Covariant Functional Calculus and Spectrum
Vladimir V. Kisil

1 The traditional approach to functional calculus (E.C.)

Definition 1.1. An analytic functional calculus for an element a of an algebra
2 is a continuous linear mapping © from an algebra of functions A to 2 s.t.

1. @ is a unital algebra homomorphism O (f - g) = @(f) - O(g).

2. There is the initialisation conditions: ®|vg] = a for vo(z) = z.
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1 The traditional approach to functional calculus (E.C.)

Definition 1.1. An analytic functional calculus for an element a of an algebra
2 is a continuous linear mapping © from an algebra of functions A to 2 s.t.

1. @ is a unital algebra homomorphism O (f - g) = @(f) - O(g).

2. There is the initialisation conditions: ®[vy| = a for vo(z) = z.

Definition 1.2. A resolvent R (A) = (a — Ae) ! of element a € 2l is the image
under @ of the Cauchy kernel (z — A) ..
Spectrum of a € 2l is the set sp a of all singular points of its resolvent R (A).

Spectral Mapping Theorem. f(sp a) = sp f(a) for an analytic function f.
Limits of any F.C. based on an algebra homomorphism:
1. Domain A should be an algebra, i.e. no H,,, p < co or Bergman spaces.

2. Range 2l is not smaller than an algebra generated by a, no refinement.




2 Complex Analysis and Functional Calculus from Groups

Analytic function theory in the unit disk D is mainly a theory of the discrete
series representation of SL,(R) group of 2 x 2 matrices:
1 xz — 3 x —fB
£(2) s f — SLL,(R). (2.1
pm(g) : f(z) % B <(x_ BZ> ;9 (—(3 o ) € SLy(R). (2.1)
To get a definition of F.C. we replace of a homomorphism property by a
symmetric covariance. One possible realisation discussed here is as follows.
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symmetric covariance. One possible realisation discussed here is as follows.
Definition 2.1. An analytic functional calculus for an element a € 2 and an
2-module M is a continuous linear mapping © : A(D) — A (D, M) such that

1. @ is an intertwining operator ®p; = p, P between two representations of
the SL,(R) group p; (2.1) and p,, where a € 2 defined bellow.




2 Complex Analysis and Functional Calculus from Groups

Analytic function theory in the unit disk D is mainly a theory of the discrete
series representation of SL,(R) group of 2 x 2 matrices:
1 xz — x —P
£(2) s f — SLL,(R). (2.1
pm(g) : f(z) % B <oc—f37~>’ g (—(3 a) € SLy(R). (2.1)

To get a definition of F.C. we replace of a homomorphism property by a

symmetric covariance. One possible realisation discussed here is as follows.

Definition 2.1. An analytic functional calculus for an element a € 2 and an
2-module M is a continuous linear mapping © : A(D) — A (D, M) such that

1. @ is an intertwining operator ®p; = p, P between two representations of
the SL,(R) group p; (2.1) and p,, where a € 2 defined bellow.

2. There is an initialisation condition: ®[vg] = m for vo(z) = 1 and m € M.

A corresponding spectrum of a is the support of the functional calculus ©.




3 Elliptic, Parabolic, and Hyperbolic Function Theories

Analytic function theories are subject to the following general classification:
— 0 +
hyperbolic T elliptic

We use representations of SL, (R ) group in Clifford valued function spaces.
Four dimensional Clifford algebras ¢{(a) are spanned by 1, e;, e, ejes s.t.:

( —1, for &(e)—elliptic case

0, forCl(p)— case e1eg — —esgeq.
1, for Cl(h)—hyperbolic case

The subalgebra of Cl(e) spanned by 1 and 1 = e; e is isomorphic (replace!) C.
We identify R* with the set of vectors ue; + ves in all &(a), where (u,v) € R=.

“ z>,with ad—bc=1landq, b, c,d € R.

SL,(IR) consists of 2 x 2 matrices (

C




4 Mobius Transformations of R”

The same multiplication in SL,(R) if we replace
C

For all C{(a) define the Mobius transformation of R — R (!) by:

b -~
(ca el) . ue; +vey — (cer(ue; +vey) +d) '(a(ue; +vey) — bey).

d




4 Mobius Transformations of R”

The same multiplication in SL,(IR) if we replace . d by

For all C{(a) define the Mobius transformation of R — R (!) by:

a —be B
co q P ue; +vey — (ceq(ue; +ves) +d) Y(alue; +ves) — bey).
1

—Dbe T 0 1 xe eq Sl ,
Product “ ) = o e CO? P 15in ¢ gives
ce; d 0 7T 0 1 e;sin cos@

Iwasawa SL,(R) = ANK. In all &(a) subgroups A and N acts uniformly:
Vv

SCOO% W\ % N

A
‘ A
A







\
N\
N

Vector fields are:
dKe(w,v) = (14+u?—v2, 2uv)

dK, (w,v) = (1+u? 2uv)
dKn(uw,v) = (1+u?+v2, 2uv)

Figure 1: Depending from e5 = —1,0, 1 the action of subgroup K of
(COS ¢ —sind

snd  cosd ) produces circles, parabolas and hyperbolas.




5 Cayley Transform and Unit “Circles”
The colour code of ANK match to the model, where subgroup is diagonalised.

N
4

In elliptic case the standard Cayley transform diagonalise K:

x B B 1 et 0 1 u " W = arg «,
f « _\/1_‘1”2 0 e W u 1/’ u=pRx 1!,

and [u| < 1 follows from |o* — \[3\2 = 1, using notation i = e es.

p
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5 Cayley Transform and Unit “Circles”
The colour code of ANK match to the model, where subgroup is diagonalised.

In elliptic case the standard Cayley transform diagonalise K:

x B etw 0 1 u , — arg «, /
(B oc) \/1—\u| ( ei“’) (u 1>’W1th u=px" k

and [u| < 1 follows from |o* — HS\ = 1, using notation i = e es.

In hyperbolic case we analogously diagonalise A:

a b _ a0 1 a—1b
—b a) 0 ‘2—‘ —a~ b 1 '

Geometry: R? is not split by the unit circle;

However we could not deduce ‘a_lb] < 1 now! |

Analysis: Hardy space is not a proper subset of L,;

Physics: Past and future could be reversed contly.




6 Cauchy and Bergman Integrals as Wavelet Transforms

In the elliptic case Mobius maps give UIR p, from the discrete series of
SLy,(R) on Hardy H,(T) (= B{(ID)) or Bergman B, (D), m = 2,3, ... spaces:
XZ — 1 Xz —

| \(X_Bia — pm(g) : f(z) (“_Bz)mf<“_ﬁi)
K-invariant vacuum vector vo(z) = 1 gives wavelets v, (g,z) = pm(g)vo(z)
ess. depend only from o = B! € D. Then vy, (u,z) = (1 —tz)” ™ are the
Cauchy and Bergman kernels. Thus the universally defined wavelet
transforms W, f(u) = (f(z), pmvo(u, z)) are Cauchy and Bergman integrals:

1 1 1 dz
Wif(u) = o Lr f(z)u_ . dz, Wnf(u) = LD) f(z) M= w)™ (1 Zfm 1




6 Cauchy and Bergman Integrals as Wavelet Transforms

In the elliptic case Mobius maps give UIR p, from the discrete series of
SLy,(R) on Hardy H,(T) (= B;(ID)) or Bergman B, (D), m = 2,3, ... spaces:
XZ — 1 Xz —
=R = -l =)
K-invariant vacuum vector vy(z) = 1 gives wavelets v, (g,z) = pm(g)vo(z)
ess. depend only from it = B! € D. Then vy, (u,z) = (1 —tz)” ™ are the
Cauchy and Bergman kernels. Thus the universally defined wavelet
transforms W, f(u) = (f(z), pmVvo(u, z)) are Cauchy and Bergman integrals:

1 1 1 dz
WIS 2 Lr f(Z)u — 4 W) = J]D) i (1 —uz)™ (1 — |z])m—1

In the hyperbolic case principal series UIR ps of SL,(R) produce similarly:

911/2 (—ueyz+1)°z°
W Tl( |1—|—u ] elQJU ErSTE dzf(z), for o € R,

where z = e®12" and dz = ej2e°!2" dt. Again vacuum vector vo(z) = 1 was
taken to be A-covariant and wavelet transform is W, f(u) = (f(z), pgvo(u, z)).




7 Cauchy-Riemann Equation from Invariant Fields
A SL,(R)-invariant first order diff.op., which annihilate the image of wavelet
transform stands for Cauchy-Riemann operator. If p(Y;) is representation of
Lie derivative A, N, K without named then C-R operator is given by:
D=p(Y1)e1+p(Y2)ea, and A =p(Y1)%e? + p(Y1)?%e3,

its square is the Laplace operator. In elliptic case K is deleted and we get
invariant C-R and Laplace operators. In hyperbolic case subgroup A is
deleted and formulae produce a type of Dirac and wave operators:

D =uy(e10; + €293), and A = —u207 + (u02)?
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A SL,(R)-invariant first order diff.op., which annihilate the image of wavelet
transform stands for Cauchy-Riemann operator. If p(Y;) is representation of
Lie derivative A, N, K without named then C-R operator is given by
D = p(Yi)er + p(Ya)es, and A =p(Y1)%e] + p(Y1)%e3,

its square is the Laplace operator. In elliptic case K is deleted and we get
invariant C-R and Laplace operators. In hyperbolic case subgroup A is
deleted and formulae produce a type of Dirac and wave operators:

D =uy(e10; + €293), and A = —u207 + (u02)?

8 Taylor Expansion over Eigenfunctions

Vacuum vector v is an eigenfunction of K or A. A wavelet is decomposable
over the complete set of its eigenfunctions. The C-R operators kill half of
them, only the other half is really needed. In the elliptic case eigenvectors of
Karez™, m =0,1,2,... and the decomposition is the Taylor series:

f(z) =) o cnz™. In the hyperbolic case eigenvectors of AarezP,p € R, and
a Taylor type expansion is given by the integral f(z) = [ " c(p)z¥ dp.




10 Representations of SL,(R) in Banach Algebras
Let a € 20 with sp a € D be fixed in a Banach algebra 2l with the unit e, then
g:a—g-a=(xa—pe)loee—pa)?, g € SLH(R) (10.1)

is a well defined SL,(IR) actionon a subset A ={g-a | g € SL,(R)} € %, ie. A
is a SL, (R )-homogeneous space. Define resolvent function R(g, a) : A — 2:

R(g,a) = (ke —Ba)”* then Ri(g1,a)Ri(g2,97 a) =Ri(g1g2,a). (10.2)




10 Representations of SL,(R) in Banach Algebras
Let a € 20 with sp a € D be fixed in a Banach algebra 2l with the unit e, then
g:a—g-a=(xa—pe)loee—pa)?, g € SLH(R) (10.1)

is a well defined SL,(R) actionon a subset A ={g-a | g € S[,(R)} € A, ie. A
is a SL, (R )-homogeneous space. Define resolvent function R(g, a) : A — 2:

R(g,a) = (xe—pa)™" then Ry(g1,a)Ri(gz, 97 a) =Ri(gig2,a). (10.2)
We could linearise (10.1) in C(A, M), for a left 2A-module M (e.g. M = 2l):
x' - a— B’e)

x’'e —'a

Palg1) : f(g™"-a) — R(g1 g™, a)f(gy 'g™Ha) = (d'e—B'a)* f (

For any x € M a vacuum vectoris vx (g~ ' - a) =x®@vo(g~ ' - a) € C(A, M).
The wavelet transform associated with v, is defined by the same formula:

Wmf(g) = (f,pa(g)vx) (an operator version of Cauchy or Bergman integral).
It maps [,(A) to C(SL,(R), M). The Riesz-Dunford calculus is given by

D : f— Wif(0) for the choice M = 2l and x = e.




11 Jet Bundles and Prolongation of p;

Definition 11.1. Two holomorphic functions have nth order contact in a
point if their value and their first n derivatives agree at that point.

A point (z,ul™) = (z,u,uq,...,u,) of the jet space J™ ~ DD x C™ is the
equivalence class of holomorphic functions having nth contact at the point z.
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A point (z,2ul™) = (z,u,uy, ..., uy) of the jet space J™ ~ DD x C™ is the

equivalence class of holomorphic functions having nth contact at the point z.

For a fixed n each holomorphic function f : D — C has nth prolongation (or
n-jet) jnf : D — C™ ! defined as follows:

inf(z) = (f(2),f'(2),...,f(z)).
The representation p,, of the group SL,(R) in B,,, (D) could be prolonged to a

representation o) of SL,(R) by a transformation of the jet space J™:

o (9): (2w, ..., un) — (2(9),u(g), ..., un(g)), wherez(g) =

xXZ — B
—Bz+ o
and uy (g) is the kth derivative of p,,u at the point z(g). From the definition:

jn intertwines p; and pﬁ’”: inp1(g) = pgn)(g)jn for all g € SL,(RR).




11 Jet Bundles and Prolongation of p;

Definition 11.1. Two holomorphic functions have nth order contact in a
point if their value and their first n derivatives agree at that point.

A point (z,ul™) = (z,u,uy,...,uy) of the jet space J™ ~ D x C™ is the
equivalence class of holomorphic functions having nth contact at the point z.

For a fixed n each holomorphic function f : D — C has nth prolongation (or
n-jet) jnf: D — C™"! defined as follows:

jnf(z) = (f(2), f'(2),...,f™(2)).

The representation p,, of the group SL,(R) in B,,,(ID) could be prolonged to a
(

representation p,, ) of SL,(R) by a transformation of the jet space J™:

Xz — B
—Bz+ o’
and uy (g) is the kth derivative of p,,,u at the point z(g). From the definition:
jn intertwines p; and pgn): inp1(g) = pgn) (g)jn  forall g € SL,(R).
Proposition 11.2. Let a is a Jordan block of a length k for A = 0, and x be its root

K=1x £ a® = 0. Then pq m on vy is equivalent to pX,.

o (9) : (z,u, ..., un) — (2(9),u(g), ..., un(g)), wherez(g) =

vector of order k, i.e. a




12 Spectrum and Spectral Mapping Theorem

Because of the transitive group of inner automorphisms, which could send
any A € D to 0, we got the complete characterisation of p, for matrices.

Proposition 12.1 (Jordan normal form). Representation p is equivalent to a
direct sum of the prolongations oL of pm in the kth jet space J* intertwined with
inner automorphisms. Consequently the spectrum of a (defined via the functional

calculus ® = W) consists of exactly n pairs (Ai, ki), Ay €D, ki € Z,,1 <i<n.

Traditional (left) and
new (right) spectra of

the matrix:
a=7J3A)DJs(A2) ®
]2 (7\3) D ]1 (}\4) .




Theorem 12.2 (Spectral mapping). Let ¢ : D — D be a holomorphic map, let us
define |§.fl(z) = f(P(z)) and its prolongation cl)in) onto the jet space J™. Its
associated action p]fcl)fkn) = pi™ pl" on the pairs (A, k) is given by the formula:

(1) _ k
oK) = (60, [ 3 )

where deg, ¢ denotes the degree of zero of the function ¢(z) — §(A) at the point
z = A and |x] denotes the integer part of x. Then

spd(a) = cl)fkn) spa (which is actually known for Jordan blocks).

ZA

e

P
2

@®
Ay

7




14 Calculus of Polynomially Bounded Operators in Bergman Spaces
Standard for a with sp a € D and ||a*|| < CkP to consider power bounded ra,
where 0 < v < 1, and its H__ calculus. A better reqularisation, a* — a*/kP
rather than a* — r*a¥, is achieved in the present framework (although

algebra homomorphism is completely lost).
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where 0 < v < 1, and its H__ calculus. A better reqularisation, a* — a*/kP
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14 Calculus of Polynomially Bounded Operators in Bergman Spaces
Standard for a with spa € D and ||a®|| < CkP to consider power bounded ra,

where 0 < v < 1, and its H__ calculus. A better reqularisation, a* — a*/kP

k k ~k

a*, is achieved in the present framework (although

rather than a — r

algebra homomorphism is Completely lost).

Since norm of f(z) = Y % ¢z in B, is equivalent to > ;°ci /k™ ! for
polynomially bounded a the resolvent R(z, a) belongs to any B, with
m > 2(p + 1). Define a representation of SL,(R) in B, (D x A, M) by:

1 Y —
or i f(u,a) — — f(u,(xa Be).

(Bu+ o)™ 1(xe — Ra) xe — Ba

It is generated by the discrete series representation of SL, (IR ) with the lowest
weight m. For the vacuum vector vo(u, a) = xin B, (D x A, M), where
(x € M), the corresponding functional calculus is given by the integral:
f(u) du
f(ga): — Ym—1( = ) 2\m—2"
p (B4 )™ e —Pa) (1 — |ul*)m—2

For Jordan k-blocks with |A;| = 1 it is equivalent to k-prolongation of p/,.




15 Several Variables Spectral Theory

For a joint spectrum of n-tuple of operators we have many alternatives:

e Weyl functional calculus through the Heisenberg group H™ acting in
L,(R™); or Segal-Bargmann type functional calculus through the H™
acting in L,(C™);
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15 Several Variables Spectral Theory
For a joint spectrum of n-tuple of operators we have many alternatives:

e Weyl functional calculus through the Heisenberg group H™ acting in
L,(R™); or Segal-Bargmann type functional calculus through the H™
acting in L,(C™);

e several complex variables through groups of automorphisms of unit ball
or polydisk in C™. However this is suitable mainly for commuting
n-tuples;

Or the Clifford analysis through the Mobius group of conformal maps of C™.
The Clifford algebra (1) is spanned by 1, ey, ey, ..., e, with relations
el =—1 and exe; = —ejer  fork #j.

Similarly to complex analysis we could derive a Cauchy kernel (cf. resolvent):

—1
R(Al,AQ,...,An;Al,AQ,...,An):(Z{‘ekAk—Z?ekAkI) in B(H) ® C(n).




0

1
Example 15.1. Let || = <0 |

and J, = vl be the Pauli matrices. The
1 O

Cauchy
—NF + A+ 201 A0e1e2 [ (—1—Ap)er — Ages €9

(A? +A3)2 €2 (1—A1)ep —Agea )
Clifford spectrum sp c(J1, J2) = {(0,0)}, Weyl spectrum sp w (J1, J2) = D,

Mébius spectrum sp i (J1,J2) = {p1, 0" )

kernel
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