Enclosure Methods for Elliptic Partial Differential Equations
 Michael Plum, Karlsruhe, Germany

Consider boundary value problem

$$
\begin{aligned}
-\Delta u+F(x, u, \nabla u) & =0 \quad \text { on } \quad \Omega \\
u & =0 \quad \text { on } \quad \partial \Omega
\end{aligned}
$$

or

$$
\begin{aligned}
\Delta \Delta u+F(x, u, \nabla u, \ldots) & =0
\end{aligned} \quad \text { on } \quad \Omega
$$

$\Omega \subset \mathbb{R}^{n}$ domain with some regularity, F given nonline smoothness

AIM: Derive conditions for existence of a solutio "close" and explicit neighborhood of some approx
"Conditions": either of general type, to be verified more special, to be verified automatically on a comp

General concept:

Transformation into fixed-point equation

$$
u=T u
$$

and computation of appropriate set U such that

$$
T U \subset U
$$

and moreover, T has certain properties (e.g. contract or compactness)

Application of some Fixed-Point Theorem (Banach,
\rightsquigarrow Existence of a solution $u^{*} \in U$

The set U provides enclosure

Abstract formulation
Let $\left(X,\langle\cdot, \cdot\rangle_{X}\right),\left(Y,\langle\cdot, \cdot\rangle_{Y}\right)$ Hilbert spaces
Let $\mathcal{F}: X \rightarrow Y$ continuously (Fréchet) differentiable r

$$
\text { problem : } \quad u \in X, \mathcal{F}(u)=0
$$

Aim now (first): Existence and bounds for this abstra

Let $\omega \in X$ approximate solution,

$$
L:=\mathcal{F}^{\prime}(\omega): X \rightarrow Y \quad(\text { linear }, \text { bounded })
$$

Suppose that constants δ and K, and a nondecreasin $g:[0, \infty) \rightarrow[0, \infty)$ have been computed such that
a) $\|\mathcal{F}(\omega)\|_{Y} \leq \delta$,
b) $\|u\|_{X} \leq K\|L u\|_{Y}$ for all $u \in X$,

C1) $\left\|\mathcal{F}^{\prime}(\omega+u)-\mathcal{F}^{\prime}(\omega)\right\|_{\mathcal{B}(X, Y)} \leq g\left(\|u\|_{X}\right)$ for all $u \in X$

C2) $g(t) \rightarrow 0$ as $t \rightarrow 0+$

Need in addition (note that L is one-to-one by b))
d) $L: X \rightarrow Y$ onto

Here, two ways for obtaining d):

1) $\widehat{X} \supset X$ Banach space, embedding $E_{X}^{\widehat{X}}: X \hookrightarrow \widehat{X}$ co

$$
\begin{aligned}
\mathcal{F}=L_{0}+\mathcal{G}, L_{0} & : X \rightarrow Y \text { linear, bounded, bijecti } \\
\mathcal{G} & : \widehat{X} \rightarrow Y \text { continuously different }
\end{aligned}
$$

$$
\text { Then } L u=r \Leftrightarrow u=\underbrace{-L_{0}^{-1} \mathcal{G}^{\prime}(\omega) E_{X}^{\widehat{X}}}_{\text {compact! }} u+L_{0}^{-1} r \rightsquigarrow F_{\prime}
$$

2) $Y=X^{\prime}$ dual space, $\Phi: X \rightarrow X^{\prime}$ canonical isometri

$$
\text { i.e. }(\Phi u)[v]=\langle u, v\rangle_{X} \quad \text { for }
$$

Assume that $\Phi^{-1} L: X \rightarrow X$ is symmetric (i.e. $(L u)[v$
for a
Then $\Phi^{-1} L$ selfadjoint, one-to-one \Rightarrow range $\left(\Phi^{-1} L\right)$ \Rightarrow range (L) dens

Moreover,

$$
\left.\left.\begin{array}{l}
D(L)=X \text { closed } \\
L \text { bounded }
\end{array}\right\} \Rightarrow \begin{array}{l}
L \text { closed } \\
L \text { one-to-one }
\end{array}\right\} \Rightarrow L
$$

L^{-1} closed
L^{-1} bounded by b) $\}$
$\Rightarrow D\left(L^{-1}\right)$ closed \Rightarrow
ran

Transformation of $\mathcal{F}(u)=0$ into fixed-point problem
$\mathcal{F}(u)=0 \quad \Leftrightarrow \quad \mathcal{F}^{\prime}(\omega)[u-\omega]=-\mathcal{F}(\omega)-[\mathcal{F}(u)-\mathcal{F}(\omega)$
$\Leftrightarrow \underbrace{\mathcal{F}^{\prime}(\omega)}_{=L}[v]=-\mathcal{F}(\omega)-\left[\mathcal{F}(\omega+v)-\mathcal{F}(\omega)-\mathcal{F}^{\prime}(\omega)\right.$
$\Leftrightarrow v=-L^{-1}\left\{\mathcal{F}(\omega)+\left[\mathcal{F}(\omega+v)-\mathcal{F}(\omega)-\mathcal{F}^{\prime}(\omega)[\right.\right.$

Let $V:=\left\{v \in X:\|v\|_{X} \leq \alpha\right\}, \quad \alpha>0$ to be chosen

Then $T(V) \subset V$ if $\delta \leq \frac{\alpha}{K}-G(\alpha), G(t):=\int_{0}^{t} g(s) d s$

Need either i) T compact $\quad(\rightsquigarrow$ Schauder's Fixed-Point Theore
or ii) T contractive $\quad(\rightsquigarrow$ Banach's Fixed-Point Theorem)
ad i) $\widehat{X} \supset X, E_{X}^{\widehat{X}}$ compact, $\mathcal{F}=L_{0}+\mathcal{G}$ as before ad ii) additional contraction condition

$$
K g(\alpha)<1
$$

Theorem: For some $\alpha \geq 0$, let $\delta \leq \frac{\alpha}{K}-G(\alpha)$, and let i) or ii)
Then, there exists a solution $u \in X$ of $\mathcal{F}(u)=0$ satisfying

$$
\|u-\omega\|_{X} \leq \alpha
$$

Applications to second-order boundary value problem

$$
-\Delta u+F(x, u)=0 \text { on } \Omega, u=0 \text { on } \partial \Omega
$$

A) strong solutions: $\Omega \subset \mathbb{R}^{n}(n \leq 3)$ bounded and H^{2}-regular (Poisson's problem uniquely solvable), $F \mathrm{~g}$

$$
\begin{aligned}
& X=H^{2}(\Omega) \cap \stackrel{\circ}{H}^{1}(\Omega), \quad Y=L^{2}(\Omega) \\
& L_{0}=-\Delta, \quad \mathcal{G}(u)(x):=F(x, u(x)) \quad(\widehat{X}=C(\bar{\Omega}))
\end{aligned}
$$

a) $\|-\Delta \omega+F(\cdot, \omega)\|_{L^{2}} \leq \delta \quad$ explicitly or by verified a
b) $\|u\|_{H^{2}} \leq K\|L u\|_{L^{2}} \quad(u \in X)$:
eigenvalue bounds, Sobolev embeddings, a priori
c) $\left|\frac{\partial F}{\partial u}(x, \omega(x)+y)-\frac{\partial F}{\partial u}(x, \omega(x))\right| \leq \tilde{g}(|y|)$

$$
-\Delta u+F(x, u)=0 \text { on } \Omega, u=0 \text { on } \partial \Omega
$$

B) weak solutions: $\Omega \subset \mathbb{R}^{n}$ Lipschitz

$$
X=\stackrel{\circ}{H}^{1}(\Omega),\langle u, v\rangle_{X}:=\langle\nabla u, \nabla v\rangle_{L^{2}}+\sigma\langle u, v\rangle_{L^{2}}, Y=
$$

Fréchet differentiability requires growth conditions however exponential growth if $n \leq 2$.
a) $\|-\Delta \omega+F(\cdot, \omega)\|_{H^{-1}} \leq\|-\operatorname{div}(\nabla \omega-\rho)\|_{H^{-1}}+\| d \imath$
$\leq\|\nabla \omega-\rho\|_{L^{2}}+\hat{c}\|\operatorname{div} \rho-F(\cdot, \omega)\|_{L^{2}}$,
$\rho \in H(d i v ; \Omega)$ approximation to $\nabla \omega,\|u\|_{L^{2}} \leq \hat{c} \|$
b) $L u=-\Delta u+c u, c(x)=\frac{\partial F}{\partial u}(x, \omega(x))$

Let $\Phi: X \rightarrow Y, \Phi u:=-\Delta u+\sigma u$ canonical isomet $\Phi^{-1} L$ is symmetric, so
$\|u\|_{X} \leq K\|L u\|_{Y}=K\left\|\Phi^{-1} L u\right\|_{X}$ for $u \in X$
$\Longleftrightarrow K \geq\left[\min \left\{|\lambda|: \lambda \in \text { spectrum of } \Phi^{-1} L\right\}\right]^{-1}$
\rightsquigarrow need bounds for essential spectrum (analytical
eigenvalue bounds:
$\Phi^{-1} L u=\lambda u \Longleftrightarrow-\Delta u+\sigma u=\frac{1}{1-\lambda}(\sigma-c(x)) u$
choose $\sigma>c(x) \quad(x \in \Omega)$
$\Delta \Delta u+\mu \Delta u+F(x, u)=0$ on $\Omega, u=\frac{\partial u}{\partial \nu}=0$ on
$\Omega \subset \mathbb{R}^{n}$ Lipschitz, F given C^{1}-function, $\mu \geq 0$

$$
X:=\stackrel{\circ}{H}^{2}(\Omega),\langle u, v\rangle_{X}:=\langle\Delta u, \Delta v\rangle_{L^{2}}+\sigma\langle u, v\rangle_{L^{2}}, Y
$$

a) $\|\Delta \Delta \omega+\mu \Delta \omega+F(\cdot, \omega)\|_{H^{-2}} \leq\|\Delta(\Delta \omega+\mu \omega-\rho)\|$

$$
+\| \Delta \rho+
$$

$\leq\|\Delta \omega+\mu \omega-\rho\|_{L^{2}}+\hat{\hat{c}}\|\Delta \rho+F(\cdot, \omega)\|_{L^{2}}$,
$\rho \in L^{2}(\Omega)$ s.t. $\Delta \rho \in L^{2}(\Omega), \rho$ approximation to

$$
\|u\|_{L^{2}} \leq \hat{\hat{c}}\|u\|_{X} \text { for } u \in X
$$

b) $L u=\Delta \Delta u+\mu \Delta u+c u, c(x)=\frac{\partial F}{\partial u}(x, \omega(x))$

Let $\Phi: X \rightarrow Y, \Phi u:=\Delta \Delta u+\sigma u$ canonical isomet $\Phi^{-1} L$ is symmetric, so
$\|u\|_{X} \leq K\|L u\|_{Y}=K\left\|\Phi^{-1} L u\right\|_{X}$ for $u \in X$
$\Longleftrightarrow K \geq\left[\min \left\{|\lambda|: \lambda \in \text { spectrum of } \Phi^{-1} L\right\}\right]^{-1}$
\rightsquigarrow need bounds for essential spectrum (analytical and eigenvalue bounds:
$\Phi^{-1} L u=\lambda u \Longleftrightarrow \Delta \Delta u+\sigma u=\frac{1}{1-\lambda}(-\mu \Delta u+(\sigma-$
choose $\sigma>c(x) \quad(x \in \Omega)$

Eigenvalue bounds
weak EVP $\langle u, v\rangle_{X}=\lambda b(u, v)$ for all $v \in X$
where b bounded, Hermitian, positive bilinear form on

Upper eigenvalue bounds: Rayleigh-Ritz
Let $\tilde{u}_{1}, \ldots, \tilde{u}_{N} \in X$ linearly independent. Define $N \times N$

$$
A_{0}:=\left(\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{X}\right), A_{1}:=\left(b\left(\tilde{u}_{i}, \tilde{u}_{j}\right)\right)
$$

$\Lambda_{1} \leq \Lambda_{2} \leq \cdots \leq \Lambda_{N}$ eigenvalues of the matrix EVP

$$
A_{0} x=\wedge A_{1} x
$$

Then, if $\Lambda_{N}<\underline{\sigma}_{\text {ess }}:=\inf \{$ essential spectrum $\}$, there at least N eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{N}$ below $\underline{\sigma_{e s s}}$, and

$$
\lambda_{i} \leq \wedge_{i} \quad(i=1, \ldots, N)
$$

Lower eigenvalue bounds: Temple-Lehmann Let $\tilde{u}_{1}, \ldots, \tilde{u}_{N}$ and $\wedge_{1}, \ldots, \wedge_{N}<\underline{\sigma_{\text {ess }}}$ as before. Let $w_{1}, \ldots, w_{N} \in X$ satisfy

$$
\begin{equation*}
\left\langle w_{i}, v\right\rangle_{X}=b\left(\tilde{u}_{i}, v\right) \text { for all } v \in X \tag{*}
\end{equation*}
$$

and let $\rho \in \mathbb{R}$ be such that

$$
\Lambda_{N}<\rho \leq\left\{\begin{array}{ll}
\lambda_{N+1} & , \text { if } \lambda_{N+1}<\underline{\sigma}_{\text {ess }} \text { exists } \\
\underline{\sigma}_{\text {ess }} & , \text { otherwise }
\end{array}\right\}
$$

Define, besides A_{0} and A_{1},

$$
A_{2}:=\left(\left\langle w_{i}, w_{j}\right\rangle_{X}\right)
$$

and let $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{N}<0$ be the eigenvalues of

$$
\left(A_{0}-\rho A_{1}\right) x=\mu\left(A_{0}-2 \rho A_{1}+\rho^{2} A_{2}\right) x .
$$

Then, $\quad \lambda_{i} \geq \rho\left(1-\frac{1}{1-\mu_{N+1-i}}\right) \quad(i=1, \ldots, N)$
(*) often difficult in practice; considerable improvement by Woe (**) homotopy method
homotopy method for obtaining ρ such that

$$
\Lambda_{N}<\rho \leq \lambda_{N+1} \text {. }
$$

Let $\left(b_{t}\right)_{t \in\left[t_{0}, t_{1}\right]}$ family of bilinear forms on X such that
i) for $s \leq t: b_{s}(u, u) \geq b_{t}(u, u)(u \in X)$
ii) for each t : The eigenvalue problem $\langle u, v\rangle_{X}=\lambda b_{t}(u, v)$ for all has at least $N+1$ eigenvalues $\lambda_{1}^{(t)} \leq \cdots \leq \lambda_{N+1}^{(t)}$ below its es
iii) for $t=t_{0}$, the eigenvalues of $\left(E V P_{t}\right)$, or at least bounds to
iv) for $t=t_{1}$, problem $\left(E V P_{t}\right)$ is the given one

Consequences: By i), ii), and the min-max-principle $\lambda_{k}^{(t)}$ increasi fixed $k \in\{1, \ldots, N+1\}$.

In particular, $\lambda_{N+1}^{\left(t_{0}\right)} \leq \lambda_{N+1}^{\left(t_{1}\right)}=\lambda_{N+1}$.
Thus, $\rho:=\lambda_{N+1}^{\left(t_{0}\right)}$ can be chosen if $\Lambda_{N}<\lambda_{N+1}^{\left(t_{0}\right)}$.
The last condition requires that problem ($E V P_{t_{0}}$) (solvable in clo given one are sufficiently close.

