Geometry and Analysis of the Faddeev model

Lev Kapitanski
University of Miami
Coral Gables, Forida

Durham, August 6, 2005
L. Kapitanski. On Skyrme's model, in: Nonlinear Problems in Mathematical Physics and Related Topics II: In Honor of Professor O. A. Ladyzhenskaya, Birman et al., eds. Kluwer, 2002, pp.229-242
D. Auckly, L. Kapitanski. Holonomy and Skyrme's model, Comm. Math. Phys., 240, 97-122 (2003)
D. Auckly, L. Kapitanski. S^{2} - valued maps and Faddeev's model, to appear in: Comm. Math. Phys.

L. D. Faddeev: 1975

particles - spatially localized solutions of PDEs with enough bells and whistles (charge, etc.)

+ have internal knotted structure
motivation: Skyrme's model (1961):
particles - spatially localized solutions of PDEs with enough bells and whistles
(Lord Kelvin's "vortex atoms", 1867)

In the original Skyrme model:
fields are maps $\mathbb{R}^{3} \rightarrow S^{3}$ with $\{|x|=\infty\} \mapsto \mathbf{1}$
homotopy classes of such maps are classified by degree (called "topological charge", "baryon number", etc. - "bells and whistles")

$S^{3} \simeq S U(2) \simeq$ unit quaternions

$$
\begin{gathered}
u=\left(\begin{array}{cc}
z_{1} & z_{2} \\
-\overline{z_{2}} & \frac{z_{1}}{1}
\end{array} \quad\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right. \\
z_{1}=u_{0}+u_{1} \mathbf{i}, \quad z_{2}=u_{2}+u_{3} \mathbf{i} \\
u=u_{0}+u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k} \\
u^{-1}=u^{*}=u_{0}-u_{1} \mathbf{i}-u_{2} \mathbf{j}-u_{3} \mathbf{k}
\end{gathered}
$$

$\mathbb{R}^{3} \simeq s u(2) \simeq$ purely imaginary quaternions

$$
\begin{gathered}
a=\left(\begin{array}{cc}
a_{1} \mathbf{i} & a_{2}+a_{3} \mathbf{i} \\
-a_{2}+a_{3} \mathbf{i} & -a_{1} \mathbf{i}
\end{array}\right) \\
a=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
\end{gathered}
$$

$$
\langle a, b\rangle=\vec{a} \cdot \vec{b}=-\frac{1}{2} \operatorname{Trace}(a b)=\operatorname{Re}\left(a b^{*}\right)
$$

Skyrme: $u: \mathbb{R}^{3} \rightarrow S^{3} \subset \mathbb{R}^{4}$

Skyrme energy (static Hamiltonian):

$$
E(u)=\int_{\mathbb{R}^{3}} \frac{1}{2}|d u|^{2}+\frac{1}{4}|d u \wedge d u|^{2} \quad d x
$$

Topological charge:

$$
Q(u)=c \int_{\mathbb{R}^{3}} \sum \epsilon_{\alpha \beta \gamma \delta} u^{\alpha} \frac{\partial\left(u^{\beta}, u^{\gamma}, u^{\delta}\right)}{\partial\left(x^{1}, x^{2}, x^{3}\right)} d^{3} x
$$

Skyrme: $u: \mathbb{R}^{3} \rightarrow S U(2) \quad a=u^{-1} d u$

- su(2)-valued 1-form - flat connection - pullback of the Maurer-Cartan form $g^{-1} d g$

Skyrme energy (static Hamiltonian):

$$
\begin{gathered}
E(u)=\int_{\mathbb{R}^{3}} \frac{1}{2}\left|u^{-1} d u\right|^{2}+\frac{1}{4}\left|u^{-1} d u \wedge u^{-1} d u\right|^{2} \\
E[a]=\int_{\mathbb{R}^{3}} \frac{1}{2}|a|^{2}+\frac{1}{16}|[a, a]|^{2}
\end{gathered}
$$

Topological charge:
$Q(u)=\frac{1}{24 \pi^{2}} \int_{\mathbb{R}^{3}} \operatorname{Tr}\left(u^{-1} d u \wedge u^{-1} d u \wedge u^{-1} d u\right)$
$Q[a]=c \int_{\mathbb{R}^{3}}\langle a,[a, a]\rangle$

$$
E[a] \geq \text { const }|Q[a]|
$$

In the original Faddeev model:
fields are maps $\mathrm{n}: \mathbb{R}^{3} \rightarrow S^{2} \subset \mathbb{R}^{3}$
with $\{|x|=\infty\} \mapsto$ pole
homotopy classes of such maps are classified by the Hopf invariant (called "topological charge", "linking number", etc.)

Hopf invariant

Faddeev fields: $\mathbf{n}: \mathbb{R}^{3} \rightarrow S^{2} \subset \mathbb{R}^{3}$
$\mathbf{n}(x)=\left(n^{1}(x), n^{2}(x), n^{3}(x)\right) \quad|\mathbf{n}(x)|=1$
Faddeev energy: $E(\mathbf{n})=\int_{\mathbb{R}^{3}}|d \mathbf{n}|^{2}+|d \mathbf{n} \wedge d \mathbf{n}|^{2}$
$|d \mathbf{n}|^{2}=\frac{\partial n^{a}}{\partial x^{k}} \frac{\partial n^{a}}{\partial x^{k}}$
$|d \mathbf{n} \wedge d \mathbf{n}|^{2}=\sum_{i, j}\left|\frac{\partial \vec{n}}{\partial x^{i}} \times \frac{\partial \vec{n}}{\partial x^{j}}\right|^{2}=\sum_{i, j}\left(\vec{n}, \frac{\partial \vec{n}}{\partial x^{i}}, \frac{\partial \vec{n}}{\partial x^{j}}\right)^{2}$
Hopf number: $Q(\mathbf{n})=\int_{\mathbb{R}^{3}} \alpha \wedge d \alpha \in \mathbb{Z}$
$d \alpha=\mathbf{n}^{*} \omega_{S^{2}} \quad \delta \alpha=0$
$\omega_{S^{2}}=\frac{1}{4 \pi}\left(n^{1} d n^{2} \wedge d n^{3}+n^{2} d n^{3} \wedge d n^{1}+n^{3} d n^{1} \wedge d n^{2}\right)$

Estimate: $\quad E(\mathbf{n}) \geq c|Q(\mathbf{n})|^{3 / 4}$
A. F. Vakulenko \& L. V. Kapitanski "Stability of Solitons in S^{2}-Nonlinear σ-Model", Sov. Phys. Doklady, 24 (6) (June 1979), 443-444

Existence of minimizers:
For $Q(\mathbf{n})=1$ and an infinite number of other possible values:

Lin, Fanghua; Yang, Yisong "Existence of energy minimizers as stable knotted solitons in the Faddeev model." Comm. Math. Phys. 249 (2004), no. 2, 273-303

When \mathbb{R}^{3} or S^{3} is replaced by a general Riemannian three-manifold, M^{3}, the homotopy classification of maps to S^{2} is more complicated.

Theorem [Pontrjagin, 1941] Let M be a closed, connected, oriented three-manifold. To any continuous map φ from M to S^{2} one associates a cohomology class $\varphi^{*} \mu_{S^{2}} \in H^{2}(M ; \mathbb{Z})$, where $\mu_{S^{2}}$ is a generator of $H^{2}\left(S^{2} ; \mathbb{Z}\right)$. Every class may be obtained from some map, and two maps with different classes lie in different homotopy classes. The homotopy classes of maps with a fixed class $\alpha \in H^{2}(M ; \mathbb{Z})$ are in bijective correspondence with $H^{3}(M ; \mathbb{Z}) /\left(2 \alpha \cup H^{1}(M ; \mathbb{Z})\right)$.

New features:

1) There is a new invariant given by the induced map on second cohomology.
2) The Hopf invariant generalizes into a secondary invariant that sometimes takes values in a finite cyclic group.

Example. smooth $\varphi: T^{3} \rightarrow S^{2}$
Let $\gamma_{1}, \gamma_{2}, \gamma_{3}$ be a basis in $H_{1}\left(T^{3}, \mathbb{Z}\right)$.
The inverse image of a regular value $p \in S^{2}$ is a curve, $\gamma=\varphi^{-1}(p)$, and
$\gamma \sim m_{1} \gamma_{1}+m_{2} \gamma_{2}+m_{3} \gamma_{3}$ in $H_{1}\left(T^{3}, \mathbb{Z}\right)$.
These m_{1}, m_{2}, m_{3} are homotopy invariants.
Find $m=$ g.c.d. $\left(m_{1}, m_{2}, m_{3}\right)$.
Case $m=0$: There are \mathbb{Z} different homotopy classes, distinguished by Hopf number.

Case $m \neq 0$: There are $2 m$ different homotopy classes corresponding to the same m_{1}, m_{2}, m_{3}.

A simpler example: $\varphi: S^{2} \times S^{1} \rightarrow S^{2}$
$(z, \theta) \mapsto \varphi(z, \theta) ; \quad \varphi(\cdot, \theta): S^{2} \rightarrow S^{2}$

The primary invariant: $m=\operatorname{degree}(\varphi(\cdot, \theta))$

If $m \neq 0$, there are $2 m$ different homotopy classes corresponding to the same degree.

To visualize $m=1$ case: 2 homotopy classes:

1) $(z, \theta) \mapsto z$
2) $(z, \theta) \mapsto z e^{\mathrm{i} \theta}$

The pictures that follow illustrate the first half of the map, i.e., $S^{2} \times[0, \pi] \rightarrow S^{2}$, i.e., between the innermost and the middle spheres.

Dirac's strings problem
[one half of the full picture, see later]

Putting two halves together:

Start with

After "one half" has been changed:

i.e.,

Now repeat the maneuver:

and

finally,

S^{3} - unit quaternions: $q=q_{0}+q_{1} \mathbf{i}+q_{2} \mathbf{j}+q_{3} \mathbf{k}$ S^{2} - unit sphere in the purely imaginary quaternions
S^{1} - unit complex numbers $\subset S^{3}$
Hopf map: $h: S^{3} \rightarrow S^{2} \quad q \mapsto q \mathbf{i} q^{-1}$

Dirac's strings: $\mathfrak{q}: S^{2} \times S^{1} \rightarrow S^{3}$
$\mathfrak{q}(z, \lambda)=q \lambda q^{-1}$, where $z=q \mathbf{i} q^{-1}$
$\operatorname{deg} \mathfrak{q}=2$.
Lemma. Given $\varphi, \psi: M \rightarrow S^{2}$, there exists a map $u: M \rightarrow S^{3}$ such that $\psi=u \varphi u^{-1}$ iff $\psi^{*} \mu_{S^{2}}=\varphi^{*} \mu_{S^{2}}$.
If $\psi=u \varphi u^{-1}$, then $\psi=\tilde{u} \varphi \tilde{u}^{-1}$, where $\tilde{u}=u \mathfrak{q}(\varphi, \lambda)$, and λ is any map $M \rightarrow S^{1}$.

$$
\begin{aligned}
& \mathfrak{q}(\varphi, \lambda)^{*} \mu_{S^{3}}=(\varphi, \lambda)^{*} \mathfrak{q}^{*} \mu_{S^{3}}=(\varphi, \lambda)^{*}\left(2 \mu_{S^{2}} \cup \mu_{S^{1}}\right) \\
& =2 \varphi^{*} \mu_{S^{2}} \cup \lambda^{*} \mu_{S^{1}}
\end{aligned}
$$

Fix $\varphi: M \rightarrow S^{2}$. The map $\eta \mapsto\left(\varphi^{*} \mu_{S^{2}} \cup \eta\right)[M]$ from $H^{1}(M ; \mathbb{Z})$ to \mathbb{Z} is a group homomorphism, hence has image $m \mathbb{Z}$ for some m depending on the class $\varphi^{*} \mu_{S^{2}}$.

Theorem (Auckly \& K). All homotopy classes of maps $\psi: M \rightarrow S^{2}$ with the same second cohomology class $\psi^{*} \mu_{S^{2}}=\varphi^{*} \mu_{S^{2}}$ are obtained in the form $\psi=u \varphi u^{-1}$.

The maps $u_{1} \varphi u_{1}^{-1}$ and $u_{2} \varphi u_{2}^{-1}$ are homotopic if and only if

$$
\operatorname{deg} u_{1} \equiv \operatorname{deg} u_{2}(\bmod 2 m)
$$

Sketch of a piece of the proof

Čech picture: do locally, then patch together

1) What does $\varphi^{*} \mu_{S^{2}}$ mean?
2) How can one find $u: M^{3} \rightarrow S^{3}$ such that $\psi=u \varphi u^{-1}$?

Local Representation. If $\varphi: I^{3} \rightarrow S^{2}$, then there exists $u: I^{3} \rightarrow S^{3}$ such that $\varphi=u^{-1} \mathbf{i} u$. For any two such maps, u and v, there is a $\operatorname{map} \lambda: I^{3} \rightarrow S^{1}$ so that $v=\lambda u$.

Assume for a moment that we knew that such a map existed. Then

$$
\varphi^{-1} d \varphi=a+\varphi a \varphi, \quad \text { where } \quad a=u^{-1} d u
$$

Hence,

$$
a=\frac{1}{2} \varphi^{-1} d \varphi+\varphi \xi
$$

for some real valued 1-form ξ. Since a is flat,

$$
0=d a+a \wedge a=\varphi d \xi-\frac{1}{4} d \varphi \wedge d \varphi
$$

or, equivalently,

$$
d \xi=-\frac{1}{4} \varphi d \varphi \wedge d \varphi
$$

We will turn this around by solving for ξ, then a, and, finally, u.

One can directly check that $\varphi d \varphi \wedge d \varphi$ is real and closed. By the Poincaré lemma, there exists a 1 -form ξ such that $d \xi=-\frac{1}{4} \varphi d \varphi \wedge d \varphi$.

Set $a=\frac{1}{2} \varphi^{*} d \varphi+\varphi \xi$. This is an $s u(2)$-valued 1 -form, and it is flat: $d a+a \wedge a=0$. By the nonlinear Poincaré lemma, there exists a $w: I^{3} \rightarrow S^{3}$ with $a=w^{-1} d w$.

Consider $\psi=w \varphi w^{-1}$.
Since $\varphi(x) \in S^{2}, \psi(x) \in S^{2}$ as well. Moreover, $\psi(x) \equiv z=\mathrm{const} \in S^{2}$. Indeed,

$$
\psi^{-1} d \psi=w\left(\varphi^{-1} d \varphi-a-\varphi a \varphi\right) w^{-1}=0
$$

The Hopf map, $h: S^{3} \rightarrow S^{2}$, is onto, hence there is a $p \in S^{3}$ so that $w \varphi w^{-1}=p^{-1} \mathbf{i} p$. Take $u=p w$ to get $\varphi=u^{-1} \mathbf{i} u$.

Nonlinear Poincaré Lemma (Auckly \& K.)
Given any $L^{2} \mathfrak{g}$-valued 1-form A on I^{m} such that

$$
\begin{equation*}
d A+\frac{1}{2}[A, A]=0 \tag{1}
\end{equation*}
$$

in the sense of distributions, there exists $u \in$ $W^{1,2}\left(I^{m}, G\right)$ such that $u^{-1} \in W^{1,2}\left(I^{m}, G\right)$ and $A=u^{-1} d u$. Furthermore, for any two such maps, u and v, there exists $g \in G$ so that $u(x)=g \cdot v(x)$, for almost every $x \in I^{m}$.

maps $\quad \leftrightarrow \quad$ connections

$$
u: M \rightarrow S^{3} \quad \rightsquigarrow \quad a=u^{-1} d u
$$

$$
\begin{aligned}
& \operatorname{deg} u=-\frac{1}{12 \pi^{2}} \int_{M} \operatorname{Re}(a \wedge a \wedge a) \\
&=\frac{1}{4 \pi^{2}} \int_{M} \operatorname{Re}\left(a \wedge d a+\frac{2}{3} a \wedge a \wedge a\right)=\operatorname{cs}(a) \\
& \tilde{u}=u \mathfrak{q}(\varphi, \lambda) \quad \rightsquigarrow \quad \tilde{a}=\tilde{u}^{-1} d \tilde{u}
\end{aligned}
$$

$$
\text { Varying } \quad \lambda: M \rightarrow S^{1}, \ldots
$$

Theorem. Any orientation preserving S^{2}-isometry class of a smooth map from M to S^{2} homotopic to φ is uniquely represented by a smooth flat connection a, which has trivial holonomy and satisfies the conditions

1. $\operatorname{cs}(a)=-\frac{1}{12 \pi^{2}} \int_{M} \operatorname{Re}(a \wedge a \wedge a) \in 2 m \mathbb{Z}$
2. $\mathcal{H}\langle a, \varphi\rangle=h_{1} \eta_{1}+\cdots+h_{b} \eta_{b}$
with $h_{1}, \ldots, h_{b} \in[0,1)$ and
$\eta_{1}, \ldots, \eta_{b}$ - an integral basis for $H^{1}(M ; \mathbb{R})$
3. $\delta\langle a, \varphi\rangle=0$ (δ is the adjoint of d)

Faddeev energy of $\psi: M \rightarrow S^{2}$ is

$$
E(\psi)=\int_{M}|d \psi|^{2}+|d \psi \wedge d \psi|^{2}
$$

If ψ is smooth and homotopic to φ, then $\psi=u \varphi u^{-1}$. Re-write $E(\psi)$ in terms of φ and $a=u^{-1} d u$
$E(\psi)=E_{\varphi}[a]=\int_{M}\left|D_{a} \varphi\right|^{2}+\left|D_{a} \varphi \wedge D_{a} \varphi\right|^{2}$
where $D_{a} \varphi=d \varphi+[a, \varphi]$
Class $\mathfrak{A}_{\varphi}: \quad a \in L^{2}\left(M ; \mathbb{R}^{3}\right), d a+a \wedge a=0$, $\rho_{a}=0, \quad E_{\varphi}[a]<\infty, \quad \operatorname{cs}(a) \in 2 m \mathbb{Z}$, $\mathcal{H}\langle a, \varphi\rangle=h_{1} \eta_{1}+\cdots+h_{b} \eta_{b}, h_{1}, \ldots, h_{b} \in[0,1]$, $\delta\langle a, \varphi\rangle=0$

Theorem. $E_{\varphi}[a]$ has a minimum in \mathfrak{A}_{φ}.

