Geometry and Analysis of the Faddeev model

Lev Kapitanski University of Miami Coral Gables, Forida

Durham, August 6, 2005

L. Kapitanski. *On Skyrme's model*, in: *N*onlinear Problems in Mathematical Physics and Related Topics II: In Honor of Professor O. A. Ladyzhenskaya, Birman et al., eds. Kluwer, 2002, pp.229-242

D. Auckly, L. Kapitanski. *Holonomy and Skyrme's model*, Comm. Math. Phys., **240**, 97-122 (2003)

D. Auckly, L. Kapitanski. S^2 - valued maps and Faddeev's model, to appear in: Comm. Math. Phys.

L. D. Faddeev: 1975

particles – spatially localized solutions of PDEs
with enough bells and whistles
(charge, etc.)
+ have internal knotted structure

motivation: **Skyrme's model** (1961): particles – spatially localized solutions of PDEs with enough bells and whistles (Lord Kelvin's "vortex atoms", 1867)

In the original **Skyrme model**:

fields are maps $\mathbb{R}^3 \to S^3$ with $\{|x| = \infty\} \mapsto 1$

homotopy classes of such maps are classified by **degree** (called "topological charge", "baryon number", etc. - "bells and whistles")

$$S^{3} \simeq SU(2) \simeq \text{unit quaternions}$$
$$u = \begin{pmatrix} z_{1} & z_{2} \\ -\overline{z_{2}} & \overline{z_{1}} \end{pmatrix} \qquad |z_{1}|^{2} + |z_{2}|^{2} = 1$$
$$z_{1} = u_{0} + u_{1} \mathbf{i}, \qquad z_{2} = u_{2} + u_{3} \mathbf{i}$$
$$u = u_{0} + u_{1} \mathbf{i} + u_{2} \mathbf{j} + u_{3} \mathbf{k}$$
$$u^{-1} = u^{*} = u_{0} - u_{1} \mathbf{i} - u_{2} \mathbf{j} - u_{3} \mathbf{k}$$

 $\mathbb{R}^3 \simeq su(2) \simeq$ purely imaginary quaternions

$$a = \begin{pmatrix} a_1 \mathbf{i} & a_2 + a_3 \mathbf{i} \\ -a_2 + a_3 \mathbf{i} & -a_1 \mathbf{i} \end{pmatrix}$$
$$a = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
$$\langle a, b \rangle = \vec{a} \cdot \vec{b} = -\frac{1}{2} \operatorname{Trace}(ab) = \operatorname{Re}(a b^*)$$

Skyrme:
$$u : \mathbb{R}^3 \to S^3 \subset \mathbb{R}^4$$

Skyrme energy (static Hamiltonian):

$$E(u) = \int_{\mathbb{R}^3} \frac{1}{2} |du|^2 + \frac{1}{4} |du \wedge du|^2 \quad dx$$

Topological charge:

$$Q(u) = c \int_{\mathbb{R}^3} \sum \epsilon_{\alpha\beta\gamma\delta} u^{\alpha} \frac{\partial \left(u^{\beta}, u^{\gamma}, u^{\delta}\right)}{\partial \left(x^1, x^2, x^3\right)} d^3x$$

Skyrme:
$$u : \mathbb{R}^3 \to SU(2)$$
 $a = u^{-1}du$

- su(2)-valued 1-form - flat connection - pull-back of the Maurer-Cartan form $g^{-1}dg$

Skyrme energy (static Hamiltonian):

$$E(u) = \int_{\mathbb{R}^3} \frac{1}{2} |u^{-1} du|^2 + \frac{1}{4} |u^{-1} du \wedge u^{-1} du|^2$$

$$E[a] = \int_{\mathbb{R}^3} \frac{1}{2} |a|^2 + \frac{1}{16} |[a, a]|^2$$

Topological charge:

$$Q(u) = \frac{1}{24\pi^2} \int_{\mathbb{R}^3} \operatorname{Tr}\left(u^{-1} \, du \wedge u^{-1} \, du \wedge u^{-1} \, du\right)$$
$$Q[a] = c \int_{\mathbb{R}^3} \langle a, \ [a, \ a] \rangle$$

 $E[a] \ge \text{const} |Q[a]|$

In the original Faddeev model:

fields are maps $\mathbf{n}: \mathbb{R}^3 \to S^2 \subset \mathbb{R}^3$ with $\{|x| = \infty\} \mapsto \text{pole}$

homotopy classes of such maps are classified by the **Hopf invariant** (called "topological charge", "linking number", etc.)

Hopf invariant

$$S^3 \rightarrow S^2$$

Faddeev fields: $\mathbf{n} : \mathbb{R}^3 \to S^2 \subset \mathbb{R}^3$

 $n(x) = (n^1(x), n^2(x), n^3(x))$ |n(x)| = 1

Faddeev energy: $E(\mathbf{n}) = \int_{\mathbb{R}^3} |d\mathbf{n}|^2 + |d\mathbf{n} \wedge d\mathbf{n}|^2$

$$|d\mathbf{n}|^2 = \frac{\partial n^a}{\partial x^k} \frac{\partial n^a}{\partial x^k}$$

$$|d\mathbf{n} \wedge d\mathbf{n}|^2 = \sum_{i,j} \left| \frac{\partial \vec{n}}{\partial x^i} \times \frac{\partial \vec{n}}{\partial x^j} \right|^2 = \sum_{i,j} \left(\vec{n}, \frac{\partial \vec{n}}{\partial x^i}, \frac{\partial \vec{n}}{\partial x^j} \right)^2$$

Hopf number: $Q(\mathbf{n}) = \int_{\mathbb{R}^3} \alpha \wedge d\alpha \in \mathbb{Z}$

 $d\alpha \,=\, \mathbf{n}^* \omega_{S^2} \qquad \delta \alpha = \mathbf{0}$

$$\omega_{S^2} = \frac{1}{4\pi} \left(n^1 dn^2 \wedge dn^3 + n^2 dn^3 \wedge dn^1 + n^3 dn^1 \wedge dn^2 \right)$$

Estimate: $E(n) \ge c |Q(n)|^{3/4}$

A. F. Vakulenko & L. V. Kapitanski "Stability of Solitons in S^2 -Nonlinear σ -Model", Sov. Phys. Doklady, **24** (6) (June 1979), 443-444

Existence of minimizers:

For Q(n) = 1 and an infinite number of other possible values:

Lin, Fanghua; Yang, Yisong "Existence of energy minimizers as stable knotted solitons in the Faddeev model." Comm. Math. Phys. 249 (2004), no. 2, 273–303

When \mathbb{R}^3 or S^3 is replaced by a general Riemannian three-manifold, M^3 , the homotopy classification of maps to S^2 is more complicated.

Theorem [Pontrjagin, 1941] Let M be a closed, connected, oriented three-manifold. To any continuous map φ from M to S^2 one associates a cohomology class $\varphi^* \mu_{S^2} \in H^2(M; \mathbb{Z})$, where μ_{S^2} is a generator of $H^2(S^2; \mathbb{Z})$. Every class may be obtained from some map, and two maps with different classes lie in different homotopy classes. The homotopy classes of maps with a fixed class $\alpha \in H^2(M; \mathbb{Z})$ are in bijective correspondence with $H^3(M; \mathbb{Z})/(2 \alpha \cup H^1(M; \mathbb{Z}))$.

New features:

1) There is a new invariant given by the induced map on second cohomology.

2) The Hopf invariant generalizes into a secondary invariant that sometimes takes values in a finite cyclic group.

Example. smooth φ : $T^3 \rightarrow S^2$

Let γ_1 , γ_2 , γ_3 be a basis in $H_1(T^3, \mathbb{Z})$. The inverse image of a regular value $p \in S^2$ is a curve, $\gamma = \varphi^{-1}(p)$, and $\gamma \sim m_1\gamma_1 + m_2\gamma_2 + m_3\gamma_3$ in $H_1(T^3, \mathbb{Z})$. These m_1, m_2, m_3 are homotopy invariants.

Find $m = g.c.d.(m_1, m_2, m_3)$.

Case m = 0: There are \mathbb{Z} different homotopy classes, distinguished by Hopf number.

Case $m \neq 0$: There are 2m different homotopy classes corresponding to the same m_1, m_2, m_3 . A simpler example: φ : $S^2 \times S^1 \to S^2$

 $(z, \theta) \mapsto \varphi(z, \theta); \qquad \varphi(\cdot, \theta): S^2 \to S^2$

The primary invariant: $m = \text{degree}(\varphi(\cdot, \theta))$

If $m \neq 0$, there are 2m different homotopy classes corresponding to the same degree.

To visualize m = 1 case: 2 homotopy classes:

1)
$$(z, \theta) \mapsto z$$

2) $(z,\theta) \mapsto z e^{\mathbf{i}\theta}$

The pictures that follow illustrate the first half of the map, i.e., $S^2 \times [0, \pi] \rightarrow S^2$, i.e., between the innermost and the middle spheres.

Dirac's strings problem

[one half of the full picture, see later]

Putting two halves together:

Start with

After "one half" has been changed:

i.e.,

Now repeat the maneuver:

and

finally,

- S^3 unit quaternions: $q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$
- S^2 unit sphere in the purely imaginary quaternions
- S^1 unit complex numbers $\subset S^3$

Hopf map: $h: S^3 \to S^2$ $q \mapsto q \mathbf{i} q^{-1}$

Dirac's strings: $q: S^2 \times S^1 \to S^3$ $q(z,\lambda) = q\lambda q^{-1}$, where $z = q \mathbf{i} q^{-1}$ $\deg q = 2$.

Lemma. Given φ , ψ : $M \to S^2$, there exists a map u : $M \to S^3$ such that $\psi = u \varphi u^{-1}$ iff $\psi^* \mu_{S^2} = \varphi^* \mu_{S^2}$. If $\psi = u \varphi u^{-1}$, then $\psi = \tilde{u} \varphi \tilde{u}^{-1}$, where $\tilde{u} = u \mathfrak{q}(\varphi, \lambda)$, and λ is any map $M \to S^1$.

$$\begin{split} \mathfrak{q}(\varphi,\lambda)^*\mu_{S^3} &= (\varphi,\lambda)^*\mathfrak{q}^*\mu_{S^3} = (\varphi,\lambda)^*(2\mu_{S^2} \cup \mu_{S^1}) \\ &= 2 \varphi^*\mu_{S^2} \cup \lambda^*\mu_{S^1} \end{split}$$

Fix $\varphi : M \to S^2$. The map $\eta \mapsto (\varphi^* \mu_{S^2} \cup \eta)[M]$ from $H^1(M; \mathbb{Z})$ to \mathbb{Z} is a group homomorphism, hence has image $m\mathbb{Z}$ for some m depending on the class $\varphi^* \mu_{S^2}$.

Theorem (Auckly & K). All homotopy classes of maps $\psi: M \to S^2$ with the same second cohomology class $\psi^* \mu_{S^2} = \varphi^* \mu_{S^2}$ are obtained in

the form $\psi = u \varphi u^{-1}$.

The maps $u_1 \, \varphi \, u_1^{-1}$ and $u_2 \, \varphi \, u_2^{-1}$ are homotopic if and only if

$$\deg u_1 \equiv \deg u_2 \, (\text{mod } 2 \, m)$$

Sketch of a piece of the proof

Čech picture: do locally, then patch together

1) What does $\varphi^*\mu_{S^2}$ mean?

2) How can one find $u : M^3 \to S^3$ such that $\psi = u \varphi u^{-1}$?

Local Representation. If $\varphi : I^3 \to S^2$, then there exists $u : I^3 \to S^3$ such that $\varphi = u^{-1} \mathbf{i} u$. For any two such maps, u and v, there is a map $\lambda : I^3 \to S^1$ so that $v = \lambda u$.

Assume for a moment that we knew that such a map existed. Then

 $\varphi^{-1}d\varphi = a + \varphi a\varphi$, where $a = u^{-1}du$

Hence,

$$a = \frac{1}{2}\varphi^{-1}d\varphi + \varphi\xi$$

for some real valued 1-form ξ . Since a is flat,

$$0 = da + a \wedge a = \varphi d\xi - \frac{1}{4}d\varphi \wedge d\varphi$$

or, equivalently,

$$d\xi = -rac{1}{4}\varphi d\varphi \wedge d\varphi$$

We will turn this around by solving for ξ , then a, and, finally, u.

One can directly check that $\varphi d\varphi \wedge d\varphi$ is real and closed. By the Poincaré lemma, there exists a 1-form ξ such that $d\xi = -\frac{1}{4}\varphi d\varphi \wedge d\varphi$.

Set $a = \frac{1}{2}\varphi^* d\varphi + \varphi \xi$. This is an su(2)-valued 1-form, and it is flat: $da + a \wedge a = 0$. By the *nonlinear* Poincaré lemma, there exists a $w: I^3 \to S^3$ with $a = w^{-1} dw$.

Consider $\psi = w\varphi w^{-1}$. Since $\varphi(x) \in S^2$, $\psi(x) \in S^2$ as well. Moreover, $\psi(x) \equiv z = \text{const} \in S^2$. Indeed,

$$\psi^{-1}d\psi = w(\varphi^{-1}d\varphi - a - \varphi a\varphi)w^{-1} = 0$$

The Hopf map, $h : S^3 \to S^2$, is onto, hence there is a $p \in S^3$ so that $w\varphi w^{-1} = p^{-1}\mathbf{i}p$. Take u = pw to get $\varphi = u^{-1}\mathbf{i}u$. Nonlinear Poincaré Lemma (Auckly & K.) Given any L^2 g-valued 1-form A on I^m such that

$$dA + \frac{1}{2}[A, A] = 0 \tag{1}$$

in the sense of distributions, there exists $u \in W^{1,2}(I^m, G)$ such that $u^{-1} \in W^{1,2}(I^m, G)$ and $A = u^{-1} du$. Furthermore, for any two such maps, u and v, there exists $g \in G$ so that $u(x) = g \cdot v(x)$, for almost every $x \in I^m$.

maps \leftrightarrow connections

 $u: M \to S^3 \qquad \rightsquigarrow \quad a = u^{-1} du$

$$\deg u = -\frac{1}{12\pi^2} \int_{M} \operatorname{Re}(a \wedge a \wedge a)$$
$$= \frac{1}{4\pi^2} \int_{M} \operatorname{Re}(a \wedge da + \frac{2}{3}a \wedge a \wedge a) = \operatorname{cs}(a)$$

$$\tilde{u} = u \mathfrak{q}(\varphi, \lambda) \quad \rightsquigarrow \quad \tilde{a} = \tilde{u}^{-1} d\tilde{u}$$

Varying $\lambda : M \to S^1, \ldots$

Theorem. Any orientation preserving S^2 -isometry class of a smooth map from M to S^2 homotopic to φ is uniquely represented by a smooth flat connection a, which has trivial holonomy and satisfies the conditions

1.
$$\operatorname{cs}(a) = -\frac{1}{12\pi^2} \int_M \operatorname{Re}(a \wedge a \wedge a) \in 2m\mathbb{Z}$$

2.
$$\mathcal{H}\langle a, \varphi \rangle = h_1 \eta_1 + \dots + h_b \eta_b$$

with $h_1, \dots, h_b \in [0, 1)$ and
 η_1, \dots, η_b – an integral basis for $H^1(M; \mathbb{R})$

3. $\delta \langle a, \varphi \rangle = 0$ (δ is the adjoint of d)

Faddeev energy of ψ : $M \to S^2$ is

$$E(\psi) = \int_{M} |d\psi|^2 + |d\psi \wedge d\psi|^2$$

If ψ is smooth and homotopic to φ , then $\psi = u\varphi u^{-1}$. Re-write $E(\psi)$ in terms of φ and $a = u^{-1}du$

$$E(\psi) = E_{\varphi}[a] = \int_{M} |D_a \varphi|^2 + |D_a \varphi \wedge D_a \varphi|^2$$

where $D_a \varphi = d\varphi + [a, \varphi]$

Class \mathfrak{A}_{φ} : $a \in L^{2}(M; \mathbb{R}^{3}), da + a \wedge a = 0,$ $\rho_{a} = 0, \quad E_{\varphi}[a] < \infty, \quad \operatorname{cs}(a) \in 2m\mathbb{Z},$ $\mathcal{H}\langle a, \varphi \rangle = h_{1}\eta_{1} + \cdots + h_{b}\eta_{b}, h_{1}, \ldots, h_{b} \in [0, 1],$ $\delta \langle a, \varphi \rangle = 0$

Theorem. $E_{\varphi}[a]$ has a minimum in \mathfrak{A}_{φ} .