On the spectrum in Smilansky's model of irreversible quantum graphs: the 2-oscillator case
W.D. Evans, M. Solomyak

August 16, 2005
\star Graph $\Gamma=\mathbb{R}, o_{1}=1, o_{2}=-1$
\star The operator $\mathbf{A}_{\alpha}, \alpha=\left(\alpha_{+}, \alpha_{-}\right)$

- The differential expression

$$
\begin{aligned}
\mathcal{A} U=\mathcal{A}_{\nu} U=-U_{x^{2}}^{\prime \prime} & +\frac{1}{2}\left(-U_{q_{+}^{2}}^{\prime \prime}+q_{+}^{2} U\right) \\
& +\frac{1}{2}\left(-U_{q_{-}^{2}}^{\prime \prime}+q_{-}^{2} U\right)
\end{aligned}
$$

- Matching conditions:

$$
\left[U_{x}^{\prime}\right]\left(\pm 1, q_{+}, q_{-}\right)=\alpha_{ \pm} q_{ \pm} U\left(\pm 1, q_{+}, q_{-}\right)
$$

- The decomposition $U \sim\left\{u_{m, n}\right\}$

$$
U\left(x, q_{+}, q_{-}\right)=\sum_{m, n \in \mathbb{N}_{0}} u_{m, n}(x) \chi_{m}\left(q_{+}\right) \chi_{n}\left(q_{-}\right),
$$

$\mathcal{A} U \sim\left\{L_{m, n} u_{m, n}\right\} \Rightarrow$

$$
\begin{equation*}
\left(L_{m, n} u\right)(x)=-u^{\prime \prime}(x)+r_{m, n} u(x), \quad x \neq \pm 1 ; \tag{1}
\end{equation*}
$$

$$
r_{m, n}=m+n+1, \quad m, n \in \mathbb{N}_{0} .
$$

- Matching conditions at $x= \pm 1$

$$
\begin{align*}
& {\left[u_{m, n}^{\prime}\right](1)} \\
& =\frac{n}{\sqrt{2}}\left(\sqrt{m+1} u_{m+1, n}(1)+\sqrt{m} u_{m-1, n}(1)\right) \tag{2}\\
& {\left[u_{m, n}^{\prime}\right](-1)} \\
& =\frac{\alpha}{\sqrt{2}}\left(\sqrt{n+1} u_{m, n+1}(-1)+\sqrt{n} u_{m, n-1}(-1)\right) \tag{3}
\end{align*}
$$

- The domain \mathcal{D}_{α} of \mathbf{A}_{α}

An element $U \sim\left\{u_{m, n}\right\}$ lies in \mathcal{D}_{α} if and only if 1. $u_{m, n} \in H^{1}(\mathbb{R})$ for all m, n.
2. For all m, n the restriction of $u_{m, n}$ to each interval $(-\infty,-1),(-1,1),(1, \infty)$ lies in H^{2} and moreover,

$$
\sum_{m, n} \int_{\mathbb{R}}\left|L_{m, n} u_{m, n}\right|^{2} d x<\infty
$$

3. The conditions (2) and (3) are satisfied.

\star Theorem 1

For all $\alpha_{+}, \alpha_{-} \geq 0, \mathbf{A}_{\alpha}$ is self-adjoint

\star Theorem 2

1. $\alpha_{ \pm}<\sqrt{2} \Rightarrow \sigma_{a . c}\left(\mathbf{A}_{\alpha}\right)=[1, \infty)$
2. $\alpha_{+}=\sqrt{2}, \alpha_{-}<\sqrt{2}\left(\right.$ or $\left.\alpha_{-}=\sqrt{2}, \alpha_{+}<\sqrt{2}\right)$

$$
\Rightarrow \sigma_{a . c}\left(\mathbf{A}_{\alpha}\right)=[1 / 2, \infty)
$$

3. $\alpha_{+}=\alpha_{-}=\sqrt{2} \Rightarrow \sigma_{a . c}\left(\mathbf{A}_{\alpha}\right)=[0, \infty)$
4. $\max \left(\alpha_{+}, \alpha_{-}\right)>\sqrt{2} \Rightarrow \sigma_{a . c}\left(\mathbf{A}_{\alpha}\right)=\mathbb{R}$

* Theorem 3

1. $\alpha_{ \pm}<\sqrt{2} \Rightarrow \mathbf{A}_{\alpha}$ is bounded below and its spectrum in $(-\infty, 1)$ is non-empty and finite.
2. Let

$$
\Omega_{\Psi}:=\{(x, y): \Psi(x) \leq y \leq 1, \quad \Psi(y) \leq x \leq 1\},
$$

where

$$
\Psi(t)=e^{-\psi(t)}, \quad \psi(t)=o\left(t^{-1 / 4}\right), t \rightarrow 0 .
$$

Then,

$$
\begin{align*}
N_{-}\left(1 ; \mathbf{A}_{\alpha}\right) & \sim \frac{1}{4 \sqrt{2}} \sqrt{\frac{\alpha_{+}}{\sqrt{2}-\alpha_{+}}} \\
& +\frac{1}{4 \sqrt{2}} \sqrt{\frac{\alpha_{-}}{\sqrt{2}-\alpha_{-}}}, \tag{4}
\end{align*}
$$

uniformly for $\left(1-\alpha_{+} / \sqrt{2}, 1-\alpha_{-} / \sqrt{2}\right) \in \Omega_{\psi}$.

\star Proof of Theorem 1

To prove

$$
\mathbf{A}_{\alpha} V=\wedge V,\left(\wedge \in \mathbb{C}_{ \pm}\right) \Rightarrow V=0
$$

- $V \sim\left\{v_{m, n}\right\}, r_{m, n}=m+n+1$,

$$
v_{m, n}(x)=r_{m, n}^{1 / 4}\left\{C_{m, n}^{+} \phi_{m, n}^{+}(x)+C_{m, n}^{-} \phi_{m, n}^{-}(x)\right\}
$$

where $\left\{\phi_{m, n}^{+}, \phi_{m, n}^{-}\right\}$is a basis of $\mathcal{F}:=\left\{v:-v^{\prime \prime}+\right.$ $\left.\zeta^{2} v=0, v \in L^{2}(\mathbb{R})\right\}$, with $\zeta^{2}=r_{m, n}-\Lambda=$: $\zeta_{m, n}^{2}(\wedge)$.

- $V \in L^{2}\left(\mathbb{R}^{3}\right) \Leftrightarrow\left\{C_{m, n}^{+}, C_{m, n}^{-}\right\} \in \ell^{2}\left(\mathbb{N}_{0}^{2} ; \mathbb{C}^{2}\right)$
- Matching conditions (2) and (3) \Rightarrow

$$
q_{m+1, n}^{+} C_{m+1, n}^{+}
$$

$$
\begin{gathered}
+\frac{2 \mu_{+} p_{m, n}(\wedge)}{1-e^{-4 \zeta_{m, n}(\wedge)}}\left(C_{m, n}^{+}-C_{m, n}^{-} e^{-2 \zeta_{m, n}(\wedge)}\right) \\
+q_{m, n}^{+} C_{m-1, n}^{+}=0 \\
q_{m, n+1}^{-} C_{m, n+1}^{-} \\
+\frac{2 \mu-p_{m, n}(\wedge)}{1-e^{-4 \zeta_{m, n}(\wedge)}}\left(C_{m, n}^{-}-C_{m, n}^{+} e^{-2 \zeta_{m, n}(\wedge)}\right) \\
+q_{m, n}^{-} C_{m, n-1}^{-}=0
\end{gathered}
$$

where

$$
\begin{aligned}
& q_{m, n}^{+}=m^{1 / 2} r_{m, n}^{1 / 4} r_{m-1, n}^{1 / 4} \\
& q_{m, n}^{-}=n^{1 / 2} r_{m, n}^{1 / 4} r_{m, n-1}^{1 / 4} \\
& p_{m, n}(\Lambda)=\zeta_{m, n}(\Lambda) r_{m, n}^{1 / 2}
\end{aligned}
$$

- Let $\mathcal{R}(\Lambda)$ be the infinite matrix which corresponds to this system and $\mathcal{R}^{\prime}(\Lambda)$ that for the system with exponential terms removed (operators in $\left.\ell^{2}\left(\mathbb{N}_{0}^{2} ; \mathbb{C}^{2}\right)\right)$.
- $\mathcal{R}^{\prime}(\Lambda)=\sum_{n} \oplus \mathcal{J}_{n}^{+}(\Lambda) \oplus \sum_{m}{ }^{\oplus} \mathcal{J}_{m}^{-}(\Lambda)$
$\partial_{k}^{ \pm}$Jacobi matrices

$$
\begin{aligned}
\left\|\mathcal{\partial}_{k}^{ \pm}(i \tau)^{-1}\right\| & \leq(c \sqrt{|\tau|})^{-1} \\
\Rightarrow\left\|\mathcal{R}^{\prime}(i \tau)^{-1}\right\| & \leq(c \sqrt{|\tau|})^{-1}
\end{aligned}
$$

- $\mathcal{R}(i \tau)=\mathcal{R}^{\prime}(i \tau)+\mathcal{N}(i \tau)$
$\mathcal{N}(i \tau)$ block-diagonal, $\|\mathcal{N}(i \tau)\| \leq C\left(\tau_{0}\right),|\tau| \geq \tau_{0}$.
- For $|\tau|$ large enough, $\mathcal{R}(i \tau)$ has a bounded inverse

$$
\Rightarrow V=0
$$

\star Proof of Theorem 2

- The operator A_{α}^{o}

$$
\begin{gathered}
\mathbf{A}_{\alpha}^{o}:=\mathbf{A}_{\alpha+}^{+} \oplus \mathbf{A}_{\alpha-}^{-} \\
\mathbf{A}_{\alpha_{+}}^{+}=\sum_{n \in \mathbb{N}_{0}}^{\oplus}\left(\mathbf{A}_{\mathbb{R}_{+} ; \alpha_{+}}+n+1 / 2\right), \\
\mathbf{A}_{\alpha_{-}}^{-}=\sum_{m \in \mathbb{N}_{0}} \oplus\left(\mathbf{A}_{\mathbb{R}_{-} ; \alpha_{-}}+m+1 / 2\right)
\end{gathered}
$$

$\mathbf{A}_{\mathbb{R}_{+} ; \alpha_{+}}$one-oscillator operator on \mathbb{R}_{+}with matching condition at $o_{1}=1$ and Dirichlet condition at 0; similarly for $\mathbf{A}_{\mathbb{R}_{-} ; \alpha_{-}}$.

- $\left(\mathbf{A}_{\alpha}^{o}-\Lambda\right)^{-3}-\left(\mathbf{A}_{\alpha}-\Lambda\right)^{-3} \in \mathfrak{S}_{1}$
- Complete isometric wave operators exist for ($\mathbf{A}_{\alpha}, \mathbf{A}_{\alpha}^{o}$) and ($\mathbf{A}_{\alpha}^{o}, \mathbf{A}_{\alpha}$)
- Absolutely continuous parts of \mathbf{A}_{α} and \mathbf{A}_{a}^{o} unitarily equivalent \Rightarrow Theorem 2.

\star Proof of Theorem 3

- Quadratic form

$$
\mathbf{a}_{\alpha}[U]=\mathbf{a}[U]+\alpha_{+} \mathbf{b}_{+}[U]+\alpha_{-} \mathbf{b}_{-}[U]
$$

where, for $U \sim\left\{u_{m, n}\right\}$,

$$
\mathbf{a}[U]=\sum_{m, n \in \mathbb{N}_{\mathrm{O}}} \int_{\mathbb{R}}\left(\left|u_{m, n}^{\prime}(x)\right|^{2}+r_{m, n}\left|u_{m, n}\right|^{2}\right) d x
$$

$$
\mathbf{b}_{+}[U]=\operatorname{Re} \sum_{m, n \in \mathbb{N}_{0}} \sqrt{2 m} u_{m, n}(1) \overline{u_{m-1, n}(1)}
$$

$$
\mathbf{b}_{-}[U]=\operatorname{Re} \sum_{m, n \in \mathbb{N}_{0}} \sqrt{2 n} u_{m, n}(-1) \overline{u_{m, n-1}(-1)}
$$

- $\alpha_{ \pm} \leq \sqrt{2} \Rightarrow$

$$
\left|\alpha_{+} \mathbf{b}_{+}[U]+\alpha_{-} \mathbf{b}_{-}[U]\right| \leq a[U]+k\|U\|_{\mathfrak{H}}^{2}
$$

$$
\alpha_{ \pm}<\sqrt{2} \Rightarrow \mathbf{a}_{\alpha} \quad \text { closed }
$$

- $\sigma\left(\mathbf{A}_{\alpha}\right) \cap(-\infty, 1)$ finite and non-empty

Let $\mathbf{A}_{\alpha}^{(L)}$ be the operator associated with \mathbf{a}_{α} on
$\mathbf{d}^{(L)}=\left\{U \sim\left\{u_{m, n}\right\}: u_{m, n}(\pm 1)=0, m+n \leq L\right\}$
$\mathbf{A}_{\alpha}^{(L)}=\mathbf{A}_{\alpha}^{(L,-)} \oplus \mathbf{A}_{\alpha}^{(L,+)}$ where

$$
\begin{gathered}
\mathbf{A}_{\alpha}^{(L,-)}=\sum_{m+n \leq L}^{\oplus}\left(-\frac{d^{2}}{d x^{2}}+m+n+1\right) \\
\sigma\left(\mathbf{A}_{\alpha}^{(L,-)}\right)=\sigma_{a . c}\left(\mathbf{A}_{\alpha}^{(L,-)}\right)=[1, \infty)
\end{gathered}
$$

and for any $\lambda_{0}>0$,

$$
\mathbf{A}_{\alpha}^{(L,+)} \geq \lambda_{0}
$$

Thus

$$
\sigma\left(\mathbf{A}_{\alpha}^{(L)}\right)=[1, \infty) ; \quad \sigma_{a . c}\left(\mathbf{A}_{\alpha}^{(L)}\right) \supseteq\left[1, \lambda_{0}\right)
$$

$\mathbf{d}^{(L)}$ has finite co-dimension in $\mathbf{d} \Rightarrow$ resolvents of $\mathbf{A}_{\alpha}, \mathbf{A}_{\alpha}^{(L)}$ differ by a finite rank operator.

- Removing the component $u_{0,0}$

Let

$$
\mathcal{H}^{0}:=\left\{U \sim\left\{u_{m, n}\right\}: u_{0,0}=0\right\}
$$

and denote corresponding forms and operators by $\mathbf{a}_{\alpha}^{0}, \mathbf{A}_{\alpha}^{0}, \cdots$.

$$
0 \leq N_{-}\left(1 ; \mathbf{A}_{\alpha}\right)-N_{-}\left(1 ; \mathbf{A}_{\alpha}^{0}\right) \leq 2
$$

- Let \mathbf{B}_{α} be the bounded operator in d^{0} associated with $\alpha_{+} b_{+}+\alpha_{-} b_{-}$and $\mathcal{F}:=\sum^{\oplus} \mathcal{F} \sqrt{m+n}$. We have $\mathcal{F}^{\perp} \subset \operatorname{ker} \mathbf{B}_{\alpha}$ and we can restrict attention to \mathcal{F}. Bounded operators $B_{ \pm}^{\prime}$ are defined on $\ell^{2}\left(\mathbb{N}_{0}^{2} \backslash\{0,0\}\right)$ such that

$$
N_{-}\left(1 ; \mathbf{A}_{\alpha}^{0}\right)=N_{+}\left(1 ;-\alpha_{+} \mathbf{B}_{+}^{\prime}-\alpha_{-} \mathbf{B}_{-}^{\prime}\right)
$$

$$
\begin{gathered}
I+\alpha_{+} B_{+}^{\prime}+\alpha_{-} B_{-}^{\prime}=\left(I+\alpha_{+} B_{+}^{\prime \prime}\right) \oplus\left(I+\alpha_{-} B_{-}^{\prime \prime}\right)+X_{\alpha} \\
N_{-}\left(0 ; I+\alpha_{ \pm} B_{ \pm}^{\prime \prime}\right) \sim \frac{1}{4 \sqrt{2}} \sqrt{\frac{\alpha_{ \pm}}{\sqrt{2}-\alpha_{ \pm}}} \\
N_{+}\left(\varepsilon ;\left|X_{\alpha}\right|\right) \leq R \ln ^{4}(K / \varepsilon) .
\end{gathered}
$$

References

W.D.Evans and M.Solomyak, Journal of Physics, A: Mathematics and General. 38 (2005), 1-17.
W.D.Evans and M.Solomyak, Journal of Physics, A: Mathematics and General, to appear; arXive: math.SP/0505383.

