Covariant Functional Calculus and Spectrum Vladimir V. Kisil

1 The traditional approach to functional calculus (F.C.)

Definition 1.1. An analytic functional calculus for an element \mathfrak{a} of an algebra \mathfrak{A} is a *continuous linear* mapping Φ from an algebra of functions \mathcal{A} to \mathfrak{A} s.t.

- 1. Φ is a unital algebra homomorphism $\Phi(f \cdot g) = \Phi(f) \cdot \Phi(g)$.
- 2. There is the initialisation conditions: $\Phi[v_0] = a$ for $v_0(z) = z$.

Covariant Functional Calculus and Spectrum Vladimir V. Kisil

1 The traditional approach to functional calculus (F.C.)

Definition 1.1. An analytic functional calculus for an element \mathfrak{a} of an algebra \mathfrak{A} is a *continuous linear* mapping Φ from an algebra of functions \mathcal{A} to \mathfrak{A} s.t.

- 1. Φ is a unital algebra homomorphism $\Phi(f \cdot g) = \Phi(f) \cdot \Phi(g)$.
- 2. There is the initialisation conditions: $\Phi[\nu_0] = a$ for $\nu_0(z) = z$. **Definition 1.2.** A resolvent $R_a(\lambda) = (a - \lambda e)^{-1}$ of element $a \in \mathfrak{A}$ is the image under Φ of the Cauchy kernel $(z - \lambda)^{-1}$. Spectrum of $a \in \mathfrak{A}$ is the set **sp** a of all singular points of its resolvent $R_a(\lambda)$. **Spectral Mapping Theorem.** $f(\mathbf{sp} a) = \mathbf{sp} f(a)$ for an analytic function f.

Covariant Functional Calculus and Spectrum Vladimir V. Kisil

1 The traditional approach to functional calculus (F.C.)

Definition 1.1. An analytic functional calculus for an element \mathfrak{a} of an algebra \mathfrak{A} is a *continuous linear* mapping Φ from an algebra of functions \mathcal{A} to \mathfrak{A} s.t.

- 1. Φ is a unital algebra homomorphism $\Phi(f \cdot g) = \Phi(f) \cdot \Phi(g)$.
- 2. There is the initialisation conditions: $\Phi[v_0] = a$ for $v_0(z) = z$. **Definition 1.2.** A resolvent $R_a(\lambda) = (a - \lambda e)^{-1}$ of element $a \in \mathfrak{A}$ is the image under Φ of the Cauchy kernel $(z - \lambda)^{-1}$. Spectrum of $a \in \mathfrak{A}$ is the set sp a of all singular points of its resolvent $R_a(\lambda)$. **Spectral Mapping Theorem.** f(sp a) = sp f(a) *for an analytic function* f.

Limits of any F.C. based on an algebra homomorphism:

- 1. Domain A should be an algebra, i.e. no H_p , $p < \infty$ or Bergman spaces.
- 2. Range \mathfrak{A} is not smaller than an algebra generated by \mathfrak{a} , no refinement.

2 Complex Analysis and Functional Calculus from Groups

Analytic function theory in the unit disk \mathbb{D} is mainly a theory of the *discrete series* representation of $SL_2(\mathbb{R})$ group of 2×2 matrices:

$$\rho_{\mathfrak{m}}(\mathfrak{g}): \mathfrak{f}(z) \mapsto \frac{1}{(\alpha - \beta z)^{\mathfrak{m}}} \mathfrak{f}\left(\frac{\bar{\alpha}z - \bar{\beta}}{\alpha - \beta z}\right), \quad \mathfrak{g} = \begin{pmatrix} \bar{\alpha} & -\bar{\beta} \\ -\beta & \alpha \end{pmatrix} \in \mathrm{SL}_{2}(\mathbb{R}). \quad (2.1)$$

To get a definition of F.C. we replace of a *homomorphism property* by a *symmetric covariance*. One possible realisation discussed here is as follows.

2 Complex Analysis and Functional Calculus from Groups

Analytic function theory in the unit disk \mathbb{D} is mainly a theory of the *discrete* series representation of $SL_2(\mathbb{R})$ group of 2×2 matrices:

$$\rho_{\mathfrak{m}}(\mathfrak{g}): \mathfrak{f}(z) \mapsto \frac{1}{(\alpha - \beta z)^{\mathfrak{m}}} \mathfrak{f}\left(\frac{\bar{\alpha}z - \bar{\beta}}{\alpha - \beta z}\right), \quad \mathfrak{g} = \begin{pmatrix} \bar{\alpha} & -\bar{\beta} \\ -\beta & \alpha \end{pmatrix} \in \mathrm{SL}_{2}(\mathbb{R}). \quad (2.1)$$

To get a definition of F.C. we replace of a *homomorphism property* by a *symmetric covariance*. One possible realisation discussed here is as follows. **Definition 2.1.** An analytic functional calculus for an element $a \in \mathfrak{A}$ and an \mathfrak{A} -module M is a *continuous linear* mapping $\Phi : \mathcal{A}(\mathbb{D}) \to \mathcal{A}(\mathbb{D}, M)$ such that

1. Φ is an intertwining operator $\Phi \rho_1 = \rho_a \Phi$ between two representations of the SL₂(\mathbb{R}) group ρ_1 (2.1) and ρ_a , where $a \in \mathfrak{A}$ defined bellow.

2 Complex Analysis and Functional Calculus from Groups

Analytic function theory in the unit disk \mathbb{D} is mainly a theory of the *discrete* series representation of $SL_2(\mathbb{R})$ group of 2×2 matrices:

$$\rho_{\mathfrak{m}}(\mathfrak{g}): \mathfrak{f}(z) \mapsto \frac{1}{(\alpha - \beta z)^{\mathfrak{m}}} \mathfrak{f}\left(\frac{\bar{\alpha}z - \bar{\beta}}{\alpha - \beta z}\right), \quad \mathfrak{g} = \begin{pmatrix} \bar{\alpha} & -\bar{\beta} \\ -\beta & \alpha \end{pmatrix} \in \mathrm{SL}_{2}(\mathbb{R}). \quad (2.1)$$

To get a definition of F.C. we replace of a *homomorphism property* by a *symmetric covariance*. One possible realisation discussed here is as follows. **Definition 2.1.** An analytic functional calculus for an element $a \in \mathfrak{A}$ and an \mathfrak{A} -module M is a *continuous linear* mapping $\Phi : \mathcal{A}(\mathbb{D}) \to \mathcal{A}(\mathbb{D}, M)$ such that

- 1. Φ is an intertwining operator $\Phi \rho_1 = \rho_a \Phi$ between two representations of the SL₂(\mathbb{R}) group ρ_1 (2.1) and ρ_a , where $a \in \mathfrak{A}$ defined bellow.
- 2. There is an initialisation condition: $\Phi[v_0] = m$ for $v_0(z) \equiv 1$ and $m \in M$.

A corresponding spectrum of **a** is the support of the functional calculus Φ .

3 Elliptic, Parabolic, and Hyperbolic Function Theories

Analytic function theories are subject to the following general classification: <u>- 0 +</u> hyperbolic ↑ elliptic parabolic

We use representations of $SL_2(\mathbb{R})$ group in Clifford valued function spaces. Four dimensional Clifford algebras $\mathfrak{Cl}(\mathfrak{a})$ are spanned by 1, e_1 , e_2 , e_1e_2 s.t.:

$$e_1^2 = -1,$$
 $e_2^2 = \begin{cases} -1, \text{ for } \mathfrak{Cl}(e) - \text{elliptic case} \\ 0, \text{ for } \mathfrak{Cl}(p) - \text{parabolic case} \\ 1, \text{ for } \mathfrak{Cl}(h) - \text{hyperbolic case} \end{cases}$, $e_1e_2 = -e_2e_1.$

The subalgebra of $\mathfrak{Cl}(e)$ spanned by 1 and $\mathfrak{i} = e_1 e_2$ is isomorphic (replace!) \mathbb{C} . We identify \mathbb{R}^2 with the set of vectors $\mathfrak{u}e_1 + \nu e_2$ in all $\mathfrak{Cl}(\mathfrak{a})$, where $(\mathfrak{u}, \nu) \in \mathbb{R}^2$. $SL_2(\mathbb{R})$ consists of 2×2 matrices $\begin{pmatrix} \mathfrak{a} & \mathfrak{b} \\ \mathfrak{c} & \mathfrak{d} \end{pmatrix}$, with $\mathfrak{ad} - \mathfrak{bc} = 1$ and \mathfrak{a} , \mathfrak{b} , \mathfrak{c} , $\mathfrak{d} \in \mathbb{R}$.

4 Möbius Transformations of \mathbb{R}^2

The same multiplication in $SL_2(\mathbb{R})$ if we replace $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ by $\begin{pmatrix} a & -be_1 \\ ce_1 & d \end{pmatrix}$.

For all $\mathfrak{Cl}(\mathfrak{a})$ define the Möbius transformation of $\mathbb{R}^2 \to \mathbb{R}^2$ (!) by:

$$\begin{pmatrix} \mathfrak{a} & -\mathfrak{b}\mathfrak{e}_1 \\ \mathfrak{c}\mathfrak{e}_1 & \mathfrak{d} \end{pmatrix}: \mathfrak{u}\mathfrak{e}_1 + \mathfrak{v}\mathfrak{e}_2 \mapsto (\mathfrak{c}\mathfrak{e}_1(\mathfrak{u}\mathfrak{e}_1 + \mathfrak{v}\mathfrak{e}_2) + \mathfrak{d})^{-1}(\mathfrak{a}(\mathfrak{u}\mathfrak{e}_1 + \mathfrak{v}\mathfrak{e}_2) - \mathfrak{b}\mathfrak{e}_1).$$

4 Möbius Transformations of \mathbb{R}^2 The same multiplication in $SL_2(\mathbb{R})$ if we replace $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ by $\begin{pmatrix} a & -be_1 \\ ce_1 & d \end{pmatrix}$. For all $\mathcal{C}(\mathfrak{a})$ define the Möbius transformation of $\mathbb{R}^2 \to \mathbb{R}^2$ (!) by: $\begin{pmatrix} \mathfrak{a} & -\mathfrak{b}\mathfrak{e}_1 \\ \mathfrak{c}\mathfrak{e}_1 & \mathfrak{d} \end{pmatrix}: \mathfrak{u}\mathfrak{e}_1 + \mathfrak{v}\mathfrak{e}_2 \mapsto (\mathfrak{c}\mathfrak{e}_1(\mathfrak{u}\mathfrak{e}_1 + \mathfrak{v}\mathfrak{e}_2) + \mathfrak{d})^{-1}(\mathfrak{a}(\mathfrak{u}\mathfrak{e}_1 + \mathfrak{v}\mathfrak{e}_2) - \mathfrak{b}\mathfrak{e}_1).$ Product $\begin{pmatrix} a & -be_1 \\ ce_1 & d \end{pmatrix} = \begin{pmatrix} \tau & 0 \\ 0 & \tau^{-1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{x}e_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \phi & e_1 \sin \phi \\ e_1 \sin \phi & \cos \phi \end{pmatrix}$ gives Iwasawa $SL_2(\mathbb{R}) = ANK$. In all $Cl(\mathfrak{a})$ subgroups A and N acts uniformly: ЦÍ Na Aa

Vector fields are: $dK_e(u,v) = (1+u^2-v^2, 2uv)$ $dK_p(u,v) = (1+u^2, 2uv)$ $dK_h(u,v) = (1+u^2+v^2, 2uv)$

Figure 1: Depending from $e_2^2 = -1, 0, 1$ the action of subgroup K of $\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$ produces circles, parabolas and hyperbolas.

5 Cayley Transform and Unit "Circles"

The colour code of ANK match to the model, where subgroup is diagonalised. In elliptic case the standard Cayley transform diagonalise K:

$$\begin{pmatrix} \alpha & \bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} = \frac{1}{\sqrt{1 - |u|^2}} \begin{pmatrix} e^{i\omega} & 0 \\ 0 & e^{-i\omega} \end{pmatrix} \begin{pmatrix} 1 & \bar{u} \\ u & 1 \end{pmatrix}, \text{ with } \begin{array}{l} \omega = \arg \alpha \\ u = \beta \bar{\alpha}^{-1} \\ z \end{pmatrix}$$

and $|\mathbf{u}| < 1$ follows from $|\alpha|^2 - |\beta|^2 = 1$, using notation $\mathbf{i} = e_1 e_2$.

5 Cayley Transform and Unit "Circles"

The colour code of ANK match to the model, where subgroup is diagonalised. In elliptic case the standard Cayley transform diagonalise K: \uparrow_1

$$\begin{pmatrix} \alpha & \bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} = \frac{1}{\sqrt{1 - |u|^2}} \begin{pmatrix} e^{i\omega} & 0 \\ 0 & e^{-i\omega} \end{pmatrix} \begin{pmatrix} 1 & \bar{u} \\ u & 1 \end{pmatrix}, \text{ with } \begin{array}{l} \omega = \arg \alpha \\ u = \beta \bar{\alpha}^{-1} \end{array}$$

and $|\mathbf{u}| < 1$ follows from $|\alpha|^2 - |\beta|^2 = 1$, using notation $\mathbf{i} = e_1 e_2$. In hyperbolic case we analogously diagonalise A:

$$\begin{pmatrix} \mathsf{a} & \mathsf{b} \\ -\mathsf{b} & \mathsf{a} \end{pmatrix} = |\mathsf{a}| \begin{pmatrix} \frac{\mathsf{a}}{|\mathsf{a}|} & 0 \\ 0 & \frac{\mathsf{a}}{|\mathsf{a}|} \end{pmatrix} \begin{pmatrix} 1 & \mathsf{a}^{-1}\mathsf{b} \\ -\mathsf{a}^{-1}\mathsf{b} & 1 \end{pmatrix}$$

However we could not deduce $|a^{-1}b| < 1$ now!

Geometry: \mathbb{R}^2 is not split by the unit circle; **Analysis:** Hardy space is not a proper subset of L₂; **Physics:** Past and future could be reversed contly.

•

6 Cauchy and Bergman Integrals as Wavelet Transforms

In the elliptic case Möbius maps give UIR ρ_m from the discrete series of $SL_2(\mathbb{R})$ on Hardy $H_2(\mathbb{T})$ (=: $B_1(\mathbb{D})$) or Bergman $B_m(\mathbb{D})$, m = 2, 3, ... spaces: $g^{-1}: z \mapsto \frac{\bar{\alpha}z - \beta}{\alpha - \beta z}, \longrightarrow \rho_m(g): f(z) \mapsto \frac{1}{(\alpha - \beta z)^m} f\left(\frac{\bar{\alpha}z - \bar{\beta}}{\alpha - \beta z}\right)$ K-invariant vacuum vector $v_0(z) \equiv 1$ gives wavelets $v_m(g, z) = \rho_m(g)v_0(z)$ ess. depend only from $\bar{u} = \beta \alpha^{-1} \in \mathbb{D}$. Then $v_m(u, z) = (1 - \bar{u}z)^{-m}$ are the Cauchy and Bergman kernels. Thus the universally defined wavelet transforms $\mathcal{W}_{\mathfrak{m}}\mathfrak{f}(\mathfrak{u}) = \langle \mathfrak{f}(z), \rho_{\mathfrak{m}}\nu_0(\mathfrak{u}, z) \rangle$ are Cauchy and Bergman integrals: $\mathcal{W}_1 f(\mathfrak{u}) = \frac{1}{2\pi \mathfrak{i}} \int_{\mathbb{T}} f(z) \frac{1}{\mathfrak{u} - z} \, \mathrm{d}z, \qquad \mathcal{W}_m f(\mathfrak{u}) = \int_{\mathbb{D}} f(z) \frac{1}{(1 - \mathfrak{u}\overline{z})^m} \frac{\mathrm{d}z}{(1 - \mathfrak{u}\overline{z})^m}.$

6 Cauchy and Bergman Integrals as Wavelet Transforms

In the elliptic case Möbius maps give UIR ρ_m from the discrete series of $SL_2(\mathbb{R})$ on Hardy $H_2(\mathbb{T})$ (=: $B_1(\mathbb{D})$) or Bergman $B_m(\mathbb{D})$, m = 2, 3, ... spaces: $g^{-1}: z \mapsto \frac{\bar{\alpha}z - \beta}{\alpha - \beta z}, \longrightarrow \rho_m(g): f(z) \mapsto \frac{1}{(\alpha - \beta z)^m} f\left(\frac{\bar{\alpha}z - \beta}{\alpha - \beta z}\right)$ K-invariant vacuum vector $v_0(z) \equiv 1$ gives wavelets $v_m(g, z) = \rho_m(g)v_0(z)$ ess. depend only from $\bar{u} = \beta \alpha^{-1} \in \mathbb{D}$. Then $v_m(u, z) = (1 - \bar{u}z)^{-m}$ are the Cauchy and Bergman kernels. Thus the universally defined wavelet transforms $\mathcal{W}_{\mathfrak{m}}\mathfrak{f}(\mathfrak{u}) = \langle \mathfrak{f}(z), \rho_{\mathfrak{m}}\nu_0(\mathfrak{u}, z) \rangle$ are Cauchy and Bergman integrals: $\mathcal{W}_1 f(\mathfrak{u}) = \frac{1}{2\pi \mathfrak{i}} \int_{\mathbb{T}} f(z) \frac{1}{\mathfrak{u} - z} \, dz, \qquad \mathcal{W}_m f(\mathfrak{u}) = \int_{\mathbb{T}} f(z) \frac{1}{(1 - \mathfrak{u}\overline{z})^m} \frac{dz}{(1 - \mathfrak{u}\overline{z})^m}.$

In the hyperbolic case principal series UIR ρ_{σ} of $SL_2(\mathbb{R})$ produce similarly:

$$[\mathcal{W}_{\sigma}f](\mathsf{u}) = \left|1 + \mathsf{u}^{2}\right|^{1/2} e_{12} \int_{\mathbb{U}} \frac{(-\mathsf{u}e_{1}\mathsf{z}+1)^{\sigma}\mathsf{z}^{\sigma}}{(-e_{1}\mathsf{u}+\mathsf{z})^{1+\sigma}} \, \mathsf{d}\mathsf{z}\,\mathsf{f}(\mathsf{z}), \qquad \text{for } \sigma \in \mathbb{R},$$

where $z = e^{e_{12}t}$ and $dz = e_{12}e^{e_{12}t} dt$. Again vacuum vector $v_0(z) \equiv 1$ was taken to be A-covariant and wavelet transform is $W_{\sigma}f(u) = \langle f(z), \rho_{\sigma}v_0(u, z) \rangle$.

7 Cauchy-Riemann Equation from Invariant Fields

A $SL_2(\mathbb{R})$ -invariant first order diff.op., which annihilate the image of wavelet transform stands for Cauchy-Riemann operator. If $\rho(Y_j)$ is representation of Lie derivative A, N, K without named then C-R operator is given by:

 $D = \rho(Y_1)e_1 + \rho(Y_2)e_2$, and $\Delta = \rho(Y_1)^2e_1^2 + \rho(Y_1)^2e_2^2$, its square is the Laplace operator. In elliptic case K is deleted and we get invariant C-R and Laplace operators. In hyperbolic case subgroup A is deleted and formulae produce a type of Dirac and wave operators:

 $D = u_2(e_1\partial_1 + e_2\partial_2),$ and $\Delta = -u_2^2\partial_1^2 + (u_2\partial_2)^2$

7 Cauchy-Riemann Equation from Invariant Fields

A $SL_2(\mathbb{R})$ -invariant first order diff.op., which annihilate the image of wavelet transform stands for Cauchy-Riemann operator. If $\rho(Y_j)$ is representation of Lie derivative A, N, K without named then C-R operator is given by:

 $D = \rho(Y_1)e_1 + \rho(Y_2)e_2$, and $\Delta = \rho(Y_1)^2e_1^2 + \rho(Y_1)^2e_2^2$, its square is the Laplace operator. In elliptic case K is deleted and we get invariant C-R and Laplace operators. In hyperbolic case subgroup A is deleted and formulae produce a type of Dirac and wave operators:

 $D = u_2(e_1\partial_1 + e_2\partial_2),$ and $\Delta = -u_2^2\partial_1^2 + (u_2\partial_2)^2$

8 Taylor Expansion over Eigenfunctions

Vacuum vector v_0 is an eigenfunction of K or A. A wavelet is decomposable over the complete set of its eigenfunctions. The C-R operators kill half of them, only the other half is really needed. In the elliptic case eigenvectors of K are z^m , m = 0, 1, 2, ... and the decomposition is the Taylor series: $f(z) = \sum_{0}^{\infty} c_n z^n$. In the hyperbolic case eigenvectors of A are z^p , $p \in \mathbb{R}_+$ and a Taylor type expansion is given by the integral $f(z) = \int_0^{\infty} c(p) z^p dp$.

10 Representations of $SL_2(\mathbb{R})$ in Banach Algebras

Let $a \in \mathfrak{A}$ with sp $a \in \overline{\mathbb{D}}$ be fixed in a Banach algebra \mathfrak{A} with the unit *e*, then

$$g: a \mapsto g \cdot a = (\bar{\alpha}a - \bar{\beta}e)(\alpha e - \beta a)^{-1}, \qquad g \in SL_2(\mathbb{R})$$
 (10.1)

is a well defined $SL_2(\mathbb{R})$ action on a subset $\mathbb{A} = \{g \cdot a \mid g \in SL_2(\mathbb{R})\} \in \mathfrak{A}$, i.e. \mathbb{A} is a $SL_2(\mathbb{R})$ -homogeneous space. Define resolvent function $R(g, a) : \mathbb{A} \to \mathfrak{A}$:

 $R(g, a) = (\alpha e - \beta a)^{-1}$ then $R_1(g_1, a)R_1(g_2, g_1^{-1}a) = R_1(g_1g_2, a)$. (10.2)

10 Representations of $SL_2(\mathbb{R})$ in Banach Algebras

Let $a \in \mathfrak{A}$ with sp $a \in \overline{\mathbb{D}}$ be fixed in a Banach algebra \mathfrak{A} with the unit *e*, then $q: a \mapsto q \cdot a = (\bar{\alpha}a - \bar{\beta}e)(\alpha e - \beta a)^{-1}, \qquad g \in SL_2(\mathbb{R})$ (10.1)is a well defined $SL_2(\mathbb{R})$ action on a subset $\mathbb{A} = \{g \cdot a \mid g \in SL_2(\mathbb{R})\} \in \mathfrak{A}$, i.e. \mathbb{A} is a SL₂(\mathbb{R})-homogeneous space. Define resolvent function $R(g, a) : \mathbb{A} \to \mathfrak{A}$: $R(g, a) = (\alpha e - \beta a)^{-1}$ then $R_1(g_1, a)R_1(g_2, g_1^{-1}a) = R_1(g_1g_2, a)$. (10.2) We could linearise (10.1) in $C(\mathbb{A}, M)$, for a left \mathfrak{A} -module M (e.g. $M = \mathfrak{A}$): $\rho_{\mathfrak{a}}(\mathfrak{g}_{1}): \mathfrak{f}(\mathfrak{g}^{-1}\cdot\mathfrak{a}) \mapsto \mathsf{R}(\mathfrak{g}_{1}^{-1}\mathfrak{g}^{-1},\mathfrak{a})\mathfrak{f}(\mathfrak{g}_{1}^{-1}\mathfrak{g}^{-1}\cdot\mathfrak{a}) = (\alpha'e - \beta'\mathfrak{a})^{-1}\mathfrak{f}\left(\frac{\bar{\alpha}'\cdot\mathfrak{a} - \beta'e}{\alpha'e - \beta'\mathfrak{a}}\right).$ For any $x \in M$ a vacuum vector is $v_x(g^{-1} \cdot a) = x \otimes v_0(g^{-1} \cdot a) \in C(\mathbb{A}, M)$. The wavelet transform associated with v_{χ} is defined by the same formula: $\mathcal{W}_{m}f(g) = \langle f, \rho_{a}(g)\nu_{x} \rangle$ (an operator version of Cauchy or Bergman integral). It maps $L_2(\mathbb{A})$ to $C(SL_2(\mathbb{R}), M)$. The Riesz-Dunford calculus is given by $\Phi : f \mapsto W_1 f(0)$ for the choice $M = \mathfrak{A}$ and x = e.

Definition 11.1. Two holomorphic functions have nth order contact in a point if their value and their first n derivatives agree at that point. A point $(z, u^{(n)}) = (z, u, u_1, ..., u_n)$ of the jet space $\mathbb{J}^n \sim \mathbb{D} \times \mathbb{C}^n$ is the equivalence class of holomorphic functions having nth contact at the point *z*.

Definition 11.1. Two holomorphic functions have nth order contact in a point if their value and their first n derivatives agree at that point. A point $(z, u^{(n)}) = (z, u, u_1, ..., u_n)$ of the jet space $\mathbb{J}^n \sim \mathbb{D} \times \mathbb{C}^n$ is the equivalence class of holomorphic functions having nth contact at the point *z*.

For a fixed n each holomorphic function $f : \mathbb{D} \to \mathbb{C}$ has nth prolongation (or n-jet) $j_n f : \mathbb{D} \to \mathbb{C}^{n+1}$ defined as follows:

 $j_n f(z) = (f(z), f'(z), \dots, f^{(n)}(z)).$

Definition 11.1. Two holomorphic functions have nth order contact in a point if their value and their first n derivatives agree at that point. A point $(z, u^{(n)}) = (z, u, u_1, ..., u_n)$ of the jet space $\mathbb{J}^n \sim \mathbb{D} \times \mathbb{C}^n$ is the equivalence class of holomorphic functions having nth contact at the point *z*.

For a fixed n each holomorphic function $f : \mathbb{D} \to \mathbb{C}$ has nth prolongation (or n-jet) $j_n f : \mathbb{D} \to \mathbb{C}^{n+1}$ defined as follows:

 $j_n f(z) = (f(z), f'(z), \dots, f^{(n)}(z)).$

The representation ρ_m of the group $SL_2(\mathbb{R})$ in $B_m(\mathbb{D})$ could be prolonged to a representation $\rho_m^{(n)}$ of $SL_2(\mathbb{R})$ by a transformation of the jet space \mathbb{J}^n :

 $\rho_{\mathfrak{m}}^{(\mathfrak{n})}(\mathfrak{g}): (z,\mathfrak{u},\ldots,\mathfrak{u}_{\mathfrak{n}}) \mapsto (z(\mathfrak{g}),\mathfrak{u}(\mathfrak{g}),\ldots,\mathfrak{u}_{\mathfrak{n}}(\mathfrak{g})), \text{ where } z(\mathfrak{g}) = \frac{\alpha z - \beta}{-\beta z + \alpha},$

and $u_k(g)$ is the kth derivative of $\rho_m u$ at the point z(g). From the definition: j_n intertwines ρ_1 and $\rho_1^{(n)}$: $j_n \rho_1(g) = \rho_1^{(n)}(g) j_n$ for all $g \in SL_2(\mathbb{R})$.

Definition 11.1. Two holomorphic functions have nth order contact in a point if their value and their first n derivatives agree at that point. A point $(z, u^{(n)}) = (z, u, u_1, ..., u_n)$ of the jet space $\mathbb{J}^n \sim \mathbb{D} \times \mathbb{C}^n$ is the equivalence class of holomorphic functions having nth contact at the point *z*.

For a fixed n each holomorphic function $f : \mathbb{D} \to \mathbb{C}$ has nth prolongation (or n-jet) $j_n f : \mathbb{D} \to \mathbb{C}^{n+1}$ defined as follows:

 $j_n f(z) = (f(z), f'(z), \dots, f^{(n)}(z)).$

The representation ρ_m of the group $SL_2(\mathbb{R})$ in $B_m(\mathbb{D})$ could be prolonged to a representation $\rho_m^{(n)}$ of $SL_2(\mathbb{R})$ by a transformation of the jet space \mathbb{J}^n :

 $\rho_{\mathfrak{m}}^{(\mathfrak{n})}(\mathfrak{g}):(z,\mathfrak{u},\ldots,\mathfrak{u}_{\mathfrak{n}})\mapsto(z(\mathfrak{g}),\mathfrak{u}(\mathfrak{g}),\ldots,\mathfrak{u}_{\mathfrak{n}}(\mathfrak{g})),\quad\text{where }z(\mathfrak{g})=\frac{\bar{\alpha}z-\beta}{-\beta z+\alpha},$

and $u_k(g)$ is the kth derivative of $\rho_m u$ at the point z(g). From the definition: j_n intertwines ρ_1 and $\rho_1^{(n)}$: $j_n \rho_1(g) = \rho_1^{(n)}(g) j_n$ for all $g \in SL_2(\mathbb{R})$. **Proposition 11.2.** Let a is a Jordan block of a length k for $\lambda = 0$, and x be its root vector of order k, i.e. $a^{k-1}x \neq a^kx = 0$. Then $\rho_{a,m}$ on v_x is equivalent to ρ_m^k .

12 Spectrum and Spectral Mapping Theorem

Because of the transitive group of inner automorphisms, which could send any $\lambda \in \mathbb{D}$ to 0, we got the complete characterisation of $\rho_{\mathbf{a}}$ for matrices. **Proposition 12.1 (Jordan normal form).** Representation $\rho_{\mathbf{a}}$ is equivalent to a direct sum of the prolongations $\rho_{\mathbf{m}}^{(k)}$ of $\rho_{\mathbf{m}}$ in the kth jet space \mathbb{J}^k intertwined with inner automorphisms. Consequently the spectrum of \mathbf{a} (defined via the functional calculus $\Phi = W_{\mathbf{m}}$) consists of exactly \mathbf{n} pairs $(\lambda_i, k_i), \lambda_i \in \mathbb{D}, k_i \in \mathbb{Z}_+, 1 \leq i \leq \mathbf{n}$.

Traditional (left) and new (right) spectra of the matrix: $a = J_3 (\lambda_1) \oplus J_4 (\lambda_2) \oplus$ $J_2 (\lambda_3) \oplus J_1 (\lambda_4)$. **Theorem 12.2 (Spectral mapping).** Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic map, let us define $[\phi_* f](z) = f(\phi(z))$ and its prolongation $\phi_*^{(n)}$ onto the jet space \mathbb{J}^n . Its associated action $\rho_1^k \phi_*^{(n)} = \phi_*^{(n)} \rho_1^n$ on the pairs (λ, k) is given by the formula:

$$\phi_*^{(n)}(\lambda,k) = \left(\phi(\lambda), \left[\frac{k}{\deg_\lambda \phi}\right]\right),$$

where $\deg_{\lambda} \phi$ denotes the degree of zero of the function $\phi(z) - \phi(\lambda)$ at the point $z = \lambda$ and [x] denotes the integer part of x. Then $\operatorname{sp} \phi(\mathfrak{a}) = \phi_*^{(n)} \operatorname{sp} \mathfrak{a}$ (which is actually known for Jordan blocks).

14 Calculus of Polynomially Bounded Operators in Bergman Spaces Standard for a with sp $a \in \overline{\mathbb{D}}$ and $||a^k|| < Ck^p$ to consider power bounded ra, where 0 < r < 1, and its H_{∞} calculus. A *better regularisation*, $a^k \to a^k/k^p$ rather than $a^k \to r^k a^k$, is achieved in the present framework (although algebra homomorphism is completely lost). 14 Calculus of Polynomially Bounded Operators in Bergman Spaces Standard for a with sp $a \in \overline{\mathbb{D}}$ and $||a^k|| < Ck^p$ to consider power bounded ra, where 0 < r < 1, and its H_{∞} calculus. A *better regularisation*, $a^k \to a^k/k^p$ rather than $a^k \to r^k a^k$, is achieved in the present framework (although algebra homomorphism is completely lost). Since norm of $f(z) = \sum_{0}^{\infty} c_k z^k$ in B_m is equivalent to $\sum_{0}^{\infty} c_k^2/k^{m-1}$ for

polynomially bounded a the resolvent R(z, a) belongs to any B_m with m > 2(p + 1). Define a representation of $SL_2(\mathbb{R})$ in $B_m(\mathbb{D} \times \mathbb{A}, M)$ by:

$$\rho'_{\mathfrak{m}}: \mathfrak{f}(\mathfrak{u},\mathfrak{a}) \mapsto \frac{1}{(\bar{\beta}\mathfrak{u}+\alpha)^{\mathfrak{m}-1}(\alpha e - \beta \mathfrak{a})} \mathfrak{f}\left(\mathfrak{u}, \frac{\bar{\alpha}\mathfrak{a} - \beta e}{\alpha e - \beta \mathfrak{a}}\right).$$

14 Calculus of Polynomially Bounded Operators in Bergman Spaces Standard for a with sp $a \in \overline{\mathbb{D}}$ and $||a^k|| < Ck^p$ to consider power bounded ra, where 0 < r < 1, and its H_{∞} calculus. A *better regularisation*, $a^k \to a^k/k^p$ rather than $a^k \to r^k a^k$, is achieved in the present framework (although algebra homomorphism is completely lost). Since norm of $f(z) = \sum_{0}^{\infty} c_k z^k$ in B_m is equivalent to $\sum_{0}^{\infty} c_k^2/k^{m-1}$ for polynomially bounded a the resolvent R(z, a) belongs to any B_m with m > 2(p + 1). Define a representation of $SL_2(\mathbb{R})$ in $B_m(\mathbb{D} \times \mathbb{A}, M)$ by:

$$\rho'_{\mathfrak{m}}: \mathfrak{f}(\mathfrak{u},\mathfrak{a}) \mapsto \frac{1}{(\bar{\beta}\mathfrak{u}+\alpha)^{\mathfrak{m}-1}(\alpha e - \beta \mathfrak{a})} \mathfrak{f}\left(\mathfrak{u}, \frac{\bar{\alpha}\mathfrak{a} - \beta e}{\alpha e - \beta \mathfrak{a}}\right).$$

It is generated by the discrete series representation of $SL_2(\mathbb{R})$ with the lowest weight m. For the vacuum vector $v_0(u, a) \equiv x$ in $B_m(\mathbb{D} \times \mathbb{A}, M)$, where $(x \in M)$, the corresponding functional calculus is given by the integral:

$$f(g \cdot a) = \int_{\mathbb{D}} \frac{f(u)}{(\beta \bar{u} + \bar{\alpha})^{m-1}(\bar{\alpha} e - \bar{\beta} a)} \frac{du}{(1 - |u|^2)^{m-2}}.$$

For Jordan k-blocks with $|\lambda_i| = 1$ it is equivalent to k-prolongation of ρ'_m .

For a joint spectrum of n-tuple of operators we have many alternatives:

Weyl functional calculus through the Heisenberg group Hⁿ acting in L₂(Rⁿ); or Segal-Bargmann type functional calculus through the Hⁿ acting in L₂(Cⁿ);

For a joint spectrum of n-tuple of operators we have many alternatives:

- Weyl functional calculus through the Heisenberg group Hⁿ acting in L₂(Rⁿ); or Segal-Bargmann type functional calculus through the Hⁿ acting in L₂(Cⁿ);
- several complex variables through groups of automorphisms of unit ball or polydisk in Cⁿ. However this is suitable mainly for commuting n-tuples;

For a joint spectrum of n-tuple of operators we have many alternatives:

- Weyl functional calculus through the Heisenberg group Hⁿ acting in L₂(Rⁿ); or Segal-Bargmann type functional calculus through the Hⁿ acting in L₂(Cⁿ);
- several complex variables through groups of automorphisms of unit ball or polydisk in Cⁿ. However this is suitable mainly for commuting n-tuples;

Or the Clifford analysis through the Möbius group of conformal maps of \mathbb{C}^n . The Clifford algebra $\mathfrak{C}(n)$ is spanned by 1, e_1, e_2, \ldots, e_n with relations $e_k^2 = -1$ and $e_k e_i = -e_i e_k$ for $k \neq j$.

For a joint spectrum of n-tuple of operators we have many alternatives:

- Weyl functional calculus through the Heisenberg group Hⁿ acting in L₂(Rⁿ); or Segal-Bargmann type functional calculus through the Hⁿ acting in L₂(Cⁿ);
- several complex variables through groups of automorphisms of unit ball or polydisk in Cⁿ. However this is suitable mainly for commuting n-tuples;

Or the Clifford analysis through the Möbius group of conformal maps of \mathbb{C}^n . The Clifford algebra $\mathfrak{C}(n)$ is spanned by 1, e_1, e_2, \ldots, e_n with relations $e_k^2 = -1$ and $e_k e_j = -e_j e_k$ for $k \neq j$.

Similarly to complex analysis we could derive a Cauchy kernel (cf. resolvent):

$$\mathsf{R}(\mathsf{A}_1,\mathsf{A}_2,\ldots,\mathsf{A}_n;\lambda_1,\lambda_2,\ldots,\lambda_n) = \left(\sum_{1}^n e_k \mathsf{A}_k - \sum_{1}^n e_k \lambda_k I\right)^{-1} \text{ in } \mathsf{B}(\mathsf{H}) \otimes \mathfrak{Cl}(\mathsf{n}).$$

Example 15.1. Let $J_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $J_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ be the Pauli matrices. The Cauchy kernel $\frac{-\lambda_1^2 + \lambda_2^2 + 2\lambda_1\lambda_2e_1e_2}{(\lambda_1^2 + \lambda_2^2)^2} \begin{pmatrix} (-1 - \lambda_1)e_1 - \lambda_2e_2 & e_2 \\ e_2 & (1 - \lambda_1)e_1 - \lambda_2e_2 \end{pmatrix}$. Clifford spectrum sp $_C(J_1, J_2) = \{(0, 0)\}$, Weyl spectrum sp $_W(J_1, J_2) = \mathbb{D}$, Möbius spectrum sp $_M(J_1, J_2) = \{\rho_1, \rho_1^{(1)}\}$.