2}
$$

but "diagonal<off-diagonal" due to the power of log.

Dimension $n \geq 6$:

$$
n-3>\frac{n-1}{2}
$$

so "diagonal>off-diagonal."

Hence different bounds in Theorem 4 for $n \geq 6$ and $n \leq 5$.

Concluding remarks

- $R_{x}(\lambda)=\Omega(\sqrt{\lambda})$ in dimension 2. Together with the prediction $R(\lambda)=O\left(\lambda^{\epsilon}\right)$ on negatively curved surfaces this looks intriguing!
- Can one apply our method to estimate $R(\lambda)$ from below? We believe YES (in progress).

