
Covariant Functional Calculus and Spectrum
Vladimir V. Kisil

1 The traditional approach to functional calculus (F.C.)

Definition 1.1. An analytic functional calculus for an element a of an algebra
A is a continuous linear mapping Φ from an algebra of functions A to A s.t.

1. Φ is a unital algebra homomorphism Φ(f · g) = Φ(f) ·Φ(g).

2. There is the initialisation conditions: Φ[v0] = a for v0(z) = z.
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Definition 1.1. An analytic functional calculus for an element a of an algebra
A is a continuous linear mapping Φ from an algebra of functions A to A s.t.

1. Φ is a unital algebra homomorphism Φ(f · g) = Φ(f) ·Φ(g).

2. There is the initialisation conditions: Φ[v0] = a for v0(z) = z.
Definition 1.2. A resolvent Ra(λ) = (a − λe)−1 of element a ∈ A is the image
under Φ of the Cauchy kernel (z − λ)−1.
Spectrum of a ∈ A is the set spa of all singular points of its resolvent Ra(λ).
Spectral Mapping Theorem. f(spa) = sp f(a) for an analytic function f.
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Definition 1.1. An analytic functional calculus for an element a of an algebra
A is a continuous linear mapping Φ from an algebra of functions A to A s.t.

1. Φ is a unital algebra homomorphism Φ(f · g) = Φ(f) ·Φ(g).

2. There is the initialisation conditions: Φ[v0] = a for v0(z) = z.
Definition 1.2. A resolvent Ra(λ) = (a − λe)−1 of element a ∈ A is the image
under Φ of the Cauchy kernel (z − λ)−1.
Spectrum of a ∈ A is the set spa of all singular points of its resolvent Ra(λ).
Spectral Mapping Theorem. f(spa) = sp f(a) for an analytic function f.

Limits of any F.C. based on an algebra homomorphism:

1. Domain A should be an algebra, i.e. no Hp, p < ∞ or Bergman spaces.

2. Range A is not smaller than an algebra generated by a, no refinement.
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2 Complex Analysis and Functional Calculus from Groups

Analytic function theory in the unit disk D is mainly a theory of the discrete
series representation of SL2(R) group of 2× 2 matrices:

ρm(g) : f(z) 7→ 1
(α − βz)m

f

(
ᾱz − β̄

α − βz

)
, g =

(
ᾱ −β̄

−β α

)
∈ SL2(R). (2.1)

To get a definition of F.C. we replace of a homomorphism property by a
symmetric covariance. One possible realisation discussed here is as follows.
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(
ᾱ −β̄

−β α

)
∈ SL2(R). (2.1)

To get a definition of F.C. we replace of a homomorphism property by a
symmetric covariance. One possible realisation discussed here is as follows.
Definition 2.1. An analytic functional calculus for an element a ∈ A and an
A-module M is a continuous linear mapping Φ : A(D) → A(D, M) such that

1. Φ is an intertwining operator Φρ1 = ρaΦ between two representations of
the SL2(R) group ρ1 (2.1) and ρa, where a ∈ A defined bellow.
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To get a definition of F.C. we replace of a homomorphism property by a
symmetric covariance. One possible realisation discussed here is as follows.
Definition 2.1. An analytic functional calculus for an element a ∈ A and an
A-module M is a continuous linear mapping Φ : A(D) → A(D, M) such that

1. Φ is an intertwining operator Φρ1 = ρaΦ between two representations of
the SL2(R) group ρ1 (2.1) and ρa, where a ∈ A defined bellow.

2. There is an initialisation condition: Φ[v0] = m for v0(z) ≡ 1 and m ∈ M.

A corresponding spectrum of a is the support of the functional calculus Φ.
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3 Elliptic, Parabolic, and Hyperbolic Function Theories

Analytic function theories are subject to the following general classification:
+− 0

↑

parabolic
elliptichyperbolic

We use representations of SL2(R) group in Clifford valued function spaces.
Four dimensional Clifford algebras C̀ (a) are spanned by 1, e1, e2, e1e2 s.t.:

e2
1 = −1, e2

2 =





−1, for C̀ (e)—elliptic case
0, for C̀ (p)—parabolic case
1, for C̀ (h)—hyperbolic case

, e1e2 = −e2e1.

The subalgebra of C̀ (e) spanned by 1 and i = e1e2 is isomorphic (replace!) C.
We identify R2 with the set of vectors ue1 + ve2 in all C̀ (a), where (u, v) ∈ R2.

SL2(R) consists of 2× 2 matrices

(
a b

c d

)
, with ad−bc = 1 and a, b, c, d ∈ R.
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4 Möbius Transformations of R2

The same multiplication in SL2(R) if we replace

(
a b

c d

)
by

(
a −be1

ce1 d

)
.

For all C̀ (a) define the Möbius transformation of R2 → R2 (!) by:
(

a −be1

ce1 d

)
: ue1 + ve2 7→ (ce1(ue1 + ve2) + d)−1(a(ue1 + ve2) − be1).
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4 Möbius Transformations of R2

The same multiplication in SL2(R) if we replace

(
a b

c d

)
by

(
a −be1

ce1 d

)
.

For all C̀ (a) define the Möbius transformation of R2 → R2 (!) by:
(

a −be1

ce1 d

)
: ue1 + ve2 7→ (ce1(ue1 + ve2) + d)−1(a(ue1 + ve2) − be1).

Product

(
a −be1

ce1 d

)
=

(
τ 0
0 τ−1

)(
1 xe1

0 1

)(
cosφ e1 sinφ

e1 sinφ cosφ

)
gives

Iwasawa SL2(R) = ANK. In all C̀ (a) subgroups A and N acts uniformly:

1 U

1

V

Na 1 U

1

V

Aa
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1 U

1

V

Ke 1 U

1

V

Kp

1 U

1

V

Kh

Vector fields are:
dKe(u, v) = (1 + u2 − v2, 2uv)

dKp(u, v) = (1 + u2, 2uv)

dKh(u, v) = (1 + u2 + v2, 2uv)

Figure 1: Depending from e2
2 = −1, 0, 1 the action of subgroup K of(

cosφ − sinφ

sinφ cosφ

)
produces circles, parabolas and hyperbolas.
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5 Cayley Transform and Unit “Circles”
The colour code of ANK match to the model, where subgroup is diagonalised.

In elliptic case the standard Cayley transform diagonalise K:
(

α β̄

β ᾱ

)
=

1√
1 − |u|

2

(
eiω 0
0 e−iω

)(
1 ū

u 1

)
, with

ω = arg α,
u = βᾱ−1,

and |u| < 1 follows from |α|
2 − |β|

2 = 1, using notation i = e1e2.

1

1
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=
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(
eiω 0
0 e−iω

)(
1 ū

u 1

)
, with

ω = arg α,
u = βᾱ−1,

and |u| < 1 follows from |α|
2 − |β|

2 = 1, using notation i = e1e2.

1

1

In hyperbolic case we analogously diagonalise A:
(

a b

−b a

)
= |a|

(
a
|a| 0
0 a

|a|

)(
1 a−1b

−a−1b 1

)
.

However we could not deduce
∣∣a−1b

∣∣ < 1 now!

Geometry: R2 is not split by the unit circle;

Analysis: Hardy space is not a proper subset of L2;

Physics: Past and future could be reversed contly. C

E
′

A
′

D
′

C
′

B
′

A
′′

D
′′

C
′′

E
′′

A

B

1

1
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6 Cauchy and Bergman Integrals as Wavelet Transforms

In the elliptic case Möbius maps give UIR ρm from the discrete series of
SL2(R) on Hardy H2(T) (=: B1(D)) or Bergman Bm(D), m = 2, 3, . . . spaces:

g−1 : z 7→ ᾱz − β̄

α − βz
, −→ ρm(g) : f(z) 7→ 1

(α − βz)m
f

(
ᾱz − β̄

α − βz

)

K-invariant vacuum vector v0(z) ≡ 1 gives wavelets vm(g, z) = ρm(g)v0(z)

ess. depend only from ū = βα−1 ∈ D. Then vm(u, z) = (1 − ūz)−m are the
Cauchy and Bergman kernels. Thus the universally defined wavelet
transforms Wmf(u) = 〈f(z), ρmv0(u, z)〉 are Cauchy and Bergman integrals:

W1f(u) =
1

2πi

∫

T
f(z)

1
u − z

dz, Wmf(u) =

∫

D
f(z)

1
(1 − uz̄)m

dz

(1 − |z|
2)m−1

.
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In the hyperbolic case principal series UIR ρσ of SL2(R) produce similarly:

[Wσf](u) =
∣∣1 + u2

∣∣1/2
e12

∫

U

(−ue1z + 1)σzσ

(−e1u + z)1+σ
dz f(z), for σ ∈ R,

where z = ee12t and dz = e12e
e12t dt. Again vacuum vector v0(z) ≡ 1 was

taken to be A-covariant and wavelet transform is Wσf(u) = 〈f(z), ρσv0(u, z)〉.
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7 Cauchy-Riemann Equation from Invariant Fields
A SL2(R)-invariant first order diff.op., which annihilate the image of wavelet
transform stands for Cauchy-Riemann operator. If ρ(Yj) is representation of
Lie derivative A, N, K without named then C-R operator is given by:

D = ρ(Y1)e1 + ρ(Y2)e2, and ∆ = ρ(Y1)
2e2

1 + ρ(Y1)
2e2

2,
its square is the Laplace operator. In elliptic case K is deleted and we get
invariant C-R and Laplace operators. In hyperbolic case subgroup A is
deleted and formulae produce a type of Dirac and wave operators:

D = u2(e1∂1 + e2∂2), and ∆ = −u2
2∂

2
1 + (u2∂2)

2
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8 Taylor Expansion over Eigenfunctions
Vacuum vector v0 is an eigenfunction of K or A. A wavelet is decomposable
over the complete set of its eigenfunctions. The C-R operators kill half of
them, only the other half is really needed. In the elliptic case eigenvectors of
K are zm, m = 0, 1, 2, . . . and the decomposition is the Taylor series:
f(z) =

∑∞
0 cnzn. In the hyperbolic case eigenvectors of A are zp, p ∈ R+ and

a Taylor type expansion is given by the integral f(z) =
∫∞

0 c(p)zp dp.
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10 Representations of SL2(R) in Banach Algebras

Let a ∈ A with spa ∈ D̄ be fixed in a Banach algebra A with the unit e, then

g : a 7→ g · a = (ᾱa − β̄e)(αe − βa)−1, g ∈ SL2(R) (10.1)

is a well defined SL2(R) action on a subset A = {g · a | g ∈ SL2(R)} ∈ A, i.e. A
is a SL2(R)-homogeneous space. Define resolvent function R(g, a) : A → A:

R(g, a) = (αe − βa)−1 then R1(g1, a)R1(g2, g−1
1 a) = R1(g1g2, a). (10.2)
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Let a ∈ A with spa ∈ D̄ be fixed in a Banach algebra A with the unit e, then

g : a 7→ g · a = (ᾱa − β̄e)(αe − βa)−1, g ∈ SL2(R) (10.1)

is a well defined SL2(R) action on a subset A = {g · a | g ∈ SL2(R)} ∈ A, i.e. A
is a SL2(R)-homogeneous space. Define resolvent function R(g, a) : A → A:

R(g, a) = (αe − βa)−1 then R1(g1, a)R1(g2, g−1
1 a) = R1(g1g2, a). (10.2)

We could linearise (10.1) in C(A,M), for a left A-module M (e.g. M = A):

ρa(g1) : f(g−1·a) 7→ R(g−1
1 g−1, a)f(g−1

1 g−1·a) = (α ′e−β ′a)−1 f

(
ᾱ ′ · a − β̄ ′e
α ′e − β ′a

)
.

For any x ∈ M a vacuum vector is vx(g−1 · a) = x⊗ v0(g
−1 · a) ∈ C(A, M).

The wavelet transform associated with vx is defined by the same formula:

Wmf(g) = 〈f, ρa(g)vx〉 (an operator version of Cauchy or Bergman integral).
It maps L2(A) to C(SL2(R),M). The Riesz-Dunford calculus is given by

Φ : f 7→ W1f(0) for the choice M = A and x = e.
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11 Jet Bundles and Prolongation of ρ1

Definition 11.1. Two holomorphic functions have nth order contact in a
point if their value and their first n derivatives agree at that point.
A point (z,u(n)) = (z,u, u1, . . . ,un) of the jet space Jn ∼ D × Cn is the
equivalence class of holomorphic functions having nth contact at the point z.
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Definition 11.1. Two holomorphic functions have nth order contact in a
point if their value and their first n derivatives agree at that point.
A point (z,u(n)) = (z,u, u1, . . . ,un) of the jet space Jn ∼ D × Cn is the
equivalence class of holomorphic functions having nth contact at the point z.

For a fixed n each holomorphic function f : D → C has nth prolongation (or
n-jet) jnf : D → Cn+1 defined as follows:

jnf(z) = (f(z), f ′(z), . . . , f(n)(z)).

27



11 Jet Bundles and Prolongation of ρ1

Definition 11.1. Two holomorphic functions have nth order contact in a
point if their value and their first n derivatives agree at that point.
A point (z,u(n)) = (z,u, u1, . . . ,un) of the jet space Jn ∼ D × Cn is the
equivalence class of holomorphic functions having nth contact at the point z.

For a fixed n each holomorphic function f : D → C has nth prolongation (or
n-jet) jnf : D → Cn+1 defined as follows:

jnf(z) = (f(z), f ′(z), . . . , f(n)(z)).

The representation ρm of the group SL2(R) in Bm(D) could be prolonged to a
representation ρ

(n)
m of SL2(R) by a transformation of the jet space Jn:

ρ
(n)
m (g) : (z, u, . . . , un) 7→ (z(g), u(g), . . . ,un(g)), where z(g) =

ᾱz − β̄

−βz + α
,

and uk(g) is the kth derivative of ρmu at the point z(g). From the definition:
jn intertwines ρ1 and ρ

(n)
1 : jnρ1(g) = ρ

(n)
1 (g)jn for all g ∈ SL2(R).
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n-jet) jnf : D → Cn+1 defined as follows:

jnf(z) = (f(z), f ′(z), . . . , f(n)(z)).
The representation ρm of the group SL2(R) in Bm(D) could be prolonged to a
representation ρ

(n)
m of SL2(R) by a transformation of the jet space Jn:

ρ
(n)
m (g) : (z, u, . . . , un) 7→ (z(g), u(g), . . . ,un(g)), where z(g) =

ᾱz − β̄

−βz + α
,

and uk(g) is the kth derivative of ρmu at the point z(g). From the definition:
jn intertwines ρ1 and ρ

(n)
1 : jnρ1(g) = ρ

(n)
1 (g)jn for all g ∈ SL2(R).

Proposition 11.2. Let a is a Jordan block of a length k for λ = 0, and x be its root
vector of order k, i.e. ak−1x 6= akx = 0. Then ρa,m on vx is equivalent to ρk

m.

29



12 Spectrum and Spectral Mapping Theorem

Because of the transitive group of inner automorphisms, which could send
any λ ∈ D to 0, we got the complete characterisation of ρa for matrices.
Proposition 12.1 (Jordan normal form). Representation ρa is equivalent to a
direct sum of the prolongations ρ

(k)
m of ρm in the kth jet space Jk intertwined with

inner automorphisms. Consequently the spectrum of a (defined via the functional
calculus Φ = Wm) consists of exactly n pairs (λi,ki), λi ∈ D, ki ∈ Z+, 1 6 i 6 n.

X

Y

λ1

λ2

λ3

λ4
X

Y

λ1
λ2

λ3

λ4

Z Traditional (left) and
new (right) spectra of
the matrix:
a = J3 (λ1)⊕ J4 (λ2)⊕
J2 (λ3)⊕ J1 (λ4) .
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Theorem 12.2 (Spectral mapping). Let φ : D → D be a holomorphic map, let us
define [φ∗f](z) = f(φ(z)) and its prolongation φ

(n)
∗ onto the jet space Jn. Its

associated action ρk
1 φ

(n)
∗ = φ

(n)
∗ ρn

1 on the pairs (λ,k) is given by the formula:

φ
(n)
∗ (λ,k) =

(
φ(λ),

[
k

degλ φ

])
,

where degλ φ denotes the degree of zero of the function φ(z) − φ(λ) at the point
z = λ and [x] denotes the integer part of x. Then

spφ(a) = φ
(n)
∗ sp a (which is actually known for Jordan blocks).

X

Y

λ1

λ2

λ3

λ4
X

Y

λ1
λ2

λ3

λ4

Z

X

Y

λ1
λ2

λ3

λ4

Z
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14 Calculus of Polynomially Bounded Operators in Bergman Spaces
Standard for a with spa ∈ D̄ and

∥∥ak
∥∥ < Ckp to consider power bounded ra,

where 0 < r < 1, and its H∞ calculus. A better regularisation, ak → ak/kp

rather than ak → rkak, is achieved in the present framework (although
algebra homomorphism is completely lost).

33



14 Calculus of Polynomially Bounded Operators in Bergman Spaces
Standard for a with spa ∈ D̄ and

∥∥ak
∥∥ < Ckp to consider power bounded ra,

where 0 < r < 1, and its H∞ calculus. A better regularisation, ak → ak/kp

rather than ak → rkak, is achieved in the present framework (although
algebra homomorphism is completely lost).
Since norm of f(z) =

∑∞
0 ckzk in Bm is equivalent to

∑∞
0 c2

k/km−1 for
polynomially bounded a the resolvent R(z, a) belongs to any Bm with
m > 2(p + 1). Define a representation of SL2(R) in Bm(D × A, M) by:

ρ ′m : f(u, a) 7→ 1
(β̄u + α)m−1(αe − βa)

f

(
u,

ᾱa − βe

αe − βa

)
.
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0 ckzk in Bm is equivalent to

∑∞
0 c2

k/km−1 for
polynomially bounded a the resolvent R(z, a) belongs to any Bm with
m > 2(p + 1). Define a representation of SL2(R) in Bm(D × A, M) by:

ρ ′m : f(u, a) 7→ 1
(β̄u + α)m−1(αe − βa)

f

(
u,

ᾱa − βe

αe − βa

)
.

It is generated by the discrete series representation of SL2(R) with the lowest
weight m. For the vacuum vector v0(u,a) ≡ x in Bm(D × A,M), where
(x ∈ M), the corresponding functional calculus is given by the integral:

f(g · a) =

∫

D

f(u)

(βū + ᾱ)m−1(ᾱe − β̄a)

du

(1 − |u|
2)m−2

.

For Jordan k-blocks with |λi| = 1 it is equivalent to k-prolongation of ρ ′m.
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15 Several Variables Spectral Theory

For a joint spectrum of n-tuple of operators we have many alternatives:

• Weyl functional calculus through the Heisenberg group Hn acting in
L2(Rn); or Segal-Bargmann type functional calculus through the Hn

acting in L2(Cn);
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15 Several Variables Spectral Theory

For a joint spectrum of n-tuple of operators we have many alternatives:

• Weyl functional calculus through the Heisenberg group Hn acting in
L2(Rn); or Segal-Bargmann type functional calculus through the Hn

acting in L2(Cn);

• several complex variables through groups of automorphisms of unit ball
or polydisk in Cn. However this is suitable mainly for commuting
n-tuples;

Or the Clifford analysis through the Möbius group of conformal maps of Cn.
The Clifford algebra C̀ (n) is spanned by 1, e1, e2, . . . , en with relations

e2
k = −1 and ekej = −ejek for k 6= j.

Similarly to complex analysis we could derive a Cauchy kernel (cf. resolvent):

R(A1,A2, . . . , An; λ1, λ2, . . . , λn) =
(∑n

1 ekAk −
∑n

1 ekλkI
)−1

in B(H)⊗ C̀ (n).
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Example 15.1. Let J1 =

(
1 0
0 −1

)
and J2 =

(
0 1
1 0

)
be the Pauli matrices. The

Cauchy

kernel
−λ2

1 + λ2
2 + 2λ1λ2e1e2

(λ2
1 + λ2

2)
2

(
(−1 − λ1)e1 − λ2e2 e2

e2 (1 − λ1)e1 − λ2e2

)
.

Clifford spectrum sp C(J1, J2) = {(0, 0)}, Weyl spectrum sp W(J1, J2) = D,
Möbius spectrum sp M(J1, J2) = {ρ1, ρ

(1)
1 }.
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