Inverse spectral problems for Bessel operators*

Rostyslav Hryniv
Institute for Applied Problems of Mechanics and Mathematics
79601 Lviv, Ukraine
rhryniv@iapmm.lviv.ua

Durham, August 03, 2005

[^0]
The problem

We consider a Schrödinger operator

$$
(S y)(\mathbf{x})=-\Delta y(\mathbf{x})+Q(\mathbf{x}) y(\mathbf{x})
$$

in the unit ball of \mathbb{R}^{3}, with a spherically symmetric distributional potential $Q(\mathbf{x})=q(|\mathbf{x}|), q \in W_{2}^{-1}(0,1)$. Rotational symmetry allows a decomposition of S via the spherical harmonics, which leads to Bessel operators

$$
S(q, l, \theta) y(x):=-y^{\prime \prime}(x)+\frac{m(m+1)}{x^{2}} y(x)+q(x)
$$

$m \in \mathbb{Z}_{+}$, subject to $\sin \theta y^{[1]}(x)=\cos \theta y(1), \theta \in[0, \pi)$. $S(q, m, \theta)$ has a simple discrete spectrum $\lambda_{1}(q, m, \theta)<$ $\lambda_{2}(q, m, \theta)<\ldots$.

Que: Does the spectrum $\left(\lambda_{n}(q, m, \theta)\right)$ determine q, m, θ ? No! E.g., for $m=0$, extra information is needed (e.g. spectrum for $\theta_{1} \neq \theta$, or norming constants α_{n}).

The inverse spectral problem (ISP) is to reconstruct a Bessel operator $S(q, m, \theta)$ from the spectral data (SD)

Aim: • find the algorithm of solution of ISP;

- give an explicit and complete description of SD

Known results: $m=0$

Borg (1946), LEVINSON (1949): two spectra determine q uniquely

Gelfand \& Levitan, Krein, Marchenko (1950ies) treated the regular case $q \in L_{1}(0,1)$, found sufficient conditions and necessary conditions on the SD and solved the ISP.

Zhikov (1967): $q=F^{\prime}$ with $F \in \mathrm{BV}[0,1] ; T u=f$ is defined through the corresponding integral equation; necessary and sufficient conditions on the SD found, the ISP solved.

Ben Amor \& Remling (2003): $q=F^{\prime}$ on $(0, \infty)$ with F locally of bounded variation; applied de Branges space method to solve ISP on $[0, N]$ for arbitrary $N \in \mathbb{R}_{+}$. "Spectral data" used is $\phi(x):=\int \cos \sqrt{\lambda} x d\left(\rho_{N}-\rho_{0}\right)(\lambda)$.

Andersson (1988) considered a SL operator in impedance form $S u=\frac{1}{a}\left(a u^{\prime}\right)^{\prime}$ in $L_{2}((0,1) ; a)$ with $a \in W_{p}^{1}[0,1], p \geq 1$, or $a \in \mathrm{BV}[0,1]$ and established local solvability of the ISP.

Rundell \& Sacks (1992) studied the case $a \in$ $W_{2}^{1}(0,1)$. With the help of transformation operators they found necessary conditions on the SD, solved the ISP, and suggested a numerical algorithm.

Coleman \& McLaughlin (1993) treated the case $a \in W_{2}^{1}(0,1)$ by recasting $S u=\lambda u$ as $v^{\prime \prime}+b v^{\prime}+\lambda^{2} v=0$ with $b:=a^{\prime} / a$; studied in detail the mapping $b \mapsto \mathrm{SD}$; generalized the approach of Pöschel \& Trubowitz (1987).

Observe that S is similar to $T u=-u^{\prime \prime}+q u$ with $q=\frac{(\sqrt{a})^{\prime \prime}}{\sqrt{a}}$. In particular, for $a \in W_{2}^{1}(0,1)$ we get $q \in$ $W_{2}^{-1}(0,1)$.

The case of a generic $q \in W_{2}^{-1}(0,1)$ was treated by Shkalikov a.o. (99-05); T is defined by the regularisation method, its spectral properties studied in detail.

ISP (in different settings) for SL operator with such q is completely solved by Albeverio, H., Mykytyuk (03-05)

Some other types of singularities were treated by Carlsson, Hald, Freiling, McLaughlin, Yurko A.O.

Known results: $m>0, q \in L_{2}$

Gulliot, Ralston (88): studied the map from q to SD for $m=1$, generalised the approach by PöschelTrubowitz, proved that the map is $1-1$, described the isospectral sets

Carlson (93) completely described the possible spectra for arbitrary $m \in \mathbb{N}$ using the Darboux-Crum transformation and studied the isospectral sets

Carlson (97) studied the map q to SD for $m \geq$ $-\frac{1}{2}$, proved several results on unique reconstruction of $S(q, m, \theta)$ from the spectral data, without characterising the spectral data

Gasymov (65) claimed a complete solution for $q \in$ $L_{2}(0,1)$ and $m \in \mathbb{N}$ without proof

Another setting: reconstruct q from the spectra of $S\left(q, m_{1}, 0\right)$ and $S\left(q, m_{2}, 0\right)$ for two different angular momenta m_{1} and m_{2}; even uniqueness is not proved!

Carlson, Shubin (94): isospectral set is of finite dimension if $m_{1}-m_{2}$ odd;

Rundell, Sacks (01): local uniqueness in a linearised sense for $m_{1}, m_{2}=0,1,2,3$.

Our case: $m \in \mathbb{Z}_{+}$and $q \in W_{2}^{-1}(0,1)$

$m=0:$ Definition

For real-valued $q \in W_{2}^{-1}(0,1)$ define the SL operator T by regularisation method:
take $\sigma \in L_{2}(0,1)$ s. t. $q=\sigma^{\prime}$, (e.g., with $\int \sigma=0$) and put

$$
\begin{array}{r}
T u=T_{\sigma} u=l_{\sigma}(u):=-\left(u^{\prime}-\sigma u\right)^{\prime}-\sigma u^{\prime} \\
\operatorname{dom} T_{\sigma}=\left\{u \in W_{2}^{1} \mid u^{\prime}-\sigma u \in W_{1}^{1}, l_{\sigma}(u) \in L_{2},\right. \\
\quad u(0)=u(1)=0\}
\end{array}
$$

T_{σ} is a self-adjoint bounded below operator with discrete spectrum $\left\{\lambda_{k}\right\}$; we may assume $\lambda_{k}>0$.

Example 1: $q=\alpha \delta\left(\cdot-\frac{1}{2}\right)$. Take

$$
\sigma(x)=0 \quad \text { for } x \leq \frac{1}{2}, \quad \sigma(x)=\alpha \quad \text { for } x>\frac{1}{2}
$$

then $l_{\sigma}(u)=-u^{\prime \prime}$ if $x \neq \frac{1}{2}$ and $u \in \operatorname{dom} T_{\sigma}$ means u is continuous at $x=\frac{1}{2}$ and $u^{\prime}\left(\frac{1}{2}+\right)-u^{\prime}\left(\frac{1}{2}-\right)=\alpha u\left(\frac{1}{2}\right)$.

Example 2: $q=\left(x-\frac{1}{2}\right)^{-1}$. Restriction-extension theory defines the corresponding (non-s.a.) operators $T(\gamma), \gamma \in \mathbb{C} \cup\{\infty\}$ by the interface conditions $y\left(\frac{1}{2}+\right)=$ $y\left(\frac{1}{2}-\right)=: y\left(\frac{1}{2}\right), y^{\prime}\left(\frac{1}{2}+\right)-y^{\prime}\left(\frac{1}{2}-\right)=\gamma y\left(\frac{1}{2}\right)$; cf. KURASOV (1996), Bodenstorfer a.o. (2000). This corresponds to

$$
\sigma(x)= \begin{cases}\log \left(\frac{1}{2}-x\right) & \text { for } x \leq \frac{1}{2} \\ \log \left(x-\frac{1}{2}\right)+\gamma & \text { for } x>\frac{1}{2}\end{cases}
$$

$m=0:$ ISP

[H.\&Mykytyuk'04]: There is a transformation operator $I+K_{\sigma}$ s. t. $K_{\sigma} u(x)=\int_{0}^{x} k(x, t) u(t) d t, \quad k(x, \cdot) \in L_{2}$, and

$$
y(x, \lambda):=\left(I+K_{\sigma}\right) \sin \sqrt{\lambda} x
$$

solves the equation $l_{\sigma}(u)=\lambda u, u(0)=0$.

Spectral asymptotics:

(A1) $\sqrt{\lambda_{k}}=\pi k+\tilde{\lambda}_{k}$ for some $\left(\tilde{\lambda}_{k}\right) \in \ell_{2}$;
(A2) $\alpha_{k}^{-1}:=2\left\|y\left(\cdot, \lambda_{k}\right)\right\|^{2}=1+\beta_{k}$ for some $\left(\beta_{k}\right) \in \ell_{2}$.
Reconstruction of σ. Assume that $\left\{\left(\lambda_{k}\right),\left(\alpha_{k}\right)\right\}$ satisfy (A1)-(A2), α_{k} are positive, and λ_{k} are pairwise distinct. Put $\phi(s):=\sum_{k \in \mathbb{N}}\left(\cos \pi k s-\alpha_{k} \cos \lambda_{k} s\right) \in L_{2}(0,2)$, $f(x, t):=\phi(x-t)-\phi(x+t)$, and consider the Gelfand-Levitan-Marchenko (GLM) equation:

$$
k(x, t)+f(x, t)+\int_{0}^{x} k(x, s) f(s, t) d s=0, \quad x>t .
$$

Then:
(1) GLM is soluble, and the integral operator K with kernel k coincides with K_{σ} for

$$
\sigma(x):=-2 \phi(2 x)-2 \int_{0}^{x} k(x, t) f(t, x) d t \in L_{2}(0,1)
$$

(2) the sequence $\left\{\left(\lambda_{k}\right),\left(\alpha_{k}\right)\right\}$ is the $S D$ for the SturmLiouville operator T_{σ} with σ found.

Reconstruction by two specra. Assume that sequences $\left(\lambda_{k}\right)$ and $\left(\mu_{k}\right)$ interlace, λ_{k} satisfy (A1), and μ_{k} are such that
(A3) $\sqrt{\mu_{k}}=\pi\left(k-\frac{1}{2}\right)+\tilde{\mu}_{k}$ for some $\left(\tilde{\mu}_{k}\right) \in \ell_{2}$.

Then there is a unique $\sigma \in L_{2}$ such that λ_{n} (resp. μ_{n}) are Dirichlet (resp. Dirichlet-Neumann) eigenvalues of l_{σ}.

An analogue of Marchenko's theorem for $q \in L_{2}(0,1)$: interlacing and correct asymptotics suffice!

For $q \in L_{2}$, Carlson (93) showed that the eigenvalues of $S(q, m, 0)$ satisfy

$$
\lambda_{n}(q, m, 0)=\pi^{2}\left(n+\frac{m}{2}\right)^{2}+C+c_{n} \text { with }\left(c_{n}\right) \in \ell_{2}
$$

In particular, $S(q, 2,0)$ has 1 EV less than $S(q, 0,0)$! Idea: take $\lambda_{0}<\lambda_{1}(q, 2,0)$, find a $S L$ operator with potential \tilde{q}, whose Dirichlet spectrum is λ_{0}, $\lambda_{1}(q, 2,0), \lambda_{2}(q, 2,0), \ldots$, and then determine q from \tilde{q}

Realisation via the transformation operators: take $\left\{\left(\lambda_{k}\right)_{k \in \mathbb{N}},\left(\alpha_{k}\right)_{k \in \mathbb{N}}\right\}, \quad 0<\lambda_{0}<\lambda_{1}, \alpha_{0}>0$, and let

$$
\begin{aligned}
I+F_{j} & :=\underset{n \rightarrow \infty}{\operatorname{s-lim}} \sum_{k=j}^{n} \alpha_{k}\left(\cdot, \cos \sqrt{\lambda_{k}} t\right) \cos \sqrt{\lambda_{k}} x \\
& =\left(I+K_{j}\right)^{-1}\left(I+K_{j}^{*}\right)^{-1}
\end{aligned}
$$

Lemma: $K:=\left(I+K_{1}\right)\left(I+K_{0}\right)^{-1}-I$ has kernel

$$
k(x, t)=\frac{\alpha_{0} y\left(x, \lambda_{0}\right) y\left(t, \lambda_{0}\right)}{1-\alpha_{0} \int_{0}^{x} y^{2}\left(s, \lambda_{0}\right) d s}
$$

with $y\left(x, \lambda_{0}\right):=\left(I+K_{0}\right) \cos \sqrt{\lambda_{0}} x$
In particular: (1) $\quad I+K_{1}=(I+K)\left(I+K_{0}\right)$,
(2)

$$
\begin{gathered}
\sigma_{1}(x)-\sigma_{0}(x)=2 k(x, x)+\alpha_{0} \\
\quad k(x, x) \sim 3 x^{-1} \text { as } x \rightarrow 0
\end{gathered}
$$

(3)

Spectral transformations

Let $q \in W_{2}^{-1}(0,1), m \in \mathbb{Z}_{+}$, and $y(\cdot, \lambda)$ be a solution to

$$
-y^{\prime \prime}(x)+\frac{m(m+1)}{x^{2}} y(x)+q(x) y(x)=\lambda y(x)
$$

subject to $y(1)=0$; then either $y(x, \lambda) \sim x^{-m}$ or $y(x, \lambda) \sim x^{m+1}$ as $x \rightarrow 0$, in the latter case λ is an EV .

Lemma: Take λ_{0} not an EV and $\alpha_{0}>0$, and put

$$
\beta(x, \lambda):=\alpha_{0} \int_{x}^{1} y(t, \lambda) y\left(t, \lambda_{0}\right) d t
$$

and $V(x):=1+\beta\left(x, \lambda_{0}\right)$; then $\exists q_{0} \in W_{2}^{-1}(0,1)$ s.t.

$$
u(x, \lambda):=y(x, \lambda)-y\left(x, \lambda_{0}\right) \frac{\beta(x, \lambda)}{V(x)}
$$

solves the equation

$$
-y^{\prime \prime}(x)+\frac{(m-2)(m-1)}{x^{2}} y(x)+q_{0}(x) y(x)=\lambda y(x) .
$$

Rem: In fact, $V(x)=x^{-2 m+1} v(x)$ and $q_{0}:=q-$ $2 \frac{d^{2}}{d x^{2}} \log v(x)$

Thm: The spectrum of the operator $S\left(q_{0}, m-2,0\right)$ consists of λ_{0} and $\lambda_{k}(q, m, 0), k \in \mathbb{N}$; moreover, $\left\|u\left(\cdot, \lambda_{0}\right)\right\|=\alpha_{0}$ and $\left\|u\left(\cdot, \lambda_{k}\right)\right\|=\left\|y\left(\cdot, \lambda_{k}\right)\right\|, k \in \mathbb{N}$.

There is an analogous transformation removing one EV of $S(q, m, 0)$ and changing neither the others nor the corresponding norming constants; this produces an operator $S\left(q_{1}, m+2,0\right)$ for some $q_{1} \in W_{2}^{-1}(0,1)$

ISP for Bessel operators

Reconstruction from one spectrum.

Assume that sequences $\left(\lambda_{n}\right)$ and $\left(\alpha_{n}\right)$ of real numbers are such that
(B1) the λ_{n} strictly increase and satisfy the asymptotics $\lambda_{n}=\left[\pi\left(n+\frac{m}{2}\right)+\tilde{\lambda}_{n}\right]^{2}$ with $\left(\tilde{\lambda}_{n}\right) \in \ell_{2}$
(B2) the α_{n} are positive and satisfy the asymptotics $\alpha_{n}=1+\tilde{\alpha}_{n}$ with $\left(\tilde{\alpha}_{n}\right) \in \ell_{2}$.

Then there exists a unique real-valued $q \in W_{2}^{-1}(0,1)$ such that λ_{n} and α_{n} are respectively the eigenvalues and the norming constants of the Bessel operator $S(q, m, 0)$.

Reconstruction from two spectra.

In order that two strictly increasing sequences $\left(\lambda_{n}\right)$ and $\left(\mu_{n}\right)$ be the spectra of the operators $S(q, m, 0)$ and $S(q, m, \theta)$ for some real-valued $q \in W_{2}^{-1}(0,1), m \in \mathbb{N}$, and $\theta \in(0, \pi)$, it is necessary and sufficient that these sequences interlace, i.e., that $\mu_{n}<\lambda_{n}<\mu_{n+1}$ for all $n \in \mathbb{N}$, that λ_{n} satisfy the asymptotics of (B1) and that
(B3) $\mu_{n}=\left[\pi\left(n+\frac{m-1}{2}\right)+\tilde{\mu}_{n}\right]^{2}$ with $\left(\tilde{\mu}_{n}\right) \in \ell_{2}$.
In this case $q \in W_{2}^{-1}(0,1)$ and $\theta \in(0, \pi)$ are unique and are effectively reconstructed from the two spectra.

Idea: two spectra determine the norming constants!

[^0]: *Supported by the A. von Humboldt Foundation. Based on joint work with S. Albeverio (Bonn) and Ya. Mykytyuk (Lviv)

