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Precise title: Some spectral characteristics of some operators for domains with some regular

outlets
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Model geometry:

Ω ⊂ Rd, d ≥ 2 — an unbounded connected domain with a finite number of cylindrical ends:

Ω \B(R0) =
⋃N

n=1 Cn =: C for some R0 > 0.
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R > R0, Ω0 := Ω ∩B(R) — the “centre”, Γ0 := ∂Ω0 ∩ ∂Ω, Γn := Cn ∩ S(R) —

cross-sections, Γ :=
⋃N

n=1 Γn. Boundary ∂Ω is piecewise C2.
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Model spectral problem:

−∆u = λu in Ω ,

B(x)u = 0 , x ∈ ∂Ω .
(1)

Conditions on boundary operators B:

• are some appropriate mix of Dirichlet and generalized Neumann conditions, allowing the

construction of the corresponding operator−∆Ω,B in the weak sense via the Friedrichs

extensions, with domains⊆ H1(Ω);

• the resulting operator−∆Ω,B is self-adjoint and semi-bounded below;

• the operators B do not depend on the longitudinal coordinate x for each particular

cylindrical end Cn (but may differ from one cylinder to another and on connected

components of each cylindrical boundary). Abusing notation, we would also allow periodic

conditions where appropriate.
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Main question: How to compute the eigenvalues of (1) (i.e. find λ s.t. there exists a solution u

bounded in H1(Ω) norm)?

Motivation: waveguide problems in 2D. Here Ω = R × [−1, 1] \ O, where the obstacleO is

a (not necessarily simply connected) compact subset of the strip which may be

one-dimensional (e.g. an interval). Dirichlet boundary conditions = a quantum waveguide,

Neumann conditions = an acoustic waveguide.

10∞ papers but mainly:

• constructing sufficient conditions for existence or non-existence of the eigenvalues in lower

parts of the spectrum, or below the continuous spectrum;

• procedures for finding embedded eigenvalues for obstacles of simple shapes (rectangles,

circles, etc.) using special function expansions;

• asymptotic results in relation to various additional parameters, or asymptotic distribution of

the counting function of the discrete and continuous spectrum;
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For actual computations, difficult numerics involving two major steps:

1) Find money for a PhD student;

2) Wait three years and hope for the best.

Side track (a bottle of wine challenge a la Shargorodsky): find sufficient conditions for absolute

continuity of the spectrum. Known in two cases and their variations: a straight strip (Dirichlet or

Neumann) and Rellich’s semi-strip bounded by a graph of a function (Dirichlet).

Back to our problem: our approach is “constructive mathematics” and we shall show that one

in fact needs only the following:

• ability to solve numerically spectral problems in bounded domains;

• numerical integration;

• finding the roots of monotone functions.
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Continuous spectrum

Transversal problem: cross-section Γ ⊂ Rd−1 is a bounded (not necessarily connected)

domain with sufficiently smooth boundary g = ∂Γ. Let x′ be coordinates in Rd−1. Let

−∆Γ;B be a Laplacian on Γ subject to the boundary conditions B(x′)u = 0 on g, where B

as above. Let (0 ≤)κ1 ≤ κ2 ≤ · · · ≤ κj ≤ . . . be its eigenvalues (called thresholds), and

χj(x
′) be the corresponding normalised orthogonal eigenfunctions.

Then the continuous spectrum of (1) is [κ1, +∞]. Moreover, at any point λ ∈ [κ1,∞), the

multiplicity of the continuous spectrum is #{κj ≤ λ}.

Set Qj = span{χ`}∞`=j , and denote byQj the projector onto Qj . Set κ0 = −∞,Q0 = I

and Pj = I −Qj , j ≥ 0.
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Cylindrical ends:

Let u ∈ H1(Ω) be an eigenfunction of (1) corresponding to an eigenvalue λ ∈ [κJ , κJ+1).

Then on the cylindrical ends, u can be found by separation of variables if we know, say,

h := ∂u
∂x

∣∣
x=0

∈ QJ(Γ):

u(x,x′) = −
∞∑

j=J+1

1

ηj(λ)
〈h, χj〉Γχj(x

′)e−ηj(λ)x ,

where x is a longitudinal coordinate, ηj(λ) :=
√

κj − λ, and 〈·, ·〉Γ denotes a scalar product

in L2(Γ). Then f := u|Γ is given by f = −
∑∞

j=J+1
1

ηj(λ)
〈h, χj〉Γχj(x

′).

Thus we constructed, in the basis χj , the representation of the Neumann-Dirichlet operator

RC,Γ(λ) : g 7→ f for the cylinder as

Tλ := − diag

(
1

ηj(λ)

)∞

j=J+1

.
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Central domain (Ω0): where the difficulty lives

If we can construct, in the same basis QJ , the interior Neumann-Dirichlet operator

RΩ0,Γ(λ) : h 7→ u|Γ, where

−∆u = λu in Ω0 , Bu = 0 on Γ0 , ∂u/∂n = h on Γ , (2)

(1) would then be reduced to the following problem on Γ:

find allλ ∈ [κJ , κJ+1) such that the pencilAλ(µ) := QJRΩ0,Γ(λ)− µRC,Γ(λ)

has an eigenvalue µ = 1
(3)

and the orthogonality condition

PJ(RΩ0,Γ(λ)h) = 0 (4)

holds for the corresponding eigenfunction h ofAλ(µ).
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Notation: σk, Ψk are Neumann eigenvalues and eigenfunctions of (2), h = 0.

General properties ofRΩ0,Γ(λ) [we need� e.g. Agranovich (this meeting), Safarov (2005, in

progress)]: self-adjoint, the associated form is monotone decreasing in λ on intervals not

containing σk.

Let φj be some basis in L2(Γ0). How to compute the actions ofRΩ0,Γ(λ) is this basis?

[Remember this ideal PhD student!]

Main trick: can get explicit λ dependence!

We have, by integration by parts

< RΩ0,Γ(λ)φi, φj >=< ui, ∂uj/∂n >= (ui,∆uj)+(∇u,∇uj) = −λ(ui, uj)+(∇ui,∇uj) =

and now by expanding in Neumann eigenfunctions

=
∑

k

(σk − λ)(ui, Ψk)(uj, Ψk) =
∑

k

1

σk − λ
< φi, Ψk|Γ >< φj, Ψk|Γ > .
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In matrix formRΩ0,Γ(λ) = MSλMt, with

M := (< φi, Ψk|Γ >)∞i,k=1 , Sλ := diag

(
1

σk − λ

)
k=1

Returning to the original problem (1), using the basis of transversal eigenfunctions {χj} and

combining everything together, we get:

Find λ ∈ [κJ , κJ+1) such that the pencil MSλMt − µTλ on QJ has eigenvalue µ = 1

and the orthogonality condition PJMSλMth = 0 holds for the corresponding pencil

eigenfunction h.

Recall that Tλ := − diag

(
1√

κj−λ

)∞

j=J+1

.

Procedure: compute µn(λ) and solve for µ = 1. But how many do we need? Two results help.
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Monotonicity in λ:

Proposition 1. Pencil eigenvalues µn(λ) are monotone functions of λ in intervals not

containing σk.

Estimates of the counting function:

Proposition 2. If b ∈ [κJ , κJ+1),

N (−∆Ω; b) ≤ N (−∆
Ω0,∂/∂n+

√
κj+1−b

; b)−N (−∆Ω0,Dir; b) +N (−∆Γ; b)
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Example of a half-strip with an obstacle (boundary condition is Neumann everywhere) and a

corresponding curve µ(λ) — all other eigenvalues are below 1 and are not shown. The point

λ ≈ 0.2π2 is indeed an embedded eigenvalue — we know that the orthogonality condition is

automatically satisfied due to the symmetry of the problem.
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In general, embedded eigenvalues are very unstable — e.g. they may become resonances

under small perturbations of geometry destroying symmetry [APV].

Also, numerically we can NEVER check that the orthogonality condition is exactly satisfied.

So, are we looking for embedded eigenvalues or resonances with small imaginary part? Let us

just look for the latter. . .

Trivial modifications:

• omit all projectors;

• forget the orthogonality conditions;

• look for the λ ∈ C− zeros of det(MSλMt + Tλ) (note the change of sign in front of

Tλ) by your favourite method of finding complex zeros.
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Some resonances for a spherical cavity (“acoustic resonator”) — match reasonably well the

asymptotic values

The method works equally well for manifolds with conical/spherical/other “regular” ends...

and for operators other than Laplacians
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assuming that we can . . .

• separate variables at the ends. . .

• solve boundary value spectral problems for compact domains. . .

• integrate traces of eigenfunctions. . .

• find zeros of monotone real functions or zeros of complex functions as required
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