
Inverse spectral problems for Bessel
operators∗

Rostyslav Hryniv
Institute for Applied Problems
of Mechanics and Mathematics

79601 Lviv, Ukraine
rhryniv@iapmm.lviv.ua

Durham, August 03, 2005

∗Supported by the A. von Humboldt Foundation. Based on joint work with
S. Albeverio (Bonn) and Ya. Mykytyuk (Lviv)



The problem

We consider a Schrödinger operator

(Sy)(x) = −∆y(x) + Q(x)y(x)

in the unit ball of R3, with a spherically symmetric
distributional potential Q(x) = q(|x|), q ∈ W−1

2 (0, 1).
Rotational symmetry allows a decomposition of S via the
spherical harmonics, which leads to Bessel operators

S(q, l, θ)y(x) := −y′′(x) +
m(m + 1)

x2
y(x) + q(x),

m ∈ Z+, subject to sin θy[1](x) = cos θy(1), θ ∈ [0, π).
S(q, m, θ) has a simple discrete spectrum λ1(q, m, θ) <
λ2(q, m, θ) < . . . .

Que: Does the spectrum (λn(q, m, θ)) determine q, m, θ?
No! E.g., for m = 0, extra information is needed (e.g.
spectrum for θ1 6= θ, or norming constants αn).

The inverse spectral problem (ISP) is to reconstruct a
Bessel operator S(q, m, θ) from the spectral data (SD)

Aim: • find the algorithm of solution of ISP;
• give an explicit and complete description of SD
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Known results: m = 0

Borg (1946), Levinson (1949): two spectra
determine q uniquely

Gelfand & Levitan, Krein, Marchenko (1950-
ies) treated the regular case q ∈ L1(0, 1), found sufficient
conditions and necessary conditions on the SD and solved
the ISP.

Zhikov (1967): q = F ′ with F ∈ BV[0, 1]; Tu = f
is defined through the corresponding integral equation;
necessary and sufficient conditions on the SD found, the
ISP solved.

Ben Amor & Remling (2003): q = F ′ on (0,∞)
with F locally of bounded variation; applied de Branges
space method to solve ISP on [0, N ] for arbitrary N ∈ R+.
“Spectral data” used is φ(x) :=

∫
cos

√
λx d(ρN−ρ0)(λ).

Andersson (1988) considered a SL operator in
impedance form Su = 1

a(au′)′ in L2((0, 1); a) with
a ∈ W 1

p [0, 1], p ≥ 1, or a ∈ BV[0, 1] and established
local solvability of the ISP.

Rundell & Sacks (1992) studied the case a ∈
W 1

2 (0, 1). With the help of transformation operators they
found necessary conditions on the SD, solved the ISP, and
suggested a numerical algorithm.
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Coleman & McLaughlin (1993) treated the case
a ∈ W 1

2 (0, 1) by recasting Su = λu as v′′+ bv′+λ2v = 0
with b := a′/a; studied in detail the mapping b 7→SD;
generalized the approach of Pöschel & Trubowitz (1987).

Observe that S is similar to Tu = −u′′ + qu with

q = (
√

a)′′√
a

. In particular, for a ∈ W 1
2 (0, 1) we get q ∈

W−1
2 (0, 1).

The case of a generic q ∈ W−1
2 (0, 1) was treated

by Shkalikov a.o. (99–05); T is defined by the
regularisation method, its spectral properties studied in
detail.

ISP (in different settings) for SL operator with such
q is completely solved by Albeverio, H., Mykytyuk
(03–05)

Some other types of singularities were treated by
Carlsson, Hald, Freiling, McLaughlin, Yurko
a.o.
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Known results: m > 0, q ∈ L2

Gulliot, Ralston (88): studied the map from q
to SD for m = 1, generalised the approach by Pöschel–
Trubowitz, proved that the map is 1 − 1, described the
isospectral sets

Carlson (93) completely described the possible
spectra for arbitrary m ∈ N using the Darboux–Crum
transformation and studied the isospectral sets

Carlson (97) studied the map q to SD for m ≥
−1

2, proved several results on unique reconstruction of
S(q, m, θ) from the spectral data, without characterising
the spectral data

Gasymov (65) claimed a complete solution for q ∈
L2(0, 1) and m ∈ N without proof

Another setting: reconstruct q from the spectra of
S(q, m1, 0) and S(q, m2, 0) for two different angular
momenta m1 and m2; even uniqueness is not proved!

Carlson, Shubin (94): isospectral set is of finite
dimension if m1 −m2 odd;

Rundell, Sacks (01): local uniqueness in a linearised
sense for m1,m2 = 0, 1, 2, 3.

Our case: m ∈ Z+ and q ∈ W−1
2 (0, 1)
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m = 0: Definition
For real-valued q ∈ W−1

2 (0, 1) define the SL operator T
by regularisation method:

take σ ∈ L2(0, 1) s. t. q = σ′, (e.g., with
∫

σ = 0)
and put

Tu = Tσu = lσ(u) := −(u′ − σu)′ − σu′

dom Tσ = {u ∈ W 1
2 | u′ − σu ∈ W 1

1 , lσ(u) ∈ L2,

u(0) = u(1) = 0}.

Tσ is a self-adjoint bounded below operator with discrete
spectrum {λk}; we may assume λk > 0.

Example 1: q = αδ(· − 1
2). Take

σ(x) = 0 for x ≤ 1
2, σ(x) = α for x > 1

2

then lσ(u) = −u′′ if x 6= 1
2 and u ∈ dom Tσ means u is

continuous at x = 1
2 and u′(1

2+)− u′(1
2−) = αu(1

2).

Example 2: q = (x − 1
2)
−1. Restriction-extension

theory defines the corresponding (non-s.a.) operators
T (γ), γ ∈ C ∪ {∞} by the interface conditions y(1

2+) =
y(1

2−) =: y(1
2), y′(1

2+)− y′(1
2−) = γy(1

2); cf. Kurasov
(1996), Bodenstorfer a.o. (2000). This corresponds
to

σ(x) =

{
log(1

2 − x) for x ≤ 1
2,

log(x− 1
2) + γ for x > 1

2.
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m = 0: ISP

[H.&Mykytyuk’04]: There is a transformation operator
I + Kσ s. t. Kσu(x) =

∫ x

0
k(x, t)u(t) dt, k(x, ·) ∈ L2,

and
y(x, λ) := (I + Kσ) sin

√
λx

solves the equation lσ(u) = λu, u(0) = 0.

Spectral asymptotics:

(A1)
√

λk = πk + λ̃k for some (λ̃k) ∈ `2;

(A2) α−1
k := 2‖y(·, λk)‖2 = 1 + βk for some (βk) ∈ `2.

Reconstruction of σ. Assume that {(λk), (αk)} satisfy
(A1)–(A2), αk are positive, and λk are pairwise distinct.

Put φ(s) :=
∑

k∈N

(
cos πks − αk cos λks

)
∈ L2(0, 2),

f(x, t) := φ(x− t)−φ(x+ t), and consider the Gelfand-
Levitan-Marchenko (GLM) equation:

k(x, t) + f(x, t) +
∫ x

0
k(x, s)f(s, t) ds = 0, x > t.

Then:

(1) GLM is soluble, and the integral operator K with
kernel k coincides with Kσ for

σ(x) := −2φ(2x)− 2
∫ x

0
k(x, t)f(t, x) dt ∈ L2(0, 1);

(2) the sequence {(λk), (αk)} is the SD for the Sturm–
Liouville operator Tσ with σ found.
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Reconstruction by two specra. Assume that sequences
(λk) and (µk) interlace, λk satisfy (A1), and µk are such
that

(A3)
√

µk = π(k − 1
2) + µ̃k for some (µ̃k) ∈ `2.

Then there is a unique σ ∈ L2 such that λn (resp. µn)
are Dirichlet (resp. Dirichlet–Neumann) eigenvalues of lσ.

An analogue of Marchenko’s theorem for q ∈ L2(0, 1):
interlacing and correct asymptotics suffice!
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m > 0: idea

For q ∈ L2, Carlson (93) showed that the
eigenvalues of S(q, m, 0) satisfy

λn(q, m, 0) = π2(n + m
2 )2 + C + cn with (cn) ∈ `2.

In particular, S(q, 2, 0) has 1 EV less than S(q, 0, 0)!
Idea: take λ0 < λ1(q, 2, 0), find a SL operator
with potential q̃, whose Dirichlet spectrum is λ0,
λ1(q, 2, 0), λ2(q, 2, 0), . . . , and then determine q from q̃

Realisation via the transformation operators: take
{(λk)k∈N, (αk)k∈N}, 0 < λ0 < λ1, α0 > 0, and let

I + Fj := s-lim
n→∞

n∑
k=j

αk(·, cos
√

λkt) cos
√

λkx

= (I + Kj)−1(I + K∗
j )−1

Lemma: K := (I + K1)(I + K0)−1 − I has kernel

k(x, t) =
α0y(x, λ0)y(t, λ0)

1− α0

∫ x

0
y2(s, λ0) ds

,

with y(x, λ0) := (I + K0) cos
√

λ0x

In particular: (1) I + K1 = (I + K)(I + K0),

(2) σ1(x)− σ0(x) = 2k(x, x) + α0,

(3) k(x, x) ∼ 3x−1 as x → 0.
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Spectral transformations

Let q ∈ W−1
2 (0, 1), m ∈ Z+, and y(·, λ) be a solution to

−y′′(x) + m(m+1)
x2 y(x) + q(x)y(x) = λy(x)

subject to y(1) = 0; then either y(x, λ) ∼ x−m or
y(x, λ) ∼ xm+1 as x → 0, in the latter case λ is an EV.

Lemma: Take λ0 not an EV and α0 > 0, and put

β(x, λ) := α0

∫ 1

x
y(t, λ)y(t, λ0) dt

and V (x) := 1 + β(x, λ0); then ∃q0 ∈ W−1
2 (0, 1) s. t.

u(x, λ) := y(x, λ)− y(x, λ0)
β(x,λ)
V (x)

solves the equation

−y′′(x) + (m−2)(m−1)
x2 y(x) + q0(x)y(x) = λy(x).

Rem: In fact, V (x) = x−2m+1v(x) and q0 := q −
2 d2

dx2 log v(x)

Thm: The spectrum of the operator S(q0,m − 2, 0)
consists of λ0 and λk(q, m, 0), k ∈ N; moreover,
‖u(·, λ0)‖ = α0 and ‖u(·, λk)‖ = ‖y(·, λk)‖, k ∈ N.

There is an analogous transformation removing one
EV of S(q, m, 0) and changing neither the others nor
the corresponding norming constants; this produces an
operator S(q1,m + 2, 0) for some q1 ∈ W−1

2 (0, 1)
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ISP for Bessel operators
Reconstruction from one spectrum.
Assume that sequences (λn) and (αn) of real numbers are
such that

(B1) the λn strictly increase and satisfy the

asymptotics λn =
[
π(n + m

2 ) + λ̃n

]2
with (λ̃n) ∈ `2

(B2) the αn are positive and satisfy the asymptotics
αn = 1 + α̃n with (α̃n) ∈ `2.

Then there exists a unique real-valued q ∈ W−1
2 (0, 1)

such that λn and αn are respectively the eigenvalues and
the norming constants of the Bessel operator S(q, m, 0).

Reconstruction from two spectra.
In order that two strictly increasing sequences (λn) and
(µn) be the spectra of the operators S(q, m, 0) and
S(q, m, θ) for some real-valued q ∈ W−1

2 (0, 1), m ∈ N,
and θ ∈ (0, π), it is necessary and sufficient that these
sequences interlace, i.e., that µn < λn < µn+1 for all
n ∈ N, that λn satisfy the asymptotics of (B1) and that

(B3) µn =
[
π(n + m−1

2 ) + µ̃n

]2
with (µ̃n) ∈ `2.

In this case q ∈ W−1
2 (0, 1) and θ ∈ (0, π) are unique

and are effectively reconstructed from the two spectra.

Idea: two spectra determine the norming constants!
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