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Notations.

Let x ∈ RnN , x = (x1, x2, . . . , xN), xj = (xj,1, . . . , xj,n) ∈ Rn,

rij = |xi − xj|,

We consider the folowing problem:

Find the best constants C(n, N), such that

−∆ = −
N∑

j=1

∆xj ≥ C(n, N)
N∑

i6=j

1

|xi − xj|2
,

which is a generalization of Hardy’s inequality

−∆ ≥
(

n− 2

2

)2 1

|x|2
, x ∈ Rn.
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Motivation

Let us consider the following Schrödinger operator in L2(R3N)

−
N∑

j=1

∆xj −
N∑

j=1

Z

|xj|
+

∑
1≤k<j≤N

1

|xk − xj|
.

In 1984 E.Lieb obtained an uniform inequality on the number N
of electrons that can be bound to an atomic nucleus of charge
Z. Namely

2Z > N − 1.

There is a conjecture N ∼ Z + O(1), as Z →∞.
In the proof Lieb used the standard 3D Hardy inequality

−∆ ≥
1

4

1

|x|2
, x ∈ R3.
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Lemma. Let u ∈ C∞
0 (Rm), m ≥ 1 and let

F =
(
F1(x), F2(x), . . . , Fm(x)

)
be a vector field in Rm. Then

∫
Rm

|∇u|2dx ≥
1

4

( ∫
Rm |u|2divF dx

)2

∫
Rm |u|2|F|2 dx

. (1)

Proof. We use the Cauchy-Schwarz inequality and partial inte-

gration∣∣∣∣ ∫
Rm

|u|2divF dx

∣∣∣∣ = 2
∣∣∣∣< ∫

Rm
〈F, ∇u〉ū dx

∣∣∣∣
≤ 2

( ∫
Rm

|u|2|F|2dx

)1/2( ∫
Rm

|∇u|2dx

)1/2
.

Squaring this inequality completes the proof.
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Remark. Note that one can linearize the inequality (??) by using

that for positive B, A2/B ≥ 2A−B. Namely,

∫
Rm

|∇u|2dx ≥
1

4

( ∫
Rm |u|2divF dx

)2

∫
Rm |u|2|F|2 dx

implies ∫
Rm

|∇u|2dx ≥
1

4

∫
Rm

|u|2
(
2divF− |F|2

)
dx.

The same inequality one obtains directly from the identity∫
Rm

|∇u|2dx =
∫
Rm

∣∣∣∣(∇−
1

2
F

)
u

∣∣∣∣2 dx +
1

4

∫
Rm

|u|2
(
2divF− |F|2

)
dx.
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The identity∫
Rm

|∇u|2dx =
∫
Rm

∣∣∣∣(∇−
1

2
F

)
u

∣∣∣∣2 dx +
1

4

∫
Rm

|u|2
(
2divF− |F|2

)
dx

can formally be rewritten as

−∆ =
(
∇−

1

2
F

)∗(
∇−

1

2
F

)
+

1

4

(
2divF− |F|2

)
≥

1

2
divF−

1

4
|F|2.
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1D Hardy inequality with N particles.

Theorem. Let u ∈ H1
0(RN\NN), where NN = {x = (x1, x2, . . . , xN) ∈

RN
∣∣∣ xi = xj for some i 6= j}. Then∫

RN
|∇u|2dx ≥

1

4

∫
RN

|u|2
( ∑

i6=j

1

r2ij

)
dx.

Proof. We use∫
RN

|∇u|2dx ≥
1

4

∫
RN

|u|2
(
2divF− |F|2

)
dx.

choosing

F = −
( ∑

k 6=1

1

x1 − xk
, . . . ,

∑
k 6=N

1

xN − xk

)
.
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Remarks.

• The standard Hardy inequality on (0,∞) is∫ ∞

0
|f ′|2dx ≥

1

4

∫ ∞

0

|f |2

|x|2
dx.

This implies − ∂2

∂2xi
− ∂2

∂2xj
≥ 1

4

(
1
r2ij

+ 1
r2ji

)
. If we add up then we

obtain the constant 1
4(N−1) rather than 1/4.

• The constant 1/4 is optimal.
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3D Hardy inequalities with N particles.

Let

AN(x) :=
N∑

i6=j

1

r2ij
, BN(x) :=

N∑
j=1

∑
i6=k, i,k 6=j

(xj − xi) · (xj − xk)

r2ijr
2
jk

.

and let F be the following 3×N vector

F(x) = ∇ lnΠj 6=k|xj − xk| =
( ∑

k 6=1

x1 − xk

|x1 − xk|2
, . . . ,

∑
k 6=N

xN − xk

|xN − xk|2

)
.

Simple calculation shows that

divF(x) = AN(x) and |F(x)|2 = AN(x) + BN(x).

We now define

K(N) = sup
x∈R3N

BN(x)

AN(x)
.
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Then the main lemma implies

∫
R3N

|∇u(x)|2 dx ≥
1

4

( ∫
R3N |u(x)|2 divF(x) dx

)2

∫
R3N |u(x)|2 |F(x)|2 dx

=
1

4

( ∫
R3N |u(x)|2AN(x) dx

)2

∫
R3N |u|2AN(x)(1 + BN(x)A−1

N (x)) dx

≥
1

4 + 4K(N)

∫
R3N

|u(x)|2AN(x) dx

=
1

4 + 4K(N)

∫
R3N

|u(x)|2
( N∑

i6=j

1

r2ij

)
dx.



Thus we obtain the following result:

Theorem. Let u ∈ H1(R3N), then∫
R3N

|∇u|2dx ≥
1

4 + 4K(N)

∫
R3N

|u|2
∑
i6=j

1

r2ij
dx,

The problem is now reduced to finding a good estimate for the

value of K(N).
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Lemma. Let x1, x2, x3 be three n-dimensional vectors. Let R

be the circumradius of the triangle with corners x1, x2, x3. Then

1

2R2
=

(x1 − x2) · (x1 − x3)

r212r213

+
(x2 − x1) · (x2 − x3)

r212r223

+
(x3 − x1) · (x3 − x2)

r213r223

.

Proof. Let a = x1 − x2 and b = x1 − x3. Then

r.h.s. =
(a · b)
|a|2|b|2

−
a · (b− a)

|a|2|b− a|2
−

b · (a− b)

|b|2|b− a|2

=
2

(
|a|2|b|2 − (a · b)2

)
|a|2|b|2|b− a|2

==
2|a|2|b|2

(
1− cos2 φ

)
|a|2|b|2|b− a|2

=
2sin2 φ

r223

.

Here φ is the angle between a and b. The relation between the

circumradius and the angle follows from the sine-theorem.
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Let now xi, xj, xk are three points in R3. As above rij, rik, rjk are

the distances between these points and Rijk is the circumradius

of the triangle obtained from these three points.

The value 1/Rijk is called the Menger curvature (Karl Megner

1902-1985) of the triple (xi, xj, xk) (coinsides with the usual cur-

vature of the circle through these points).

If now

QN(x1, . . . , xN) =

∑N
i6=k,i,k 6=j

1
R2

ijk

2
∑N

i6=j
1
r2ij

,

then

K(N) = sup
x1,...,xN

QN(x1, . . . , xN).
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Lemma. Let T be a triangle whose sides have the lengths a, b, c

and whose circumradius is R. Then

1

R2
≤

1

a2
+

1

b2
+

1

c2

with equality only for the equilateral triangle.

Proof. It is well known (for ex. see Mitrinovic:1989), that

a2 + b2 + c2 ≤ 9R2. The equality holds only for the equilateral

triangle. Now combine this with the elemntary inequality

(a2 + b2 + c2)
(

1

a2
+

1

b2
+

1

c2

)
≥ 9,

which follows immediately from x/y + y/x ≥ 2, for x, y > 0.
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Theorem. Let u ∈ W1,2(R3N) then∫
R3N

|∇u|2dx ≥
1

2N

∫
R3N

|u|2
∑
i6=j

1

r2ij
dx.

Proof. It is enough to prove that (4 + 4K(N))−1 ≥ 1/2N . By

using the last lemma we find that

N∑
i6=k,i,k 6=j

1

R2
ijk

≤
N∑

i6=k,i,k 6=j

(
1

r2ij
+

1

r2ik
+

1

r2jk

)
= (N − 2)

N∑
i6=j

1

r2ij
.

Therefore

K(N) = sup
x1,...,xN

∑N
i6=k,i,k 6=j R−2

ijk

2
∑N

i6=j r−2
ij

≤
N − 2

2
,

which proves our statement.
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Remarks.

• This is already an improvement of the factor (4N−4)−1 which

we would have obtained by adding up standard 3D Hardy in-

equalities.

Open problem: Can one replace 1/2N by a constant independent

of N as it has been shown for 1D N particles?

• For N = 3 and 4 the estimate (4 + 4K(N))−1 ≥ 1/2N is

optimal. For larger N the value of K(N) is unknown. Finding the

sharp value of K(N) is an interesting problem from geometrical

combinatorics.
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We have already proved that K(N) ≤ (N − 2)/2.

Proposition. lim infN→∞N−1 K(N) > 0.

Proof. Let R(x, y, z), x, y, z ∈ R3, now be the radius of the

circumcircle of the triangle defined by (x, y, z) and let r(x, y)

be the distance between x and y. Assume that Ω ⊂ R3 is an

open bounded set with smooth boundary and let Z3
M denote the

three dimensional lattice {k/M, k ∈ Z3}. It is well known that

N := #{xj ∈ Ω ∩ Z3
M} ∼ |Ω|M3 + o(M3), as M →∞. Thus

lim inf
N→∞

N−1 K(N)

≥ lim
N→∞

1

|Ω|
M−9BN

M−6AN
=

1

2|Ω|

∫
Ω

∫
Ω

∫
Ω R−2(x, y, z) dxdydz∫

Ω
∫
Ω r−2(x, y) dxdy

.
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If for example Ω = B = {x = (x1, x2, x3) ∈ R3, |x| < 1}, then by

symmetry

1

2

∫
B3

R−2(x, y, z) dxdydz =
∫
B3

(x1 − z1)(x1 − y1)

|x− y|2|x− z|2
dxdydz

=
∫
B

(∫
B

x1 − z1
|x− z|2

dz

)2
dx > 0

and therefore

lim inf
N→∞

N−1K(N) ≥
1

|B|

∫
B3

(x1−z1)(x1−y1)
|x−y|2|x−z|2 dxdydz∫

B2 r−2(x, y) dxdy
> 0.

Proposition is proved.
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• Suppose that the best asymptotic configuration of points could

be described by a finite measure µ on R3. Then

lim inf
N→∞

N−1 K(N) =
1

|µ|

∫ ∫ ∫
R−2(x, y, z) dµ(x)dµ(y)dµ(z)∫ ∫

r−2(x, y) dµ(x)dµ(y)
,

The integral

C(µ) =
∫ ∫ ∫

R−2(x, y, z) dµ(x)dµ(y)dµ(z)

is known as Menger-Melnikov curvature of the measure µ.

Recently Tolsa used Menger-Melnikov curvature for geometric

caracterisation of compact sets in the plane of zero analytic

capacity (i.e. compact sets which are removable for bounded

analytic functions). It has been a break through result prepared

in the papers of David, Melnikov, Verdera, Mattila, Leger and

many others.
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Problem: Isoperimetric properties of the Menger-Melnikov cur-

vature.

Find a measure µ, µ(R3) = 1, such that the integral

I(µ) =

∫ ∫ ∫
R−2(x, y, z) dµ(x)dµ(y)dµ(z)∫ ∫

r−2(x, y) dµ(x)dµ(y)

is maximal.

Remark. Since K(N) ≤ N−2
2 we have I(µ) ≤ 1/2.



2D case. Let

G(x) = ln |x|, x = (x1, x2),

and let define

F = −
∇G

G
= −

1

ln |x|

(
x1

|x|2
,

x2

|x|2

)
.

Then divF = 1
ln2 |x| ·

1
|x|2 and applying the inequality

∫
R2
|∇u|2dx ≥

1

4

∫
R2
|u|2

(
2divF− |F|2

)
dx

we obtain ∫
R2
|∇u|2dx ≥

1

4

∫
R2

|u|2

|x|2 ln2 |x|
dx.
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2D multiparticle case.

We define

F =
( ∑

k 6=1

1

ln |x1 − xk|
x1 − xk

|x1 − xk|2
, . . . ,

∑
k 6=N

1

ln |xN − xk|
xN − xk

|xN − xk|2

)
,

where xj ∈ R2. Then the main lemma implies

Theorem.∫
R2N

|∇u|2dx ≥
1

4 + 4K(N)

∫
R2N

|u|2
∑
i6=j

1

ln2 rij

1

r2ij
dx,

where as before K(N) = supx1,...,xN

∑N
i6=k,i,k 6=j R−2

ijk

2
∑N

i6=j r−2
ij

≤ N−2
2 .

Remark. For 2D case we can only prove that for large N

c1N/ lnN ≤ K(N) ≤ N/2− 1.
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2D magnetic Dirichlet Hardy inequality.

It has been shown in [LW] that if F = α(−x2 |x|−2, x1 |x|−2),
x = (x1, x2), α ∈ R, is an Aharonov-Bohm vector potential, then∫

R2
|(i∇+ F)u|2 dx ≥ min

k∈Z
(k − α)2

∫
R2

|u|2

|x|2
dx.

Indeed, using polar coordinates (r, θ) we have u(x) = 1√
2π

∑
k uk(r)e

ikθ.
Therefore∫

R2
|(i∇+ F)u|2 dx =

∫ ∞

0

∫ 2π

0

(
|u′r|2 +

∣∣∣∣iu′θ + αu

r

∣∣∣∣2)
r dθ dr

≥
1

2π

∫ ∞

0

∫ 2π

0

∣∣∣∣ ∑
k

α− k

r
ukeikθ

∣∣∣∣2 r dθ dr =
∫ ∞

0

∑
k

∣∣∣∣α− k

r
uk

∣∣∣∣2 r dθ dr

≥ min
k∈Z

(k − α)2
∫
R2

|u|2

|x|2
dx.
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Later Balinsky generalized this inequality and obtained a pretty

result when F has a finite number of singularities by using con-

formal mappings.

Some interesting inequalities of this type were also recently ob-

tained by Melgaard, Ouhabaz & Rozenblum.

Balinsky, Evans & Lewis used LW inequality for establishing a

CLR inequalities in 2D case and later Bennewitz & Evans ob-

tained LW type inequalities in Lp spaces.
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Magnetic multiparticle case.

Let xj = (xj1, xj2) ∈ R2, j = 1,2, . . . , N , and let

Fj = α

(
−

∑
k 6=j

xj2 − xk2

r2jk
,

∑
k 6=j

xj1 − xk1

r2jk

)
.

Theorem. Let

DN,α = min
l=1,...,N−1

(
mink∈Z |k − lα|

l

)2
.

Then∫
R2N

N∑
j=1

|(i∇xj + Fj)u|2 dx ≥ DN,α

∫
R2N

|u|2
( ∑

k 6=j

1

r2kj

)
dx.
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Proof.

Let z = (z1, . . . , zN), zj = xj1+ixj2 and let Φj(z) = Πk 6=j(zj−zk),

j, k = 1, . . . , N .

According to Balinsky’s inequality there is a piecewise constant

function Cj(x) ≥ DN,α, such that

∫
R2N

|i∇xj + Fj)u|2 dx ≥
∫
R2N

Cj(x)
∣∣∣∣(Φj)

′
zj
(z)

Φj(z)

∣∣∣∣2 |u|2 dx.

Simple computation shows∣∣∣∣(Φj)
′
zj
(z)

Φj(z)

∣∣∣∣2 =
∣∣∣∣ ∑
k 6=j

1

zj − zk

∣∣∣∣2 =
∑

k,l 6=j

(xj − xk) · (xj − xl)

r2jkr2jl
.
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Therefore we obtain∫
R2N

N∑
j=1

|(i∇xj + Fj)u|2 dx ≥ DN,α

∫
R2N

N∑
j=1

∣∣∣∣ N∑
k 6=j

1

zj − zk

∣∣∣∣2 |u|2 dx

= DN,α

∫ ( N∑
k 6=j

1

r2jk
+

N∑
l 6=k,l,k 6=j

1

R2
jkl

)
|u|2 dx.

We complete the proof by noticing that

min
x∈R2N

N∑
l 6=k,l,k 6=j

R−2
jkl = 0.



A joke.

It is well known that the ground state of the harmonic oscillator

−
d2

dx2
+ x2 in L2(R)

is ϕ(x) = exp(−x2/2) and the corresponding eigenvalue λ1 = 1.

Therefore the following inequality is sharp

−
d2

dx2
+ x2 ≥ 1.
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Let us now consider the following formal expression:

A∗A =
(

d

dx
− x +

1

2x

)(
−

d

dx
− x +

1

2x

)
≥ 0.

This can be rewritten as

A∗A = −
d2

dx2
+ x2 +

1

4x2
−1−

1

2x2
−2x

1

2x
= −

d2

dx2
+ x2−2−

1

4x2
.

The latter identity implies

−
d2

dx2
+ x2 ≥ 2 +

1

4x2
.

Conclusion: The eigenvalue λ1 = 1 does not exist, does it???
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3D Coulomb case with N particles.

Theorem. Let u ∈ W1,2(R3N). Then∫
R3N

|∇u|2dx−
∫
R3N

(∑
i6=j

1

rij

)
|u|2 dx ≥ −

(
N(N − 1)

2
+L(N)

) ∫
R3N

|u|2 dx,

where

L(N) = sup
N∑

j=1

∑
i6=k, i,k 6=j

(xj − xi) · (xj − xk)

rijrjk
.
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Remarks.

• The sharp value of L(N) is unknown except of N = 3,4,5.

However, we can show that

1

6
N(N − 1)(N − 2) ≤ L(N) ≤

1

4
N(N − 1)(N − 2).

• The Coulomb case has also been recently studied by A.Mouchet

who conjectured that for large N the optimal configuration is

achieved when the N points are distributed uniformly on a sphere.

In this case

0.0542... ≤ lim
N→∞

N−3L(N) ≤
1

18
= 0.0556...
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Isoperimetric problem:

Let x, y, z ∈ R3 and let c(x, y, z) be the the cosinus of the angle

between the vectors y − x and z − x.

Find a measure µ, µ(R3) = 1, such that

J(µ) =
∫ ∫ ∫

c(x, y, z) dµ(x)dµ(y)dµ(z)

is maximal.
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A question.

It would be interesting to obtain such type of inequalities for

fermions.
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