Covariant Functional Calculus and Spectrum Vladimir V. Kisil

1 The traditional approach to functional calculus (F.C.)

Definition 1.1. An analytic functional calculus for an element a of an algebra \mathfrak{A} is a continuous linear mapping Φ from an algebra of functions \mathcal{A} to \mathfrak{A} s.t.

1. Φ is a unital algebra homomorphism $\Phi(f \cdot g)=\Phi(f) \cdot \Phi(g)$.
2. There is the initialisation conditions: $\Phi\left[v_{0}\right]=a$ for $v_{0}(z)=z$.

Covariant Functional Calculus and Spectrum Vladimir V. Kisil

1 The traditional approach to functional calculus (F.C.)

Definition 1.1. An analytic functional calculus for an element a of an algebra \mathfrak{A} is a continuous linear mapping Φ from an algebra of functions \mathcal{A} to \mathfrak{A} s.t.

1. Φ is a unital algebra homomorphism $\Phi(f \cdot g)=\Phi(f) \cdot \Phi(g)$.
2. There is the initialisation conditions: $\Phi\left[v_{0}\right]=\mathrm{a}$ for $v_{0}(z)=z$.

Definition 1.2. A resolvent $R_{a}(\lambda)=(a-\lambda e)^{-1}$ of element $a \in \mathfrak{A}$ is the image under Φ of the Cauchy kernel $(z-\lambda)^{-1}$.
Spectrum of $a \in \mathfrak{A}$ is the set sp a of all singular points of its resolvent $R_{a}(\lambda)$.
Spectral Mapping Theorem. $f(s p a)=\operatorname{sp} f(a)$ for an analytic function f.

Covariant Functional Calculus and Spectrum Vladimir V. Kisil

1 The traditional approach to functional calculus (F.C.)

Definition 1.1. An analytic functional calculus for an element a of an algebra \mathfrak{A} is a continuous linear mapping Φ from an algebra of functions \mathcal{A} to \mathfrak{A} s.t.

1. Φ is a unital algebra homomorphism $\Phi(f \cdot g)=\Phi(f) \cdot \Phi(g)$.
2. There is the initialisation conditions: $\Phi\left[v_{0}\right]=a$ for $v_{0}(z)=z$.

Definition 1.2. A resolvent $R_{a}(\lambda)=(a-\lambda e)^{-1}$ of element $a \in \mathfrak{A}$ is the image under Φ of the Cauchy kernel $(z-\lambda)^{-1}$.
Spectrum of $a \in \mathfrak{A}$ is the set $\operatorname{sp} a$ of all singular points of its resolvent $R_{a}(\lambda)$.
Spectral Mapping Theorem. $f(s p a)=\operatorname{sp} f(a)$ for an analytic function f.
Limits of any F.C. based on an algebra homomorphism:

1. Domain \mathcal{A} should be an algebra, i.e. no $H_{p}, p<\infty$ or Bergman spaces.
2. Range \mathfrak{A} is not smaller than an algebra generated by a, no refinement.

2 Complex Analysis and Functional Calculus from Groups

Analytic function theory in the unit disk \mathbb{D} is mainly a theory of the discrete series representation of $S L_{2}(\mathbb{R})$ group of 2×2 matrices:

$$
\rho_{\mathfrak{m}}(g): f(z) \mapsto \frac{1}{(\alpha-\beta z)^{m}} f\left(\frac{\bar{\alpha} z-\bar{\beta}}{\alpha-\beta z}\right), \quad g=\left(\begin{array}{cc}
\bar{\alpha} & -\bar{\beta} \tag{2.1}\\
-\beta & \alpha
\end{array}\right) \in S L_{2}(\mathbb{R}) \text {. }
$$

To get a definition of F.C. we replace of a homomorphism property by a symmetric covariance. One possible realisation discussed here is as follows.

2 Complex Analysis and Functional Calculus from Groups

Analytic function theory in the unit disk \mathbb{D} is mainly a theory of the discrete series representation of $S L_{2}(\mathbb{R})$ group of 2×2 matrices:

$$
\rho_{\mathfrak{m}}(g): f(z) \mapsto \frac{1}{(\alpha-\beta z)^{m}} f\left(\frac{\bar{\alpha} z-\bar{\beta}}{\alpha-\beta z}\right), \quad g=\left(\begin{array}{cc}
\bar{\alpha} & -\bar{\beta} \tag{2.1}\\
-\beta & \alpha
\end{array}\right) \in S L_{2}(\mathbb{R}) .
$$

To get a definition of F.C. we replace of a homomorphism property by a symmetric covariance. One possible realisation discussed here is as follows.
Definition 2.1. An analytic functional calculus for an element $a \in \mathfrak{A}$ and an \mathfrak{A}-module M is a continuous linear mapping $\Phi: A(\mathbb{D}) \rightarrow A(\mathbb{D}, M)$ such that

1. Φ is an intertwining operator $\Phi \rho_{1}=\rho_{\mathrm{a}} \Phi$ between two representations of the $S L_{2}(\mathbb{R})$ group $\rho_{1}(2.1)$ and ρ_{a}, where $a \in \mathfrak{A}$ defined bellow.

2 Complex Analysis and Functional Calculus from Groups

Analytic function theory in the unit disk \mathbb{D} is mainly a theory of the discrete series representation of $S L_{2}(\mathbb{R})$ group of 2×2 matrices:

$$
\rho_{\mathfrak{m}}(g): f(z) \mapsto \frac{1}{(\alpha-\beta z)^{m}} f\left(\frac{\bar{\alpha} z-\bar{\beta}}{\alpha-\beta z}\right), \quad g=\left(\begin{array}{cc}
\bar{\alpha} & -\bar{\beta} \tag{2.1}\\
-\beta & \alpha
\end{array}\right) \in S L_{2}(\mathbb{R}) .
$$

To get a definition of F.C. we replace of a homomorphism property by a symmetric covariance. One possible realisation discussed here is as follows.
Definition 2.1. An analytic functional calculus for an element $a \in \mathfrak{A}$ and an \mathfrak{A}-module M is a continuous linear mapping $\Phi: A(\mathbb{D}) \rightarrow A(\mathbb{D}, M)$ such that

1. Φ is an intertwining operator $\Phi \rho_{1}=\rho_{\mathrm{a}} \Phi$ between two representations of the $S L_{2}(\mathbb{R})$ group $\rho_{1}(2.1)$ and ρ_{a}, where $a \in \mathfrak{A}$ defined bellow.
2. There is an initialisation condition: $\Phi\left[v_{0}\right]=m$ for $v_{0}(z) \equiv 1$ and $m \in M$.

A corresponding spectrum of a is the support of the functional calculus Φ.

3 Elliptic, Parabolic, and Hyperbolic Function Theories

Analytic function theories are subject to the following general classification:

parabolic
We use representations of $\mathrm{SL}_{2}(\mathbb{R})$ group in Clifford valued function spaces.
Four dimensional Clifford algebras $\operatorname{Cl}(a)$ are spanned by $1, e_{1}, e_{2}, e_{1} e_{2}$ s.t.:

$$
e_{1}^{2}=-1, \quad e_{2}^{2}=\left\{\begin{array}{cl}
-1, & \text { for } \operatorname{Cl}(e) \text { —elliptic case } \\
0, & \text { for } \operatorname{Cl}(p) \text {-parabolic case } \\
1, & \text { for } \mathcal{C l}(h) \text {-hyperbolic case }
\end{array} \quad, \quad e_{1} e_{2}=-e_{2} e_{1} .\right.
$$

The subalgebra of $\mathcal{C l}(e)$ spanned by 1 and $i=e_{1} e_{2}$ is isomorphic (replace!) \mathbb{C}. We identify \mathbb{R}^{2} with the set of vectors $u e_{1}+v e_{2}$ in all $\mathcal{C l}(a)$, where $(u, v) \in \mathbb{R}^{2}$. $S L_{2}(\mathbb{R})$ consists of 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, with $a d-b c=1$ and $a, b, c, d \in \mathbb{R}$.

4 Möbius Transformations of \mathbb{R}^{2}

The same multiplication in $S L_{2}(\mathbb{R})$ if we replace $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ by $\left(\begin{array}{cc}a & -b e_{1} \\ c e_{1} & d\end{array}\right)$.
For all $\operatorname{Cl}(a)$ define the Möbius transformation of $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}(!)$ by:

$$
\left(\begin{array}{cc}
a & -b e_{1} \\
c e_{1} & d
\end{array}\right): u e_{1}+v e_{2} \mapsto\left(c e_{1}\left(u e_{1}+v e_{2}\right)+d\right)^{-1}\left(a\left(u e_{1}+v e_{2}\right)-b e_{1}\right) .
$$

4 Möbius Transformations of \mathbb{R}^{2}

The same multiplication in $S L_{2}(\mathbb{R})$ if we replace $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ by $\left(\begin{array}{cc}a & -b e_{1} \\ c e_{1} & d\end{array}\right)$.
For all $\operatorname{Cl}(\mathrm{a})$ define the Möbius transformation of $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}(!)$ by:

$$
\left(\begin{array}{cc}
a & -b e_{1} \\
c e_{1} & d
\end{array}\right): u e_{1}+v e_{2} \mapsto\left(c e_{1}\left(u e_{1}+v e_{2}\right)+d\right)^{-1}\left(a\left(u e_{1}+v e_{2}\right)-b e_{1}\right) .
$$

Product $\left(\begin{array}{cc}a & -b e_{1} \\ c e_{1} & d\end{array}\right)=\left(\begin{array}{cc}\tau & 0 \\ 0 & \tau^{-1}\end{array}\right)\left(\begin{array}{cc}1 & x e_{1} \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}\cos \phi & e_{1} \sin \phi \\ e_{1} \sin \phi & \cos \phi\end{array}\right)$ gives
Iwasawa $S L_{2}(\mathbb{R})=A N K$. In all $\mathcal{C l}(a)$ subgroups A and N acts uniformly:

Vector fields are:

$$
\begin{aligned}
d K_{e}(u, v) & =\left(1+u^{2}-v^{2},\right. & & 2 u v) \\
d K_{p}(u, v) & =\left(1+u^{2},\right. & & 2 u v) \\
d K_{h}(u, v) & =\left(1+u^{2}+v^{2},\right. & & 2 u v)
\end{aligned}
$$

Figure 1: Depending from $e_{2}^{2}=-1,0,1$ the action of subgroup K of $\left(\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$ produces circles, parabolas and hyperbolas.

5 Cayley Transform and Unit "Circles"

The colour code of ANK match to the model, where subgroup is diagonalised.
In elliptic case the standard Cayley transform diagonalise K :

$$
\left(\begin{array}{cc}
\alpha & \bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)=\frac{1}{\sqrt{1-|\mathfrak{u}|^{2}}}\left(\begin{array}{cc}
e^{i \omega} & 0 \\
0 & e^{-i \omega}
\end{array}\right)\left(\begin{array}{cc}
1 & \bar{u} \\
\mathfrak{u} & 1
\end{array}\right) \text {, with } \begin{aligned}
& \omega=\arg \alpha, \\
& \mathbf{u}=\beta \bar{\alpha}^{-1},
\end{aligned}
$$

and $|\mathfrak{u}|<1$ follows from $|\alpha|^{2}-|\beta|^{2}=1$, using notation $i=e_{1} e_{2}$.

5 Cayley Transform and Unit "Circles"

The colour code of ANK match to the model, where subgroup is diagonalised.
In elliptic case the standard Cayley transform diagonalise K:

$$
\left(\begin{array}{cc}
\alpha & \bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)=\frac{1}{\sqrt{1-|u|^{2}}}\left(\begin{array}{cc}
e^{i \omega} & 0 \\
0 & e^{-i \omega}
\end{array}\right)\left(\begin{array}{cc}
1 & \bar{u} \\
u & 1
\end{array}\right) \text {, with } \begin{aligned}
& \omega=\arg \alpha, \\
& u=\beta \bar{\alpha}^{-1},
\end{aligned}
$$

and $|\mathfrak{u}|<1$ follows from $|\alpha|^{2}-|\beta|^{2}=1$, using notation $i=e_{1} e_{2}$.
In hyperbolic case we analogously diagonalise A :

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)=|a|\left(\begin{array}{cc}
\frac{a}{|a|} & 0 \\
0 & \frac{a}{|a|}
\end{array}\right)\left(\begin{array}{cc}
1 & a^{-1} b \\
-a^{-1} b & 1
\end{array}\right) .
$$

However we could not deduce $\left|\mathrm{a}^{-1} \mathrm{~b}\right|<1$ now!
Geometry: \mathbb{R}^{2} is not split by the unit circle;
Analysis: Hardy space is not a proper subset of L_{2};
 Physics: Past and future could be reversed contly.

6 Cauchy and Bergman Integrals as Wavelet Transforms

In the elliptic case Möbius maps give UIR $\rho_{\mathfrak{m}}$ from the discrete series of $\mathrm{SL}_{2}(\mathbb{R})$ on Hardy $\mathrm{H}_{2}(\mathbb{T})\left(=: \mathrm{B}_{1}(\mathbb{D})\right)$ or Bergman $\mathrm{B}_{\mathfrak{m}}(\mathbb{D}), \mathrm{m}=2,3, \ldots$ spaces:

$$
g^{-1}: z \mapsto \frac{\bar{\alpha} z-\bar{\beta}}{\alpha-\beta z}, \quad \longrightarrow \quad \rho_{\mathfrak{m}}(g): f(z) \mapsto \frac{1}{(\alpha-\beta z)^{m}} f\left(\frac{\bar{\alpha} z-\bar{\beta}}{\alpha-\beta z}\right)
$$

K-invariant vacuum vector $v_{0}(z) \equiv 1$ gives wavelets $v_{\mathfrak{m}}(\mathrm{g}, z)=\rho_{\mathfrak{m}}(\mathrm{g}) v_{0}(z)$ ess. depend only from $\bar{u}=\beta \alpha^{-1} \in \mathbb{D}$. Then $v_{\mathfrak{m}}(u, z)=(1-\bar{u} z)^{-\mathfrak{m}}$ are the Cauchy and Bergman kernels. Thus the universally defined wavelet transforms $\mathcal{W}_{\mathfrak{m}} f(u)=\left\langle f(z), \rho_{\mathfrak{m}} \nu_{0}(u, z)\right\rangle$ are Cauchy and Bergman integrals:
$\mathcal{W}_{1} f(u)=\frac{1}{2 \pi i} \int_{\mathbb{T}} f(z) \frac{1}{u-z} d z, \quad \mathcal{W}_{\mathfrak{m}} f(u)=\int_{\mathbb{D}} f(z) \frac{1}{(1-u \bar{z})^{m}} \frac{d z}{\left(1-|z|^{2}\right)^{m-1}}$.

6 Cauchy and Bergman Integrals as Wavelet Transforms

In the elliptic case Möbius maps give UIR ρ_{m} from the discrete series of $\mathrm{SL}_{2}(\mathbb{R})$ on Hardy $\mathrm{H}_{2}(\mathbb{T})\left(=: \mathrm{B}_{1}(\mathbb{D})\right)$ or Bergman $\mathrm{B}_{\mathfrak{m}}(\mathbb{D}), \mathrm{m}=2,3, \ldots$ spaces:

$$
g^{-1}: z \mapsto \frac{\bar{\alpha} z-\overline{\bar{\beta}}}{\alpha-\beta z}, \quad \longrightarrow \quad \rho_{\mathfrak{m}}(g): f(z) \mapsto \frac{1}{(\alpha-\beta z)^{m}} f\left(\frac{\bar{\alpha} z-\bar{\beta}}{\alpha-\beta z}\right)
$$

K-invariant vacuum vector $v_{0}(z) \equiv 1$ gives wavelets $v_{\mathfrak{m}}(\mathrm{g}, z)=\rho_{\mathfrak{m}}(\mathrm{g}) v_{0}(z)$ ess. depend only from $\bar{u}=\beta \alpha^{-1} \in \mathbb{D}$. Then $v_{\mathfrak{m}}(u, z)=(1-\bar{u} z)^{-\mathfrak{m}}$ are the Cauchy and Bergman kernels. Thus the universally defined wavelet transforms $\mathcal{W}_{\mathfrak{m}} f(u)=\left\langle f(z), \rho_{\mathfrak{m}} v_{0}(u, z)\right\rangle$ are Cauchy and Bergman integrals:

$$
\mathcal{W}_{1} f(\mathfrak{u})=\frac{1}{2 \pi \mathfrak{i}} \int_{\mathbb{T}} f(z) \frac{1}{u-z} d z, \quad \mathcal{W}_{\mathfrak{m}} f(\mathfrak{u})=\int_{\mathbb{D}} f(z) \frac{1}{(1-\mathfrak{u} \bar{z})^{m}} \frac{d z}{\left(1-|z|^{2}\right)^{m-1}} .
$$

In the hyperbolic case principal series $\operatorname{UIR} \rho_{\sigma}$ of $S L_{2}(\mathbb{R})$ produce similarly:

$$
\left[\mathcal{W}_{\sigma} f\right](u)=\left|1+u^{2}\right|^{1 / 2} e_{12} \int_{\mathbb{U}} \frac{\left(-u e_{1} z+1\right)^{\sigma} z^{\sigma}}{\left(-e_{1} u+z\right)^{1+\sigma}} d z f(z), \quad \text { for } \sigma \in \mathbb{R}
$$

where $z=e^{e_{12} t}$ and $d z=e_{12} e^{e_{12} t} d t$. Again vacuum vector $v_{0}(z) \equiv 1$ was taken to be A-covariant and wavelet transform is $\mathcal{W}_{\sigma} f(u)=\left\langle f(z), \rho_{\sigma} v_{0}(u, z)\right\rangle$.

7 Cauchy-Riemann Equation from Invariant Fields

A $\mathrm{SL}_{2}(\mathbb{R})$-invariant first order diff.op., which annihilate the image of wavelet transform stands for Cauchy-Riemann operator. If $\rho\left(Y_{j}\right)$ is representation of Lie derivative A, N, K without named then $C-R$ operator is given by:

$$
D=\rho\left(Y_{1}\right) e_{1}+\rho\left(Y_{2}\right) e_{2}, \quad \text { and } \quad \Delta=\rho\left(Y_{1}\right)^{2} e_{1}^{2}+\rho\left(Y_{1}\right)^{2} e_{2}^{2},
$$

its square is the Laplace operator. In elliptic case K is deleted and we get invariant C-R and Laplace operators. In hyperbolic case subgroup A is deleted and formulae produce a type of Dirac and wave operators:

$$
\mathrm{D}=\mathfrak{u}_{2}\left(e_{1} \partial_{1}+e_{2} \partial_{2}\right), \quad \text { and } \quad \Delta=-u_{2}^{2} \partial_{1}^{2}+\left(u_{2} \partial_{2}\right)^{2}
$$

7 Cauchy-Riemann Equation from Invariant Fields

A $\mathrm{SL}_{2}(\mathbb{R})$-invariant first order diff.op., which annihilate the image of wavelet transform stands for Cauchy-Riemann operator. If $\rho\left(Y_{j}\right)$ is representation of Lie derivative A, N, K without named then $C-R$ operator is given by:

$$
D=\rho\left(Y_{1}\right) e_{1}+\rho\left(Y_{2}\right) e_{2}, \quad \text { and } \quad \Delta=\rho\left(Y_{1}\right)^{2} e_{1}^{2}+\rho\left(Y_{1}\right)^{2} e_{2}^{2},
$$

its square is the Laplace operator. In elliptic case K is deleted and we get invariant C-R and Laplace operators. In hyperbolic case subgroup A is deleted and formulae produce a type of Dirac and wave operators:

$$
\mathrm{D}=\mathfrak{u}_{2}\left(e_{1} \partial_{1}+e_{2} \partial_{2}\right), \quad \text { and } \quad \Delta=-u_{2}^{2} \partial_{1}^{2}+\left(u_{2} \partial_{2}\right)^{2}
$$

8 Taylor Expansion over Eigenfunctions

Vacuum vector v_{0} is an eigenfunction of K or A. A wavelet is decomposable over the complete set of its eigenfunctions. The C-R operators kill half of them, only the other half is really needed. In the elliptic case eigenvectors of K are $z^{\mathrm{m}}, \mathfrak{m}=0,1,2, \ldots$ and the decomposition is the Taylor series:
$f(z)=\sum_{0}^{\infty} c_{n} z^{n}$. In the hyperbolic case eigenvectors of A are $z^{p}, p \in \mathbb{R}_{+}$and a Taylor type expansion is given by the integral $f(z)=\int_{0}^{\infty} c(p) z^{p} d p$.

10 Representations of $S L_{2}(\mathbb{R})$ in Banach Algebras

Let $a \in \mathfrak{A}$ with $\mathrm{sp} a \in \overline{\mathbb{D}}$ be fixed in a Banach algebra \mathfrak{A} with the unit e, then

$$
\begin{equation*}
\mathrm{g}: \mathrm{a} \mapsto \mathrm{~g} \cdot \mathrm{a}=(\bar{\alpha} \mathrm{a}-\bar{\beta} e)(\alpha e-\beta \mathrm{a})^{-1}, \quad \mathrm{~g} \in \mathrm{SL}_{2}(\mathbb{R}) \tag{10.1}
\end{equation*}
$$

is a well defined $S L_{2}(\mathbb{R})$ action on a subset $\mathbb{A}=\left\{\mathrm{g} \cdot \mathrm{a} \mid \mathrm{g} \in \mathrm{SL}_{2}(\mathbb{R})\right\} \in \mathfrak{A}$, i.e. \mathbb{A} is a $S L_{2}(\mathbb{R})$-homogeneous space. Define resolvent function $R(g, a): \mathbb{A} \rightarrow \mathfrak{A}:$

$$
\begin{equation*}
R(g, a)=(\alpha e-\beta a)^{-1} \quad \text { then } \quad R_{1}\left(g_{1}, a\right) R_{1}\left(g_{2}, g_{1}^{-1} a\right)=R_{1}\left(g_{1} g_{2}, a\right) . \tag{10.2}
\end{equation*}
$$

10 Representations of $S L_{2}(\mathbb{R})$ in Banach Algebras

Let $a \in \mathfrak{A}$ with $\mathrm{sp} a \in \overline{\mathbb{D}}$ be fixed in a Banach algebra \mathfrak{A} with the unit e, then

$$
\begin{equation*}
g: a \mapsto g \cdot a=(\bar{\alpha} a-\bar{\beta} e)(\alpha e-\beta a)^{-1}, \quad g \in S L_{2}(\mathbb{R}) \tag{10.1}
\end{equation*}
$$

is a well defined $S L_{2}(\mathbb{R})$ action on a subset $\mathbb{A}=\left\{\mathrm{g} \cdot \mathrm{a} \mid \mathrm{g} \in \mathrm{SL}_{2}(\mathbb{R})\right\} \in \mathfrak{A}$, i.e. \mathbb{A} is a $S L_{2}(\mathbb{R})$-homogeneous space. Define resolvent function $R(g, a): \mathbb{A} \rightarrow \mathfrak{A}:$

$$
\begin{equation*}
R(g, a)=(\alpha e-\beta a)^{-1} \quad \text { then } \quad R_{1}\left(g_{1}, a\right) R_{1}\left(g_{2}, g_{1}^{-1} a\right)=R_{1}\left(g_{1} g_{2}, a\right) . \tag{10.2}
\end{equation*}
$$

We could linearise (10.1) in $C(\mathbb{A}, M)$, for a left \mathfrak{A}-module M (e.g. $M=\mathfrak{A})$:

$$
\rho_{a}\left(g_{1}\right): f\left(g^{-1} \cdot a\right) \mapsto R\left(g_{1}^{-1} g^{-1}, a\right) f\left(g_{1}^{-1} g^{-1} \cdot a\right)=\left(\alpha^{\prime} e-\beta^{\prime} a\right)^{-1} f\left(\frac{\bar{\alpha}^{\prime} \cdot a-\bar{\beta}^{\prime} e}{\alpha^{\prime} e-\beta^{\prime} a}\right)
$$

For any $x \in M$ a vacuum vector is $v_{x}\left(g^{-1} \cdot a\right)=x \otimes v_{0}\left(g^{-1} \cdot a\right) \in C(\mathbb{A}, M)$. The wavelet transform associated with v_{x} is defined by the same formula:
$\mathcal{W}_{\mathfrak{m}} \mathrm{f}(\mathrm{g})=\left\langle\mathrm{f}, \rho_{\mathrm{a}}(\mathrm{g}) v_{x}\right\rangle \quad$ (an operator version of Cauchy or Bergman integral). It maps $L_{2}(\mathbb{A})$ to $C\left(S L_{2}(\mathbb{R}), M\right)$. The Riesz-Dunford calculus is given by

$$
\Phi: f \mapsto \mathcal{W}_{1} f(0) \quad \text { for the choice } M=\mathfrak{A} \text { and } x=e .
$$

11 Jet Bundles and Prolongation of ρ_{1}

Definition 11.1. Two holomorphic functions have nth order contact in a point if their value and their first n derivatives agree at that point. A point $\left(z, u^{(n)}\right)=\left(z, u, u_{1}, \ldots, u_{n}\right)$ of the jet space $\mathbb{J}^{n} \sim \mathbb{D} \times \mathbb{C}^{n}$ is the equivalence class of holomorphic functions having nth contact at the point z.

11 Jet Bundles and Prolongation of ρ_{1}

Definition 11.1. Two holomorphic functions have nth order contact in a point if their value and their first n derivatives agree at that point. A point $\left(z, u^{(n)}\right)=\left(z, u, u_{1}, \ldots, u_{n}\right)$ of the jet space $\mathbb{J}^{n} \sim \mathbb{D} \times \mathbb{C}^{n}$ is the equivalence class of holomorphic functions having nth contact at the point z.

For a fixed n each holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$ has nth prolongation (or n-jet) $j_{n} f: \mathbb{D} \rightarrow \mathbb{C}^{n+1}$ defined as follows:

$$
j_{n} f(z)=\left(f(z), f^{\prime}(z), \ldots, f^{(n)}(z)\right) .
$$

11 Jet Bundles and Prolongation of ρ_{1}

Definition 11.1. Two holomorphic functions have $\mathfrak{n t h}$ order contact in a point if their value and their first n derivatives agree at that point. A point $\left(z, u^{(n)}\right)=\left(z, u, u_{1}, \ldots, u_{n}\right)$ of the jet space $\mathbb{J}^{n} \sim \mathbb{D} \times \mathbb{C}^{n}$ is the equivalence class of holomorphic functions having \mathfrak{n} th contact at the point z.

For a fixed n each holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$ has nth prolongation (or n-jet) $j_{n} f: \mathbb{D} \rightarrow \mathbb{C}^{n+1}$ defined as follows:

$$
j_{n} f(z)=\left(f(z), f^{\prime}(z), \ldots, f^{(n)}(z)\right) .
$$

The representation $\rho_{\mathfrak{m}}$ of the group $\mathrm{SL}_{2}(\mathbb{R})$ in $\mathrm{B}_{\mathfrak{m}}(\mathbb{D})$ could be prolonged to a representation $\rho_{m}^{(\mathfrak{n})}$ of $S L_{2}(\mathbb{R})$ by a transformation of the jet space \mathbb{J}^{n} :

$$
\rho_{\mathfrak{m}}^{(\mathfrak{n})}(\mathrm{g}):\left(z, u, \ldots, u_{n}\right) \mapsto\left(z(g), u(g), \ldots, u_{n}(g)\right), \quad \text { where } z(g)=\frac{\bar{\alpha} z-\bar{\beta}}{-\beta z+\alpha}
$$

and $u_{k}(g)$ is the k th derivative of $\rho_{m} u$ at the point $z(g)$. From the definition:
j_{n} intertwines ρ_{1} and $\rho_{1}^{(n)}: \quad j_{n} \rho_{1}(g)=\rho_{1}^{(n)}(g) j_{n} \quad$ for all $g \in S L_{2}(\mathbb{R})$.

11 Jet Bundles and Prolongation of ρ_{1}

Definition 11.1. Two holomorphic functions have $\mathfrak{n t h}$ order contact in a point if their value and their first n derivatives agree at that point.
A point $\left(z, u^{(\mathfrak{n})}\right)=\left(z, \mathfrak{u}, \mathfrak{u}_{1}, \ldots, u_{n}\right)$ of the jet space $\mathbb{J}^{n} \sim \mathbb{D} \times \mathbb{C}^{n}$ is the equivalence class of holomorphic functions having nth contact at the point z.

For a fixed n each holomorphic function $f: \mathbb{D} \rightarrow \mathbb{C}$ has nth prolongation (or n-jet) $j_{n} f: \mathbb{D} \rightarrow \mathbb{C}^{n+1}$ defined as follows:

$$
j_{n} f(z)=\left(f(z), f^{\prime}(z), \ldots, f^{(n)}(z)\right) .
$$

The representation $\rho_{\mathfrak{m}}$ of the group $S L_{2}(\mathbb{R})$ in $B_{\mathfrak{m}}(\mathbb{D})$ could be prolonged to a representation $\rho_{\mathfrak{m}}^{(\mathfrak{n})}$ of $S L_{2}(\mathbb{R})$ by a transformation of the jet space \mathbb{J}^{n} :

$$
\rho_{m}^{(n)}(g):\left(z, u, \ldots, u_{n}\right) \mapsto\left(z(g), u(g), \ldots, u_{n}(g)\right), \quad \text { where } z(g)=\frac{\bar{\alpha} z-\bar{\beta}}{-\beta z+\alpha}
$$

and $u_{k}(g)$ is the k th derivative of $\rho_{m} u$ at the point $z(g)$. From the definition: j_{n} intertwines ρ_{1} and $\rho_{1}^{(n)}: \quad j_{n} \rho_{1}(g)=\rho_{1}^{(n)}(g) j_{n} \quad$ for all $g \in S L_{2}(\mathbb{R})$.
Proposition 11.2. Let a is a Jordan block of a length k for $\lambda=0$, and x be its root vector of order k, i.e. $a^{k-1} x \neq a^{k} x=0$. Then $\rho_{a, m}$ on v_{x} is equivalent to $\rho_{\mathfrak{m}}^{k}$.

12 Spectrum and Spectral Mapping Theorem

Because of the transitive group of inner automorphisms, which could send any $\lambda \in \mathbb{D}$ to 0 , we got the complete characterisation of ρ_{a} for matrices.
Proposition 12.1 (Jordan normal form). Representation ρ_{a} is equivalent to a direct sum of the prolongations $\rho_{m}^{(k)}$ of ρ_{m} in the kth jet space \mathbb{J}^{k} intertwined with inner automorphisms. Consequently the spectrum of a (defined via the functional calculus $\Phi=\mathcal{W}_{\mathfrak{m}}$) consists of exactly n pairs $\left(\lambda_{i}, k_{i}\right), \lambda_{i} \in \mathbb{D}, k_{i} \in \mathbb{Z}_{+}, 1 \leqslant i \leqslant n$.

Traditional (left) and new (right) spectra of the matrix:

$$
\begin{aligned}
& a=J_{3}\left(\lambda_{1}\right) \oplus \mathrm{J}_{4}\left(\lambda_{2}\right) \oplus \\
& \mathrm{J}_{2}\left(\lambda_{3}\right) \oplus \mathrm{J}_{1}\left(\lambda_{4}\right) .
\end{aligned}
$$

Theorem 12.2 (Spectral mapping). Let $\phi: \mathbb{D} \rightarrow \mathbb{D}$ be a holomorphic map, let us define $\left[\phi_{*} f\right](z)=f(\phi(z))$ and its prolongation $\phi_{*}^{(n)}$ onto the jet space \mathbb{J}^{n}. Its associated action $\rho_{1}^{\mathrm{k}} \phi_{*}^{(\mathfrak{n})}=\phi_{*}^{(\mathfrak{n})} \rho_{1}^{n}$ on the pairs (λ, k) is given by the formula:

$$
\phi_{*}^{(n)}(\lambda, k)=\left(\phi(\lambda),\left[\frac{k}{\operatorname{deg}_{\lambda} \phi}\right]\right),
$$

where $\operatorname{deg}_{\lambda} \phi$ denotes the degree of zero of the function $\phi(z)-\phi(\lambda)$ at the point $z=\lambda$ and $[x]$ denotes the integer part of x. Then
$\operatorname{sp} \phi(\mathrm{a})=\phi_{*}^{(\mathfrak{n})} \operatorname{sp} a \quad$ (which is actually known for Jordan blocks).

14 Calculus of Polynomially Bounded Operators in Bergman Spaces

Standard for a with $\mathrm{sp} a \in \overline{\mathbb{D}}$ and $\left\|\mathrm{a}^{k}\right\|<\mathrm{Ck}^{p}$ to consider power bounded ra , where $0<r<1$, and its H_{∞} calculus. A better regularisation, $a^{k} \rightarrow a^{k} / k^{p}$ rather than $a^{k} \rightarrow r^{k} a^{k}$, is achieved in the present framework (although algebra homomorphism is completely lost).

14 Calculus of Polynomially Bounded Operators in Bergman Spaces

Standard for a with $\mathrm{sp} \mathrm{a} \in \overline{\mathbb{D}}$ and $\left\|\mathrm{a}^{\mathrm{k}}\right\|<\mathrm{Ck}^{p}$ to consider power bounded ra , where $0<r<1$, and its H_{∞} calculus. A better regularisation, $a^{k} \rightarrow a^{k} / k^{p}$ rather than $a^{k} \rightarrow r^{k} a^{k}$, is achieved in the present framework (although algebra homomorphism is completely lost).
Since norm of $f(z)=\sum_{0}^{\infty} c_{k} z^{k}$ in B_{m} is equivalent to $\sum_{0}^{\infty} c_{k}^{2} / k^{m-1}$ for polynomially bounded a the resolvent $R(z, a)$ belongs to any B_{m} with $m>2(p+1)$. Define a representation of $S L_{2}(\mathbb{R})$ in $B_{m}(\mathbb{D} \times \mathbb{A}, M)$ by:

$$
\rho_{m}^{\prime}: f(u, a) \mapsto \frac{1}{(\bar{\beta} u+\alpha)^{m-1}(\alpha e-\beta a)} f\left(u, \frac{\bar{\alpha} a-\beta e}{\alpha e-\beta a}\right)
$$

14 Calculus of Polynomially Bounded Operators in Bergman Spaces

 Standard for a with $\mathrm{sp} \mathrm{a} \in \overline{\mathbb{D}}$ and $\left\|\mathrm{a}^{k}\right\|<\mathrm{Ck}^{p}$ to consider power bounded ra , where $0<r<1$, and its H_{∞} calculus. A better regularisation, $a^{k} \rightarrow a^{k} / k^{p}$ rather than $a^{k} \rightarrow r^{k} a^{k}$, is achieved in the present framework (although algebra homomorphism is completely lost).Since norm of $f(z)=\sum_{0}^{\infty} c_{k} z^{k}$ in B_{m} is equivalent to $\sum_{0}^{\infty} c_{k}^{2} / k^{m-1}$ for polynomially bounded a the resolvent $R(z, a)$ belongs to any B_{m} with $m>2(p+1)$. Define a representation of $S L_{2}(\mathbb{R})$ in $B_{m}(\mathbb{D} \times \mathbb{A}, M)$ by:

$$
\rho_{m}^{\prime}: f(u, a) \mapsto \frac{1}{(\bar{\beta} u+\alpha)^{m-1}(\alpha e-\beta a)} f\left(u, \frac{\bar{\alpha} a-\beta e}{\alpha e-\beta a}\right) .
$$

It is generated by the discrete series representation of $\mathrm{SL}_{2}(\mathbb{R})$ with the lowest weight m. For the vacuum vector $v_{0}(u, a) \equiv x$ in $B_{m}(\mathbb{D} \times \mathbb{A}, M)$, where $(x \in M)$, the corresponding functional calculus is given by the integral:

$$
f(g \cdot a)=\int_{\mathbb{D}} \frac{f(u)}{(\beta \bar{u}+\bar{\alpha})^{m-1}(\bar{\alpha} e-\bar{\beta} a)} \frac{d u}{\left(1-|u|^{2}\right)^{m-2}} .
$$

For Jordan k-blocks with $\left|\lambda_{i}\right|=1$ it is equivalent to k-prolongation of ρ_{m}^{\prime}.

15 Several Variables Spectral Theory

For a joint spectrum of n-tuple of operators we have many alternatives:

- Weyl functional calculus through the Heisenberg group \mathbb{H}^{n} acting in $\mathrm{L}_{2}\left(\mathbb{R}^{n}\right)$; or Segal-Bargmann type functional calculus through the \mathbb{H}^{n} acting in $\mathrm{L}_{2}\left(\mathbb{C}^{\mathrm{n}}\right)$;

15 Several Variables Spectral Theory

For a joint spectrum of n-tuple of operators we have many alternatives:

- Weyl functional calculus through the Heisenberg group \mathbb{H}^{n} acting in $L_{2}\left(\mathbb{R}^{n}\right)$; or Segal-Bargmann type functional calculus through the \mathbb{H}^{n} acting in $\mathrm{L}_{2}\left(\mathbb{C}^{\mathrm{n}}\right)$;
- several complex variables through groups of automorphisms of unit ball or polydisk in \mathbb{C}^{n}. However this is suitable mainly for commuting n-tuples;

15 Several Variables Spectral Theory

For a joint spectrum of n-tuple of operators we have many alternatives:

- Weyl functional calculus through the Heisenberg group \mathbb{H}^{n} acting in $L_{2}\left(\mathbb{R}^{n}\right)$; or Segal-Bargmann type functional calculus through the \mathbb{H}^{n} acting in $\mathrm{L}_{2}\left(\mathbb{C}^{\mathrm{n}}\right)$;
- several complex variables through groups of automorphisms of unit ball or polydisk in \mathbb{C}^{n}. However this is suitable mainly for commuting n-tuples;

Or the Clifford analysis through the Möbius group of conformal maps of \mathbb{C}^{n}. The Clifford algebra $\mathcal{C l}(n)$ is spanned by $1, e_{1}, e_{2}, \ldots, e_{n}$ with relations

$$
e_{k}^{2}=-1 \quad \text { and } \quad e_{k} e_{j}=-e_{j} e_{k} \quad \text { for } k \neq j .
$$

15 Several Variables Spectral Theory

For a joint spectrum of n-tuple of operators we have many alternatives:

- Weyl functional calculus through the Heisenberg group \mathbb{H}^{n} acting in $L_{2}\left(\mathbb{R}^{n}\right)$; or Segal-Bargmann type functional calculus through the \mathbb{H}^{n} acting in $\mathrm{L}_{2}\left(\mathbb{C}^{\mathrm{n}}\right)$;
- several complex variables through groups of automorphisms of unit ball or polydisk in \mathbb{C}^{n}. However this is suitable mainly for commuting n-tuples;

Or the Clifford analysis through the Möbius group of conformal maps of \mathbb{C}^{n}. The Clifford algebra $\mathcal{C l}(n)$ is spanned by $1, e_{1}, e_{2}, \ldots, e_{n}$ with relations

$$
e_{k}^{2}=-1 \quad \text { and } \quad e_{k} e_{j}=-e_{j} e_{k} \quad \text { for } k \neq j .
$$

Similarly to complex analysis we could derive a Cauchy kernel (cf. resolvent):
$R\left(A_{1}, A_{2}, \ldots, A_{n} ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=\left(\sum_{1}^{n} e_{k} A_{k}-\sum_{1}^{n} e_{k} \lambda_{k} I\right)^{-1}$ in $B(H) \otimes \operatorname{Cl}(n)$.

Example 15.1. Let $\mathrm{J}_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $\mathrm{J}_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ be the Pauli matrices. The Cauchy
kernel $\frac{-\lambda_{1}^{2}+\lambda_{2}^{2}+2 \lambda_{1} \lambda_{2} e_{1} e_{2}}{\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)^{2}}\left(\begin{array}{cc}\left(-1-\lambda_{1}\right) e_{1}-\lambda_{2} e_{2} & e_{2} \\ e_{2} & \left(1-\lambda_{1}\right) e_{1}-\lambda_{2} e_{2}\end{array}\right)$.
Clifford spectrum $\operatorname{sp}_{C}\left(\mathrm{~J}_{1}, \mathrm{~J}_{2}\right)=\{(0,0)\}$, Weyl spectrum $\operatorname{sp}_{w}\left(\mathrm{~J}_{1}, \mathrm{~J}_{2}\right)=\mathbb{D}$, Möbius spectrum sp ${ }_{M}\left(J_{1}, J_{2}\right)=\left\{\rho_{1}, \rho_{1}^{(1)}\right\}$.

