Inverse spectral problems for Bessel operators*

Rostyslav Hryniv Institute for Applied Problems of Mechanics and Mathematics 79601 Lviv, Ukraine rhryniv@iapmm.lviv.ua

Durham, August 03, 2005

^{*}Supported by the A. von Humboldt Foundation. Based on joint work with S. Albeverio (Bonn) and Ya. Mykytyuk (Lviv)

The problem

We consider a Schrödinger operator

$$(Sy)(\mathbf{x}) = -\Delta y(\mathbf{x}) + Q(\mathbf{x})y(\mathbf{x})$$

in the unit ball of \mathbb{R}^3 , with a spherically symmetric distributional potential $Q(\mathbf{x}) = q(|\mathbf{x}|)$, $q \in W_2^{-1}(0, 1)$. Rotational symmetry allows a decomposition of S via the spherical harmonics, which leads to Bessel operators

$$S(q, l, \theta)y(x) := -y''(x) + \frac{m(m+1)}{x^2}y(x) + q(x),$$

 $m \in \mathbb{Z}_+$, subject to $\sin \theta y^{[1]}(x) = \cos \theta y(1)$, $\theta \in [0, \pi)$. $S(q, m, \theta)$ has a simple discrete spectrum $\lambda_1(q, m, \theta) < \lambda_2(q, m, \theta) < \dots$

Que: Does the spectrum $(\lambda_n(q, m, \theta))$ determine q, m, θ ? No! E.g., for m = 0, extra information is needed (e.g. spectrum for $\theta_1 \neq \theta$, or norming constants α_n).

The inverse spectral problem (ISP) is to reconstruct a Bessel operator $S(q, m, \theta)$ from the spectral data (SD)

- **Aim:** find the algorithm of solution of ISP;
 - give an explicit and complete description of SD

Known results: m = 0

BORG (1946), LEVINSON (1949): two spectra determine q uniquely

GELFAND & LEVITAN, KREIN, MARCHENKO (1950ies) treated the regular case $q \in L_1(0, 1)$, found sufficient conditions and necessary conditions on the SD and solved the ISP.

ZHIKOV (1967): q = F' with $F \in BV[0,1]$; Tu = f is defined through the corresponding integral equation; necessary and sufficient conditions on the SD found, the ISP solved.

BEN AMOR & REMLING (2003): q = F' on $(0, \infty)$ with F locally of bounded variation; applied de Branges space method to solve ISP on [0, N] for arbitrary $N \in \mathbb{R}_+$. "Spectral data" used is $\phi(x) := \int \cos \sqrt{\lambda} x \, d(\rho_N - \rho_0)(\lambda)$.

ANDERSSON (1988) considered a SL operator in impedance form $Su = \frac{1}{a}(au')'$ in $L_2((0,1);a)$ with $a \in W_p^1[0,1]$, $p \ge 1$, or $a \in BV[0,1]$ and established local solvability of the ISP.

RUNDELL & SACKS (1992) studied the case $a \in W_2^1(0,1)$. With the help of transformation operators they found necessary conditions on the SD, solved the ISP, and suggested a numerical algorithm.

COLEMAN & MCLAUGHLIN (1993) treated the case $a \in W_2^1(0,1)$ by recasting $Su = \lambda u$ as $v'' + bv' + \lambda^2 v = 0$ with b := a'/a; studied in detail the mapping $b \mapsto SD$; generalized the approach of Pöschel & Trubowitz (1987).

Observe that S is similar to Tu = -u'' + qu with $q = \frac{(\sqrt{a})''}{\sqrt{a}}$. In particular, for $a \in W_2^1(0,1)$ we get $q \in W_2^{-1}(0,1)$.

The case of a generic $q \in W_2^{-1}(0,1)$ was treated by SHKALIKOV A.O. (99–05); T is defined by the regularisation method, its spectral properties studied in detail.

ISP (in different settings) for SL operator with such q is completely solved by ALBEVERIO, H., MYKYTYUK (03-05)

Some other types of singularities were treated by CARLSSON, HALD, FREILING, MCLAUGHLIN, YURKO A.O.

Known results: m > 0, $q \in L_2$

GULLIOT, RALSTON (88): studied the map from q to SD for m = 1, generalised the approach by Pöschel– Trubowitz, proved that the map is 1 - 1, described the isospectral sets

CARLSON (93) completely described the possible spectra for arbitrary $m \in \mathbb{N}$ using the Darboux–Crum transformation and studied the isospectral sets

CARLSON (97) studied the map q to SD for $m \geq -\frac{1}{2}$, proved several results on unique reconstruction of $S(q,m,\theta)$ from the spectral data, without characterising the spectral data

GASYMOV (65) claimed a complete solution for $q \in L_2(0,1)$ and $m \in \mathbb{N}$ without proof

Another setting: reconstruct q from the spectra of $S(q, m_1, 0)$ and $S(q, m_2, 0)$ for two different angular momenta m_1 and m_2 ; even uniqueness is not proved!

CARLSON, SHUBIN (94): isospectral set is of finite dimension if $m_1 - m_2$ odd;

RUNDELL, SACKS (01): local uniqueness in a linearised sense for $m_1, m_2 = 0, 1, 2, 3$.

Our case: $m \in \mathbb{Z}_+$ and $q \in W_2^{-1}(0,1)$

m = 0: Definition

For real-valued $q \in W_2^{-1}(0, 1)$ define the SL operator T by **regularisation** method:

take $\sigma \in L_2(0,1)$ s. t. $q=\sigma'$, (e.g., with $\int \sigma=0)$ and put

$$Tu = T_{\sigma}u = l_{\sigma}(u) := -(u' - \sigma u)' - \sigma u'$$

dom $T_{\sigma} = \{ u \in W_2^1 \mid u' - \sigma u \in W_1^1, \ l_{\sigma}(u) \in L_2, u(0) = u(1) = 0 \}.$

 T_{σ} is a self-adjoint bounded below operator with discrete spectrum $\{\lambda_k\}$; we may assume $\lambda_k > 0$.

Example 1: $q = \alpha \delta(\cdot - \frac{1}{2})$. Take

 $\sigma(x) = 0 \quad \text{for } x \leq \frac{1}{2}, \qquad \sigma(x) = \alpha \quad \text{for } x > \frac{1}{2}$

then $l_{\sigma}(u) = -u''$ if $x \neq \frac{1}{2}$ and $u \in \text{dom } T_{\sigma}$ means u is continuous at $x = \frac{1}{2}$ and $u'(\frac{1}{2}+) - u'(\frac{1}{2}-) = \alpha u(\frac{1}{2})$.

Example 2: $q = (x - \frac{1}{2})^{-1}$. Restriction-extension theory defines the corresponding (non-s.a.) operators $T(\gamma), \gamma \in \mathbb{C} \cup \{\infty\}$ by the interface conditions $y(\frac{1}{2}+) = y(\frac{1}{2}-) =: y(\frac{1}{2}), y'(\frac{1}{2}+) - y'(\frac{1}{2}-) = \gamma y(\frac{1}{2})$; cf. KURASOV (1996), BODENSTORFER A.O. (2000). This corresponds to

$$\sigma(x) = \begin{cases} \log(\frac{1}{2} - x) & \text{for } x \leq \frac{1}{2}, \\ \log(x - \frac{1}{2}) + \gamma & \text{for } x > \frac{1}{2}. \end{cases}$$

m = 0: **ISP**

[H.&Mykytyuk'04]: There is a **transformation** operator $I + K_{\sigma}$ s. t. $K_{\sigma}u(x) = \int_{0}^{x} k(x,t)u(t) dt$, $k(x,\cdot) \in L_{2}$, and

$$y(x,\lambda) := (I + K_{\sigma}) \sin \sqrt{\lambda x}$$

solves the equation $l_{\sigma}(u) = \lambda u$, u(0) = 0.

Spectral asymptotics:

(A1)
$$\sqrt{\lambda_k} = \pi k + \tilde{\lambda}_k$$
 for some $(\tilde{\lambda}_k) \in \ell_2$;

(A2) $\alpha_k^{-1} := 2 \| y(\cdot, \lambda_k) \|^2 = 1 + \beta_k$ for some $(\beta_k) \in \ell_2$.

Reconstruction of σ . Assume that $\{(\lambda_k), (\alpha_k)\}$ satisfy (A1)–(A2), α_k are positive, and λ_k are pairwise distinct. Put $\phi(s) := \sum_{k \in \mathbb{N}} \left(\cos \pi ks - \alpha_k \cos \lambda_k s \right) \in L_2(0,2)$, $f(x,t) := \phi(x-t) - \phi(x+t)$, and consider the **Gelfand-**Levitan-Marchenko (GLM) equation:

$$k(x,t) + f(x,t) + \int_0^x k(x,s)f(s,t) \, ds = 0, \quad x > t.$$

Then:

(1) GLM is soluble, and the integral operator K with kernel k coincides with K_{σ} for

$$\sigma(x) := -2\phi(2x) - 2\int_0^x k(x,t)f(t,x)\,dt \in L_2(0,1);$$

(2) the sequence $\{(\lambda_k), (\alpha_k)\}$ is the SD for the Sturm– Liouville operator T_{σ} with σ found. **Reconstruction by two specra.** Assume that sequences (λ_k) and (μ_k) interlace, λ_k satisfy (A1), and μ_k are such that

(A3) $\sqrt{\mu_k} = \pi(k - \frac{1}{2}) + \tilde{\mu}_k$ for some $(\tilde{\mu}_k) \in \ell_2$.

Then there is a unique $\sigma \in L_2$ such that λ_n (resp. μ_n) are Dirichlet (resp. Dirichlet–Neumann) eigenvalues of l_{σ} .

An analogue of *Marchenko's theorem* for $q \in L_2(0,1)$: interlacing and correct asymptotics suffice!

m > 0: idea

For $q \in L_2$, ${\rm CARLSON}~(93)$ showed that the eigenvalues of S(q,m,0) satisfy

$$\lambda_n(q, m, 0) = \pi^2 (n + \frac{m}{2})^2 + C + c_n$$
 with $(c_n) \in \ell_2$.

In particular, S(q, 2, 0) has 1 EV less than S(q, 0, 0)! **Idea:** take $\lambda_0 < \lambda_1(q, 2, 0)$, find a SL operator with potential \tilde{q} , whose Dirichlet spectrum is λ_0 , $\lambda_1(q, 2, 0), \lambda_2(q, 2, 0), \ldots$, and then determine q from \tilde{q}

Realisation via the transformation operators: take $\{(\lambda_k)_{k\in\mathbb{N}}, (\alpha_k)_{k\in\mathbb{N}}\}, \quad 0 < \lambda_0 < \lambda_1, \alpha_0 > 0$, and let

$$I + F_j := \underset{n \to \infty}{\text{s-lim}} \sum_{k=j}^n \alpha_k(\cdot, \cos\sqrt{\lambda_k}t) \cos\sqrt{\lambda_k}x$$
$$= (I + K_j)^{-1} (I + K_j^*)^{-1}$$

Lemma: $K := (I + K_1)(I + K_0)^{-1} - I$ has kernel $k(x, t) = \frac{\alpha_0 y(x, \lambda_0) y(t, \lambda_0)}{1 - \alpha_0 \int_0^x y^2(s, \lambda_0) ds},$ with $y(x, \lambda_0) := (I + K_0) \cos \sqrt{\lambda_0} x$

In particular: (1) $I + K_1 = (I + K)(I + K_0)$,

(2)
$$\sigma_1(x) - \sigma_0(x) = 2k(x, x) + \alpha_0,$$

(3)
$$k(x,x) \sim 3x^{-1} \text{ as } x \to 0.$$

Spectral transformations

Let $q \in W_2^{-1}(0,1)$, $m \in \mathbb{Z}_+$, and $y(\cdot,\lambda)$ be a solution to $-y''(x) + \frac{m(m+1)}{x^2}y(x) + q(x)y(x) = \lambda y(x)$

subject to y(1) = 0; then either $y(x, \lambda) \sim x^{-m}$ or $y(x, \lambda) \sim x^{m+1}$ as $x \to 0$, in the latter case λ is an EV.

Lemma: Take λ_0 not an EV and $\alpha_0 > 0$, and put

$$\beta(x,\lambda) := \alpha_0 \int_x^1 y(t,\lambda) y(t,\lambda_0) dt$$

and $V(x) := 1 + \beta(x, \lambda_0)$; then $\exists q_0 \in W_2^{-1}(0, 1)$ s.t.

$$u(x,\lambda) := y(x,\lambda) - y(x,\lambda_0) \frac{\beta(x,\lambda)}{V(x)}$$

solves the equation

$$-y''(x) + \frac{(m-2)(m-1)}{x^2}y(x) + q_0(x)y(x) = \lambda y(x).$$

Rem: In fact, $V(x) = x^{-2m+1}v(x)$ and $q_0 := q - 2\frac{d^2}{dx^2}\log v(x)$

Thm: The spectrum of the operator $S(q_0, m - 2, 0)$ consists of λ_0 and $\lambda_k(q, m, 0)$, $k \in \mathbb{N}$; moreover, $\|u(\cdot, \lambda_0)\| = \alpha_0$ and $\|u(\cdot, \lambda_k)\| = \|y(\cdot, \lambda_k)\|$, $k \in \mathbb{N}$.

There is an analogous transformation removing one EV of S(q, m, 0) and changing neither the others nor the corresponding norming constants; this produces an operator $S(q_1, m+2, 0)$ for some $q_1 \in W_2^{-1}(0, 1)$

ISP for Bessel operators

Reconstruction from one spectrum.

Assume that sequences (λ_n) and (α_n) of real numbers are such that

(B1) the λ_n strictly increase and satisfy the asymptotics $\lambda_n = \left[\pi(n + \frac{m}{2}) + \tilde{\lambda}_n\right]^2$ with $(\tilde{\lambda}_n) \in \ell_2$

(B2) the α_n are positive and satisfy the asymptotics $\alpha_n = 1 + \tilde{\alpha}_n$ with $(\tilde{\alpha}_n) \in \ell_2$.

Then there exists a unique real-valued $q \in W_2^{-1}(0,1)$ such that λ_n and α_n are respectively the eigenvalues and the norming constants of the Bessel operator S(q, m, 0).

Reconstruction from two spectra.

In order that two strictly increasing sequences (λ_n) and (μ_n) be the spectra of the operators S(q, m, 0) and $S(q, m, \theta)$ for some real-valued $q \in W_2^{-1}(0, 1)$, $m \in \mathbb{N}$, and $\theta \in (0, \pi)$, it is necessary and sufficient that these sequences interlace, i.e., that $\mu_n < \lambda_n < \mu_{n+1}$ for all $n \in \mathbb{N}$, that λ_n satisfy the asymptotics of (B1) and that

(B3)
$$\mu_n = \left[\pi(n + \frac{m-1}{2}) + \tilde{\mu}_n\right]^2$$
 with $(\tilde{\mu}_n) \in \ell_2$.

In this case $q \in W_2^{-1}(0,1)$ and $\theta \in (0,\pi)$ are unique and are effectively reconstructed from the two spectra.

Idea: two spectra determine the norming constants!