Interpolation on Semigroupoid Algebras

Michael Dritschel, Stefania Marcantognini, Scott McCullough

August 6, 2005

The classical Nevanlinna-Pick interpolation problem

Problem: Given *n* points $z_1, \ldots z_n$ in \mathbb{D} , and *n* complex values w_1, \ldots, w_n , does there exist a analytic function $f : \mathbb{D} \to \mathbb{D}$ such that $f(z_k) = w_k, k = 1, \ldots, n$?

The classical Nevanlinna-Pick interpolation problem

Problem: Given *n* points $z_1, \ldots z_n$ in \mathbb{D} , and *n* complex values w_1, \ldots, w_n , does there exist a analytic function $f : \mathbb{D} \to \mathbb{D}$ such that $f(z_k) = w_k, k = 1, \ldots, n$?

If we write $H^{\infty}(\mathbb{D})$ for the bounded analytic functions on the disk, we are looking for a interpolating function *f* in the closed unit ball of $H^{\infty}(\mathbb{D})$ (called the Schur class).

The classical Nevanlinna-Pick interpolation problem

Problem: Given *n* points $z_1, \ldots z_n$ in \mathbb{D} , and *n* complex values w_1, \ldots, w_n , does there exist a analytic function $f : \mathbb{D} \to \mathbb{D}$ such that $f(z_k) = w_k, k = 1, \ldots, n$?

If we write $H^{\infty}(\mathbb{D})$ for the bounded analytic functions on the disk, we are looking for a interpolating function *f* in the closed unit ball of $H^{\infty}(\mathbb{D})$ (called the Schur class).

 $H^{\infty}(\mathbb{D})$ is the *multiplier algebra* for $H^{2}(\mathbb{D})$, the analytic functions on the disk with square summable power series. That is, for all $f \in H^{2}(\mathbb{D})$ and for any $\varphi \in H^{\infty}(\mathbb{D})$, the function with values $M_{\varphi}f(z) = \varphi(z)f(z)$ is in $H^{2}(\mathbb{D})$.

A solution exists \iff the matrix

$$\left(\frac{1-w_j w_k^*}{1-z_j z_k^*}\right)_{j,k=1,\dots,n}$$

is positive (ie, positive semidefinite).

A solution exists \iff the matrix

$$\left(\frac{1-w_j w_k^*}{1-z_j z_k^*}\right)_{j,k=1,\dots n}$$

is positive (ie, positive semidefinite). We call

$$\mathbf{k}(w,z) = (1 - zw^*)^{-1}$$

the Szegő kernel. Write $k : \mathbb{D} \to \mathbb{C}$ as $k(z)(\cdot) = \mathbf{k}(\cdot, z)$.

A solution exists \iff the matrix

$$\left(\frac{1-w_j w_k^*}{1-z_j z_k^*}\right)_{j,k=1,\dots,n}$$

is positive (ie, positive semidefinite). We call

$$\mathbf{k}(w,z) = (1 - zw^*)^{-1}$$

the Szegő kernel. Write $k : \mathbb{D} \to \mathbb{C}$ as $k(z)(\cdot) = \mathbf{k}(\cdot, z)$. *k* is an example of a *reproducing kernel*: for $f \in H^2(\mathbb{D})$,

 $\langle f, k(z) \rangle_{H^2(\mathbb{D})} = f(z).$

A solution exists \iff the matrix

$$\left(\frac{1-w_j w_k^*}{1-z_j z_k^*}\right)_{j,k=1,\dots,n}$$

is positive (ie, positive semidefinite). We call

$$\mathbf{k}(w,z) = (1 - zw^*)^{-1}$$

the Szegő kernel. Write $k : \mathbb{D} \to \mathbb{C}$ as $k(z)(\cdot) = \mathbf{k}(\cdot, z)$. *k* is an example of a *reproducing kernel*: for $f \in H^2(\mathbb{D})$,

 $\langle f, k(z) \rangle_{H^2(\mathbb{D})} = f(z).$

A straightforward calculation shows $M_{\varphi}^*k(z) = \varphi(z)^*k(z)$, (so in particular, if $\varphi(z_k) = w_k$ then $M_{\varphi}^*k(z) = w_k^*k(z)$).

So the N-P problem has a solution iff

$$I - M_{\varphi}M_{\varphi}^* \geq 0$$
 on $\mathcal{M} = \operatorname{span}\{k(z_1), \ldots, k(z_n)\},\$

in which case φ can be extended to all of $H^2(\mathbb{D})$ without increasing the norm.

So the N-P problem has a solution iff

$$I - M_{\varphi}M_{\varphi}^* \geq 0$$
 on $\mathcal{M} = \operatorname{span}\{k(z_1), \ldots, k(z_n)\},\$

in which case φ can be extended to all of $H^2(\mathbb{D})$ without increasing the norm.

Recall that if *A*, *B* are matrices, the *Schur product* of *A* and *B* (write $A \star B$) is the entrywise product.

So the N-P problem has a solution iff

$$I - M_{\varphi}M_{\varphi}^* \geq 0 \text{ on } \mathcal{M} = \operatorname{span}\{k(z_1), \ldots, k(z_n)\},$$

in which case φ can be extended to all of $H^2(\mathbb{D})$ without increasing the norm.

Recall that if *A*, *B* are matrices, the *Schur product* of *A* and *B* (write $A \star B$) is the entrywise product.

We can rewrite the condition for the existence of a solution of the Pick problem as

$$([1] - \varphi \varphi^*) \star \mathbf{k} \ge 0,$$

where [1] is the matrix which has all entries equal to 1.

It is possible to give the solution explicitly using a "lurking isometry" argument.

It is possible to give the solution explicitly using a "lurking isometry" argument.

Let $\delta(z) = 1$, Z(z) = z. Then the positivity condition can be rewritten as

$$([1] - \varphi \varphi^*) \star kk^* = \gamma \gamma^* \iff \delta \delta^* - \varphi \varphi^* = \gamma \gamma^* \star ([1] - ZZ^*) \iff Z \gamma \gamma^* Z^* + \delta \delta^* = \gamma \gamma^* + \varphi \varphi^*$$

It is possible to give the solution explicitly using a "lurking isometry" argument.

Let $\delta(z) = 1$, Z(z) = z. Then the positivity condition can be rewritten as

$$([1] - \varphi \varphi^*) \star kk^* = \gamma \gamma^* \iff \delta \delta^* - \varphi \varphi^* = \gamma \gamma^* \star ([1] - ZZ^*) \iff Z \gamma \gamma^* Z^* + \delta \delta^* = \gamma \gamma^* + \varphi \varphi^*$$

Then there is an isometry V such that

$$V\begin{pmatrix} Z(z)\gamma(z)\\\delta(z) \end{pmatrix} = \begin{pmatrix} \gamma(z)\\\varphi(z) \end{pmatrix}$$

Let $V = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. Then we have

 $Az\gamma(z) + B = \gamma(z)$ $Cz\gamma(z) + D = \varphi(z)$

Let
$$V = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
. Then we have

 $Az\gamma(z) + B = \gamma(z)$ $Cz\gamma(z) + D = \varphi(z)$

Solve for γ in the first equation:

$$\gamma(z) = (1 - Az)^{-1}B.$$

Plug into the second equation:

$$\varphi(z) = D + zC(1 - Az)^{-1}B.$$

Let $V = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. Then we have

 $Az\gamma(z) + B = \gamma(z)$ $Cz\gamma(z) + D = \varphi(z)$

Solve for γ in the first equation:

$$\gamma(z) = (1 - Az)^{-1}B.$$

Plug into the second equation:

$$\varphi(z) = D + zC(1 - Az)^{-1}B.$$

We refer to this as a *transfer function representation* for φ .

The fact that M_{φ}^* can be extended from \mathcal{M} to the whole space without increasing the norm is referred to as the *Pick property* (for $H^2(\mathbb{D})$). Spaces with this property are rather special.

The fact that M_{φ}^* can be extended from \mathcal{M} to the whole space without increasing the norm is referred to as the *Pick property* (for $H^2(\mathbb{D})$). Spaces with this property are rather special. For example, there is no Hilbert space of functions with the Pick property having $H^{\infty}(\mathbb{D}^2)$ as the space of multipliers. So how do we solve interpolation problems in the function algebra $H^{\infty}(\mathbb{D}^2)$?

The fact that M_{φ}^* can be extended from \mathcal{M} to the whole space without increasing the norm is referred to as the *Pick property* (for $H^2(\mathbb{D})$). Spaces with this property are rather special.

For example, there is no Hilbert space of functions with the Pick property having $H^{\infty}(\mathbb{D}^2)$ as the space of multipliers. So how do we solve interpolation problems in the function algebra $H^{\infty}(\mathbb{D}^2)$?

The approach we use, due to Jim Agler, is to look at all of the spaces (and their kernels) having $H^{\infty}(\mathbb{D}^2)$ as the multiplier algebra, and require that for all such kernels, $([1] - \varphi \varphi^*) \star \mathbf{k} \ge 0$.

The fact that M_{φ}^* can be extended from \mathcal{M} to the whole space without increasing the norm is referred to as the *Pick property* (for $H^2(\mathbb{D})$). Spaces with this property are rather special.

For example, there is no Hilbert space of functions with the Pick property having $H^{\infty}(\mathbb{D}^2)$ as the space of multipliers. So how do we solve interpolation problems in the function algebra $H^{\infty}(\mathbb{D}^2)$?

The approach we use, due to Jim Agler, is to look at all of the spaces (and their kernels) having $H^{\infty}(\mathbb{D}^2)$ as the multiplier algebra, and require that for all such kernels, $([1] - \varphi \varphi^*) \star \mathbf{k} \ge 0$. A similar approach applies to the **Carathéodory-Fejér interpolation problem**: Let $a_0, \ldots, a_n \in \mathbb{C}$. Is there a function in the closed unit ball of $H^{\infty}(\mathbb{D})$ having these values as the first n + 1 coefficients of its series expansion about 0?

Let *G* be a set with a function from $X \to G$, where $X \subset G \times G$, called a *partial multiplication* and written *xy* for $(x, y) \in X$.

Let *G* be a set with a function from $X \to G$, where $X \subset G \times G$, called a *partial multiplication* and written *xy* for $(x, y) \in X$. We define *idempotents* as those elements *e* of *G* such that ex = x whenever *ex* is defined and ye = y whenever *ye* is defined.

Let *G* be a set with a function from $X \to G$, where $X \subset G \times G$, called a *partial multiplication* and written *xy* for $(x, y) \in X$. We define *idempotents* as those elements *e* of *G* such that ex = x whenever *ex* is defined and ye = y whenever *ye* is defined.

The following laws are assumed to hold:

- (associative law) If either (*ab*)*c* or *a*(*bc*) is defined, then so is the other and they are equal. If *ab*, *bc* are defined, then so is (*ab*)*c*.
- 2. (existence of idempotents) For all $a \in G$, there exist $e, f \in G$ with ea = a = af. Also, if $e^2 = e$, then e is idempotent.
- 3. (nonexistence of inverses) If $a, b \in G$ and ab = e where e is idempotent, then a = b = e.
- 4. (strong artinian law) For all $a \in G$, the set $\{z, b, w : zbw = a\}$ is finite, $+ \dots$

Let *G* be a set with a function from $X \to G$, where $X \subset G \times G$, called a *partial multiplication* and written *xy* for $(x, y) \in X$. We define *idempotents* as those elements *e* of *G* such that ex = x whenever *ex* is defined and ye = y whenever *ye* is defined.

The following laws are assumed to hold:

- (associative law) If either (*ab*)*c* or *a*(*bc*) is defined, then so is the other and they are equal. If *ab*, *bc* are defined, then so is (*ab*)*c*.
- 2. (existence of idempotents) For all $a \in G$, there exist $e, f \in G$ with ea = a = af. Also, if $e^2 = e$, then e is idempotent.
- 3. (nonexistence of inverses) If $a, b \in G$ and ab = e where e is idempotent, then a = b = e.
- 4. (strong artinian law) For all $a \in G$, the set $\{z, b, w : zbw = a\}$ is finite, $+ \dots$

We call such a *G* a semigroupoid.

Let *G* be a set with a function from $X \to G$, where $X \subset G \times G$, called a *partial multiplication* and written *xy* for $(x, y) \in X$. We define *idempotents* as those elements *e* of *G* such that ex = x whenever *ex* is defined and ye = y whenever *ye* is defined.

The following laws are assumed to hold:

- (associative law) If either (*ab*)*c* or *a*(*bc*) is defined, then so is the other and they are equal. If *ab*, *bc* are defined, then so is (*ab*)*c*.
- 2. (existence of idempotents) For all $a \in G$, there exist $e, f \in G$ with ea = a = af. Also, if $e^2 = e$, then e is idempotent.
- 3. (nonexistence of inverses) If $a, b \in G$ and ab = e where e is idempotent, then a = b = e.
- 4. (strong artinian law) For all $a \in G$, the set $\{z, b, w : zbw = a\}$ is finite, $+ \dots$

We call such a *G* a semigroupoid. No commutativity or cancellation required!

Semigroupoids—Order

Define a partial order on G as follows:

 $b \le a$ if there exist $z, w \in G$ such that a = zbw

Check: $a \le a$ since a = eaf for some idempotents e, f, etc.

Semigroupoids—Order

Define a partial order on G as follows:

 $b \le a$ if there exist $z, w \in G$ such that a = zbw

Check: $a \le a$ since a = eaf for some idempotents e, f, etc. By definition *G* is *artinian* with respect to this order.

Semigroupoids—Order

Define a partial order on G as follows:

 $b \le a$ if there exist $z, w \in G$ such that a = zbw

Check: $a \le a$ since a = eaf for some idempotents e, f, etc. By definition *G* is *artinian* with respect to this order. A set $F \subset G$ is *lower* if $a \in F$ and $b \le a$ then $b \in F$.

Convolution products

The formal "power series" on a lower set *F* (ie, functions $f, g: F \to \mathbb{C}$) form a complex vector space $\mathcal{P}(F)$ indexed by *F* with pointwise addition.

Since G is artinian there is a well-defined product given by

$$(f \star g)(a) = \sum_{rs=a} f(r)g(s) \in \mathcal{P}(F).$$

Convolution products

The formal "power series" on a lower set *F* (ie, functions $f, g: F \to \mathbb{C}$) form a complex vector space $\mathcal{P}(F)$ indexed by *F* with pointwise addition.

Since G is artinian there is a well-defined product given by

$$(f \star g)(a) = \sum_{rs=a} f(r)g(s) \in \mathcal{P}(F).$$

Multiplicative unit:

$$\delta(x) = \begin{cases} 1 & x \in F_e, \\ 0 & \text{otherwise.} \end{cases}$$

A function *f* is invertible if and only if f(x) is invertible for all $x \in F_e$.

Convolution products, cont.

We also introduce the reverse product

$$(f \stackrel{\wedge}{\star} g)(a) = \sum_{rs=a} f(s)g(r)$$

The multiplicative unit remains δ and the invertibility condition is the same.

It is unimportant that the functions map into \mathbb{C} .

Michael Jury defines a generalization of the Schur product which is a useful tool for interpolation problems. The equivalent in our setting is the following, which can be viewed as a bivariate version of the convolution product.

Michael Jury defines a generalization of the Schur product which is a useful tool for interpolation problems. The equivalent in our setting is the following, which can be viewed as a bivariate version of the convolution product.

Definition

Let *F* be a lower set, *A*, *B* matrices over \mathbb{C} indexed by *F* (we use M(F) for the collection of such matrices). Define $A \star B$ by

$$(A \star B)(a,b) = \sum_{pq=a} \sum_{rs=b} A(p,r)B(q,s).$$

Michael Jury defines a generalization of the Schur product which is a useful tool for interpolation problems. The equivalent in our setting is the following, which can be viewed as a bivariate version of the convolution product.

Definition

Let *F* be a lower set, *A*, *B* matrices over \mathbb{C} indexed by *F* (we use M(F) for the collection of such matrices). Define $A \star B$ by

$$(A \star B)(a,b) = \sum_{pq=a} \sum_{rs=b} A(p,r)B(q,s).$$

We can similarly define $A \div B$.

Michael Jury defines a generalization of the Schur product which is a useful tool for interpolation problems. The equivalent in our setting is the following, which can be viewed as a bivariate version of the convolution product.

Definition

Let *F* be a lower set, *A*, *B* matrices over \mathbb{C} indexed by *F* (we use M(F) for the collection of such matrices). Define $A \star B$ by

$$(A \star B)(a, b) = \sum_{pq=a} \sum_{rs=b} A(p, r)B(q, s).$$

We can similarly define $A \div B$.

The assumption that the entries of *A* and *B* are in \mathbb{C} is not important, and we will at times use the \star and $\hat{\star}$ product when the entries are in other algebras.
The bivariate ***** product—properties

- Associative: $C \star (A \star B) = (C \star A) \star B$.
- Not necessarily commutative!
- $\bullet A, B \ge 0 \Longrightarrow A \star B \ge 0.$
- ► $[1] = \delta \delta^*$ (that is, $[1]_{a,b}$ is 1 for a, b both elements of F_e and zero otherwise) is the multiplicative unit.
- ► A invertible \iff A_{ab} is invertible for all $a, b \in F_e$. The inverse is unique.
- The inverse of a positive matrix need not be positive!
- Inverses of selfadjoint elements are selfadjoint.
- $\blacktriangleright (A \star B)^* = A^* \star B^*.$
- Equivalent statements apply to $A \div B$.

Toeplitz representations

Let φ be a function on a (finite) lower set *F*. Define the associated Toeplitz representation \mathfrak{T} by

$$(\mathfrak{T}(\varphi))_{a,b} = \begin{cases} \sum_{c} \varphi(c), & cb = a; \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\mathfrak{T}(\varphi)f = \varphi \star f$.

Toeplitz representations

Let φ be a function on a (finite) lower set *F*. Define the associated Toeplitz representation \mathfrak{T} by

$$(\mathfrak{T}(\varphi))_{a,b} = \begin{cases} \sum_{c} \varphi(c), & cb = a; \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\mathfrak{T}(\varphi)f = \varphi \star f$.

In the case that *G* is the semigroupoid \mathbb{N} , $\mathfrak{T}(\varphi)$ is precisely the Toeplitz matrix associated with the sequence $\{\varphi(j)\}$.

At the other extreme, when $G = G_e$, $\mathfrak{T}(\varphi)$ is simply the diagonal matrix with diagonal entries $\varphi(a)$ for $a \in G$ which, despite our terminology, is very un-Toeplitz like!

Theorem

Let $A \in M(F)$ be positive, and suppose $||A \star 1|| < 1$. Then [1] - A is invertible (with respect to the \star product) and $([1] - A)^{-1} \ge 0$.

Theorem Let $A \in M(F)$ be positive, and suppose $||A \star 1|| < 1$. Then [1] - A is invertible (with respect to the \star product) and $([1] - A)^{-1} \ge 0$.

Corollary If $\|\mathfrak{T}(\varphi)\| < 1$, then $([1] - \varphi \varphi^*)^{-1}$ is well defined and positive.

Theorem Let $A \in M(F)$ be positive, and suppose $||A \star 1|| < 1$. Then [1] - A is invertible (with respect to the \star product) and $([1] - A)^{-1} \ge 0$.

Corollary If $||\mathfrak{T}(\varphi)|| < 1$, then $([1] - \varphi \varphi^*)^{-1}$ is well defined and positive. Set $A_{a,b} = \varphi(a)\varphi(b)^*$. Then $||A \star 1|| < 1$. The result then follows from the last theorem.

Theorem Let $A \in M(F)$ be positive, and suppose $||A \star 1|| < 1$. Then [1] - A is invertible (with respect to the \star product) and $([1] - A)^{-1} \ge 0$.

Corollary

If $\|\mathfrak{T}(\varphi)\| < 1$, then $([1] - \varphi \varphi^*)^{-1}$ is well defined and positive.

Set $A_{a,b} = \varphi(a)\varphi(b)^*$. Then $||A \star 1|| < 1$. The result then follows from the last theorem.

Example

Take $G = G_e = \mathbb{D}$, $\varphi(z) = z$, then $([1] - \varphi \varphi^*)^{-1}$ is the Szegő kernel.

Interpolation problem

Let *G* be semigroupoid, \mathcal{A} a normed algebra of functions on *G*. Let *F* be a finite lower set, $\xi : F \to \mathbb{C}$ given.

Does there exists a $\varphi \in \mathcal{A}$ with $\|\varphi\|_{\mathcal{A}} \leq 1$ and $\varphi|F = \xi$?

Interpolation problem

Let G be semigroupoid, A a normed algebra of functions on G.

Let *F* be a finite lower set, $\xi : F \to \mathbb{C}$ given.

Does there exists a $\varphi \in \mathcal{A}$ with $\|\varphi\|_{\mathcal{A}} \leq 1$ and $\varphi|F = \xi$?

Ideally, we want to not only characterize when a solution exists, but also explicitly give the solution.

Examples

- ▶ If $G = G_e = \mathbb{D}$, *F* a finite subset, $\mathcal{A} = H^{\infty}(\mathbb{D})$, this is the classical Nevanlinna-Pick interpolation problem.
- More generally, we could take G = G_e = R ⊂ Cⁿ, again F a finite subset, A = H[∞](R). The case R a polydisk was done by Agler. Other generalised Cartan domains by Ambrozie, Ball, Timotin and others.
- ▶ We don't need *R* simply connected. For example $R \subset \mathbb{C}$ an annulus was considered by Abrahamse.
- Let G = N, G_e = {0}, the ★ product given by addition. Let F = {0,...,n}, a lower set. In this case we view ξ(k) as the kth Taylor coefficient of a function expanded about 0. We then have the Carathéodory-Fejér interpolation problem.
- G is a free semigroup on d letters, G_e contains only the empty word, the * product is concatenation. We can take G to be commutative or noncommutative. The latter case is the sort of generalization of Carathéodory-Fejér interpolation considered by Popescu and others.

More Examples

- More generally, it is possible to consider mixtures of problems from the last slide.
- There are also lots of exotic examples!
- In the above, the semigroupoids were rather tame. For these, if a is not an idempotent and eaf = a, then f = e. Also, there is cancellation, which is not necessary.

Reproducing kernel Hilbert spaces

We say that a function $\mathbf{k} : G \times G \to \mathbb{C}$ is a *positive kernel* on *G* if for any finite subset *A* of *G*, the matrix $(\mathbf{k}(a, b))_{a,b \in A}$ is positive semidefinite.

Define $k: G \to \mathbb{C}$ as $k(b) = \mathbf{k}(\cdot, b), b \in G$.

In the usual way we form a sesquilinear form $\langle \cdot, \cdot \rangle$ with $\langle k(b), k(a) \rangle = \mathbf{k}(a, b)$, mod out by the kernel, complete to a Hilbert space $\mathcal{H}(\mathbf{k})$.

On $\mathcal{H}(\mathbf{k})$ addition is defined termwise.

Reproducing kernels—the multiplier algebra for a single kernel

Define the *multiplier algebra* $H^{\infty}(\mathbf{k})$ as the collection of operators $\mathfrak{T}(\varphi) : f \mapsto \varphi \star f$ for functions $\varphi : G \to \mathbb{C}$ satisfying $\varphi \star f \in \mathcal{H}(\mathbf{k})$ for each $f \in \mathcal{H}(\mathbf{k})$.

 $H^{\infty}(\mathbf{k})$ is nonempty, since it contains $\mathfrak{T}(\delta)$.

The closed graph theorem implies that the elements of $H^{\infty}(\mathbf{k})$ are bounded.

Reproducing kernels—the multiplier algebra for a single kernel

Define the *multiplier algebra* $H^{\infty}(\mathbf{k})$ as the collection of operators $\mathfrak{T}(\varphi) : f \mapsto \varphi \star f$ for functions $\varphi : G \to \mathbb{C}$ satisfying $\varphi \star f \in \mathcal{H}(\mathbf{k})$ for each $f \in \mathcal{H}(\mathbf{k})$.

 $H^{\infty}(\mathbf{k})$ is nonempty, since it contains $\mathfrak{T}(\delta)$.

The closed graph theorem implies that the elements of $H^{\infty}(\mathbf{k})$ are bounded.

For $f \in \mathcal{H}(\mathbf{k})$,

$$\langle \mathfrak{T}(\varphi)f, k(a) \rangle = \left\langle f, \sum_{bc=a} \varphi(b)^* k(c) \right\rangle.$$

So $\mathfrak{T}(\varphi)^*k(a) = \sum_{bc=a} \varphi(b)^*k(c);$ ie, $\mathfrak{T}(\varphi)^*k(a) = (\varphi^* \star k)(a).$

The multiplier algebra, cont.

For a lower set *F*, if we set \mathcal{M}_F to the closed linear span of kernel functions k(a), $a \in F$, then the usual sort of argument gives \mathcal{M}_F invariant for adjoints of multipliers $\mathfrak{T}(\varphi)^*$.

The multiplier algebra, cont.

For a lower set *F*, if we set \mathcal{M}_F to the closed linear span of kernel functions k(a), $a \in F$, then the usual sort of argument gives \mathcal{M}_F invariant for adjoints of multipliers $\mathfrak{T}(\varphi)^*$.

The *-product is useful in characterising multipliers.

The multiplier algebra, cont.

For a lower set *F*, if we set \mathcal{M}_F to the closed linear span of kernel functions k(a), $a \in F$, then the usual sort of argument gives \mathcal{M}_F invariant for adjoints of multipliers $\mathfrak{T}(\varphi)^*$.

The \star -product is useful in characterising multipliers. $||\mathfrak{T}(\varphi)^*|\mathcal{M}_F|| \leq 1 \iff$

$$\begin{aligned} & \left(\left\langle (1 - \mathfrak{T}(\varphi)\mathfrak{T}(\varphi)^*)k(a), k(b) \right\rangle \right) \\ &= \left(\sum_{pq=a} \sum_{sr=b} ([1]_{pr} - \varphi(p)\varphi(r)^*)\mathbf{k}(q,s) \right) \\ &= ([1] - \varphi\varphi^*) \star \mathbf{k} \ge 0 \end{aligned}$$

Following Agler, let Ψ denote a collection of functions $\{\psi\}$ with $\|\mathfrak{T}(\psi)\| \leq 1, \psi^{n_*} \to 0$, (and ...) called the *test functions*. Note that $([1] - \psi\psi^*)^{-1} \geq 0$ for all $\psi \in \Psi$.

Following Agler, let Ψ denote a collection of functions $\{\psi\}$ with $\|\mathfrak{T}(\psi)\| \leq 1, \psi^{n_*} \to 0$, (and ...) called the *test functions*.

Note that $([1] - \psi \psi^*)^{-1} \ge 0$ for all $\psi \in \Psi$.

The family of reproducing kernels associated to Ψ is $\mathcal{K}_{\Psi} = \{\mathbf{k}\}$, where

 $([1] - \psi\psi^*) \star \mathbf{k} \ge 0$

for all $\psi \in \Psi$ and $\mathbf{k} \in \mathcal{K}_{\Psi}$. Our definition of a semigroupoid ensure that there exists a nontrivial family of test functions (corresponding to the kernel $\mathbf{k} = 1$).

Following Agler, let Ψ denote a collection of functions $\{\psi\}$ with $\|\mathfrak{T}(\psi)\| \leq 1, \psi^{n_*} \to 0$, (and ...) called the *test functions*.

Note that $([1] - \psi \psi^*)^{-1} \ge 0$ for all $\psi \in \Psi$.

The family of reproducing kernels associated to Ψ is $\mathcal{K}_{\Psi} = \{\mathbf{k}\}$, where

 $([1] - \psi\psi^*) \star \mathbf{k} \ge 0$

for all $\psi \in \Psi$ and $\mathbf{k} \in \mathcal{K}_{\Psi}$. Our definition of a semigroupoid

ensure that there exists a nontrivial family of test functions (corresponding to the kernel $\mathbf{k} = 1$).

Define the *multiplier algebra* $H^{\infty}(\mathcal{K})$ as the intersection of all $\bigcap_{\mathbf{k}\in\mathcal{K}} H^{\infty}(\mathbf{k})$, with norm of an element the infimum of its norm over all $H^{\infty}(\mathbf{k})$.

Following Agler, let Ψ denote a collection of functions $\{\psi\}$ with $\|\mathfrak{T}(\psi)\| \leq 1, \psi^{n_*} \to 0$, (and ...) called the *test functions*.

Note that $([1] - \psi \psi^*)^{-1} \ge 0$ for all $\psi \in \Psi$.

The family of reproducing kernels associated to Ψ is $\mathcal{K}_{\Psi} = \{\mathbf{k}\}$, where

 $([1] - \psi \psi^*) \star \mathbf{k} \ge 0$

for all $\psi \in \Psi$ and $\mathbf{k} \in \mathcal{K}_{\Psi}$. Our definition of a semigroupoid

ensure that there exists a nontrivial family of test functions (corresponding to the kernel $\mathbf{k} = 1$).

Define the *multiplier algebra* $H^{\infty}(\mathcal{K})$ as the intersection of all $\bigcap_{\mathbf{k}\in\mathcal{K}} H^{\infty}(\mathbf{k})$, with norm of an element the infimum of its norm over all $H^{\infty}(\mathbf{k})$.

If $G = G_e = \mathbb{D}$, $\Psi = \{z\}$, then the family of kernels consists of kernels of the form $\gamma \star k \star \gamma^*$, where $\mathbf{k}(x, y) = (1 - xy^*)^{-1}$ (the Szegő kernel).

The evaluation map

Let $C(\Psi)$ be the continuous functions on Ψ , the collection of test functions.

Define $E \in B(G, C(\Psi))$ by

 $E(x)(\psi) = \psi(x), \qquad \psi \in \Psi,$

and

 $||E(x)|| = \sup_{\psi \in \Psi} \{|E(x)(\psi)|\}.$

The evaluation map

Let $C(\Psi)$ be the continuous functions on Ψ , the collection of test functions.

Define $E \in B(G, C(\Psi))$ by

 $E(x)(\psi) = \psi(x), \qquad \psi \in \Psi,$

and

$$||E(x)|| = \sup_{\psi \in \Psi} \{|E(x)(\psi)|\}.$$

- E(x) is the evaluation map on Ψ .
- ▶ ||E(x)|| < 1 for each $x \in G_e$ and $||E(x)|| \le 1$ otherwise.
- The collection {E(x) : x ∈ G} separates points, so the smallest unital C*-algebra containing all the E(x) is C(Ψ).

Colligations and transfer functions

Let E be an evaluation map,

$$U = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 unitary on $\mathcal{E} \oplus \mathbb{C}$, \mathcal{E} a Hilbert space

 $\rho: \mathfrak{B} \to B(\mathcal{E})$ a unital *-representation.

Write $\Sigma = (U, \mathcal{E}, \rho)$ (called a *colligation*).

Colligations and transfer functions

Let E be an evaluation map,

$$U = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 unitary on $\mathcal{E} \oplus \mathbb{C}$, \mathcal{E} a Hilbert space

 $\rho: \mathfrak{B} \to B(\mathcal{E})$ a unital *-representation.

Write $\Sigma = (U, \mathcal{E}, \rho)$ (called a *colligation*).

Define the transfer function by

$$W_{\Sigma}(x) = \left(D\delta + C\rho(E) \star (\delta - A\rho(E))^{-1} \star (B\delta)\right)(x).$$

The Main Result

Theorem (Realization)

Suppose Ψ is a collection of test functions over a semigroupoid *G*, with associated family of kernels \mathcal{K} . Further, assume $||T_E|| < 1$. The following are equivalent,

(i) $\varphi \in H^{\infty}(\mathcal{K})$ and $\|\varphi\|_{H^{\infty}(\mathcal{K})} \leq 1$;

(iiF) for each finite lower set $F \subset G$ there exists a positive kernel $\Gamma: F \times F \to (C(\Psi))^*$ so that for all $x, y \in F$

$$([1] - \varphi \varphi^*)(x, y) = (\Gamma \hat{\star} ([1] - EE^*))(x, y)$$

(iiG) there exists a positive kernel $\Gamma : G \times G \to (C(\Psi))^*$ so that for all $x, y \in G$

 $([1] - \varphi \varphi^*)(x, y) = (\Gamma \hat{\star} ([1] - EE^*))(x, y);$ and

(iii) there is a colligation Σ so that $\varphi = W_{\Sigma}$.

 $(iiF) \Longrightarrow (iiG)$: Kurosh's theorem.

 $(iiF) \Longrightarrow (iiG)$: Kurosh's theorem.

(iiG) \implies (iii): Lurking isometry argument.

- $(iiF) \Longrightarrow (iiG)$: Kurosh's theorem.
- $(iiG) \Longrightarrow (iii)$: Lurking isometry argument.
- (iii) \implies (i): Tedious calculation.

- $(iiF) \Longrightarrow (iiG)$: Kurosh's theorem.
- (iiG) \implies (iii): Lurking isometry argument.
- (iii) \implies (i): Tedious calculation.
- (i) \implies (ii): Hahn-Banach separation argument.

Agler-Ambrozie-Jury interpolation

Let *F* be a finite lower set, $\xi : F \to \mathbb{C}$ given.

Then there exists a $\varphi \in H^{\infty}(\mathcal{K})$ with $\|\varphi\|_{H^{\infty}(\mathcal{K})} \leq 1$ and $\varphi|F = \xi$ \iff for each $k \in \mathcal{K}_{\Psi}$, the kernel

$$F \times F \ni (x, y) \mapsto (([1] - \phi \phi^*) \star k)(x, y)$$

is positive.

Moreover, in this case there is a transfer function representation for the solution.

Agler-Ambrozie-Jury interpolation

Let *F* be a finite lower set, $\xi : F \to \mathbb{C}$ given.

Then there exists a $\varphi \in H^{\infty}(\mathcal{K})$ with $\|\varphi\|_{H^{\infty}(\mathcal{K})} \leq 1$ and $\varphi|F = \xi$ \iff for each $k \in \mathcal{K}_{\Psi}$, the kernel

$$F \times F \ni (x, y) \mapsto (([1] - \phi \phi^*) \star k)(x, y)$$

is positive.

Moreover, in this case there is a transfer function representation for the solution.

There is a similar result corresponding to left/right tangential interpolation (eg, solving $(\varphi \star z)(a) = w(a)$ for all *a* in a finite lower set *F*).

More on the proof of the realization theorem

(i) φ ∈ H[∞](K) and ||φ||_{H[∞](K)} ≤ 1;
(iiF) for each finite lower set F ⊂ G there exists a positive kernel Γ : F × F → (C(Ψ))* so that for all x, y ∈ F

 $([1] - \varphi \varphi^*)(x, y) = (\Gamma \widehat{\star}([1] - EE^*))(x, y);$

More on the proof of the realization theorem

$$([1] - \varphi \varphi^*)(x, y) = (\Gamma \widehat{\star}([1] - EE^*))(x, y);$$

By contradiction:

Define the cone

$$\mathcal{C}_F = \{ \left(\Gamma \,\hat{\star}([1] - EE^*) \right)_{x, v \in F} : \Gamma \in M(F, \mathfrak{B}^*)^+ \},\$$

and assume that

$$M_{\varphi} = \left(([1] - \varphi \varphi^*)(x, y) \right)_{x, y \in F} \notin \mathcal{C}_F.$$

More on the proof of the realization theorem, cont.

Use a Hahn-Banach separation argument.

 C_F has nonempty interior (in fact it contains all nonnegative matrices in M(F));

More on the proof of the realization theorem, cont.

Use a Hahn-Banach separation argument.

- C_F has nonempty interior (in fact it contains all nonnegative matrices in M(F));
- *C_F* is closed
Use a Hahn-Banach separation argument.

- C_F has nonempty interior (in fact it contains all nonnegative matrices in M(F));
- C_F is closed (Requires a surprisingly involved argument.)

Use a Hahn-Banach separation argument.

- C_F has nonempty interior (in fact it contains all nonnegative matrices in M(F));
- C_F is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on C_F and such that $\lambda(M_{\phi}) < 0$.

Use a Hahn-Banach separation argument.

- C_F has nonempty interior (in fact it contains all nonnegative matrices in M(F));
- C_F is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on C_F and such that $\lambda(M_{\phi}) < 0$.

Define an inner product on P(F) by $\langle f, g \rangle = \lambda(fg^*)$, and let μ be the left regular representation on the resulting Hilbert space. This is a cyclic representation with cyclic vector δ .

Use a Hahn-Banach separation argument.

- C_F has nonempty interior (in fact it contains all nonnegative matrices in M(F));
- C_F is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on C_F and such that $\lambda(M_{\phi}) < 0$.

Define an inner product on P(F) by $\langle f, g \rangle = \lambda(fg^*)$, and let μ be the left regular representation on the resulting Hilbert space. This is a cyclic representation with cyclic vector δ .

 $\|\mu(\psi)\| \le 1$ for test functions. A cyclic representation with this property comes from a reproducing kernel on *F* which extends to a reproducing kernel in $k \in \mathcal{K}_{\Psi}$.

Use a Hahn-Banach separation argument.

- C_F has nonempty interior (in fact it contains all nonnegative matrices in M(F));
- C_F is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on C_F and such that $\lambda(M_{\phi}) < 0$.

Define an inner product on P(F) by $\langle f, g \rangle = \lambda(fg^*)$, and let μ be the left regular representation on the resulting Hilbert space. This is a cyclic representation with cyclic vector δ .

 $\|\mu(\psi)\| \le 1$ for test functions. A cyclic representation with this property comes from a reproducing kernel on *F* which extends to a reproducing kernel in $k \in \mathcal{K}_{\Psi}$.

Since $\|\mu(\varphi)\| > 1$, $([1] - \varphi \varphi^*) \stackrel{\star}{\star} k \not\geq 0$.

Applications

This leads to interpolation theorems on all of the algebras mentioned earlier, plus many more!

http://front.math.ucdavis.edu/math.FA/0507083

Applications

This leads to interpolation theorems on all of the algebras mentioned earlier, plus many more!

http://front.math.ucdavis.edu/math.FA/0507083

