Interpolation on Semigroupoid Algebras

Michael Dritschel, Stefania Marcantognini, Scott McCullough

August 6, 2005

The classical Nevanlinna-Pick interpolation problem

Problem: Given n points $z_{1}, \ldots z_{n}$ in \mathbb{D}, and n complex values w_{1}, \ldots, w_{n}, does there exist a analytic function $f: \mathbb{D} \rightarrow \mathbb{D}$ such that $f\left(z_{k}\right)=w_{k}, k=1, \ldots, n$?

The classical Nevanlinna-Pick interpolation problem

Problem: Given n points $z_{1}, \ldots z_{n}$ in \mathbb{D}, and n complex values w_{1}, \ldots, w_{n}, does there exist a analytic function $f: \mathbb{D} \rightarrow \mathbb{D}$ such that $f\left(z_{k}\right)=w_{k}, k=1, \ldots, n$?

If we write $H^{\infty}(\mathbb{D})$ for the bounded analytic functions on the disk, we are looking for a interpolating function f in the closed unit ball of $H^{\infty}(\mathbb{D})$ (called the Schur class).

The classical Nevanlinna-Pick interpolation problem

Problem: Given n points $z_{1}, \ldots z_{n}$ in \mathbb{D}, and n complex values w_{1}, \ldots, w_{n}, does there exist a analytic function $f: \mathbb{D} \rightarrow \mathbb{D}$ such that $f\left(z_{k}\right)=w_{k}, k=1, \ldots, n$?
If we write $H^{\infty}(\mathbb{D})$ for the bounded analytic functions on the disk, we are looking for a interpolating function f in the closed unit ball of $H^{\infty}(\mathbb{D})$ (called the Schur class).
$H^{\infty}(\mathbb{D})$ is the multiplier algebra for $H^{2}(\mathbb{D})$, the analytic functions on the disk with square summable power series. That is, for all $f \in H^{2}(\mathbb{D})$ and for any $\varphi \in H^{\infty}(\mathbb{D})$, the function with values $M_{\varphi} f(z)=\varphi(z) f(z)$ is in $H^{2}(\mathbb{D})$.

Solution to the classical Nevanlinna-Pick interpolation problem

A solution exists \Longleftrightarrow the matrix

$$
\left(\frac{1-w_{j} w_{k}^{*}}{1-z_{j} z_{k}^{*}}\right)_{j, k=1, \ldots n}
$$

is positive (ie, positive semidefinite).

Solution to the classical Nevanlinna-Pick interpolation problem

A solution exists \Longleftrightarrow the matrix

$$
\left(\frac{1-w_{j} w_{k}^{*}}{1-z_{j} z_{k}^{*}}\right)_{j, k=1, \ldots n}
$$

is positive (ie, positive semidefinite).
We call

$$
\mathbf{k}(w, z)=\left(1-z w^{*}\right)^{-1}
$$

the Szegő kernel. Write $k: \mathbb{D} \rightarrow \mathbb{C}$ as $k(z)(\cdot)=\mathbf{k}(\cdot, z)$.

Solution to the classical Nevanlinna-Pick interpolation problem

A solution exists \Longleftrightarrow the matrix

$$
\left(\frac{1-w_{j} w_{k}^{*}}{1-z_{j} z_{k}^{*}}\right)_{j, k=1, \ldots n}
$$

is positive (ie, positive semidefinite).
We call

$$
\mathbf{k}(w, z)=\left(1-z w^{*}\right)^{-1}
$$

the Szegő kernel. Write $k: \mathbb{D} \rightarrow \mathbb{C}$ as $k(z)(\cdot)=\mathbf{k}(\cdot, z)$.
k is an example of a reproducing kernel: for $f \in H^{2}(\mathbb{D})$,

$$
\langle f, k(z)\rangle_{H^{2}(\mathbb{D})}=f(z)
$$

Solution to the classical Nevanlinna-Pick interpolation problem

A solution exists \Longleftrightarrow the matrix

$$
\left(\frac{1-w_{j} w_{k}^{*}}{1-z_{j} z_{k}^{*}}\right)_{j, k=1, \ldots n}
$$

is positive (ie, positive semidefinite).
We call

$$
\mathbf{k}(w, z)=\left(1-z w^{*}\right)^{-1}
$$

the Szegő kernel. Write $k: \mathbb{D} \rightarrow \mathbb{C}$ as $k(z)(\cdot)=\mathbf{k}(\cdot, z)$.
k is an example of a reproducing kernel: for $f \in H^{2}(\mathbb{D})$,

$$
\langle f, k(z)\rangle_{H^{2}(\mathbb{D})}=f(z)
$$

A straightforward calculation shows $M_{\varphi}^{*} k(z)=\varphi(z)^{*} k(z)$, (so in particular, if $\varphi\left(z_{k}\right)=w_{k}$ then $M_{\varphi}^{*} k(z)=w_{k}^{*} k(z)$).

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

So the N-P problem has a solution iff
$I-M_{\varphi} M_{\varphi}^{*} \geq 0$ on $\mathcal{M}=\operatorname{span}\left\{k\left(z_{1}\right), \ldots, k\left(z_{n}\right)\right\}$, in which case φ can be extended to all of $H^{2}(\mathbb{D})$ without increasing the norm.

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

So the N-P problem has a solution iff
$I-M_{\varphi} M_{\varphi}^{*} \geq 0$ on $\mathcal{M}=\operatorname{span}\left\{k\left(z_{1}\right), \ldots, k\left(z_{n}\right)\right\}$,
in which case φ can be extended to all of $H^{2}(\mathbb{D})$ without increasing the norm.

Recall that if A, B are matrices, the Schur product of A and B (write $A \star B$) is the entrywise product.

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

So the N-P problem has a solution iff
$I-M_{\varphi} M_{\varphi}^{*} \geq 0$ on $\mathcal{M}=\operatorname{span}\left\{k\left(z_{1}\right), \ldots, k\left(z_{n}\right)\right\}$,
in which case φ can be extended to all of $H^{2}(\mathbb{D})$ without increasing the norm.

Recall that if A, B are matrices, the Schur product of A and B (write $A \star B$) is the entrywise product.

We can rewrite the condition for the existence of a solution of the Pick problem as

$$
\left([1]-\varphi \varphi^{*}\right) \star \mathbf{k} \geq 0
$$

where [1] is the matrix which has all entries equal to 1 .

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

It is possible to give the solution explicitly using a "lurking isometry" argument.

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

It is possible to give the solution explicitly using a "lurking isometry" argument.

Let $\delta(z)=1, Z(z)=z$. Then the positivity condition can be rewritten as

$$
\begin{aligned}
\left([1]-\varphi \varphi^{*}\right) \star k k^{*} & =\gamma \gamma^{*} \quad \Longleftrightarrow \\
\delta \delta^{*}-\varphi \varphi^{*} & =\gamma \gamma^{*} \star\left([1]-Z Z^{*}\right) \\
Z \gamma \gamma^{*} Z^{*}+\delta \delta^{*} & =\gamma \gamma^{*}+\varphi \varphi^{*}
\end{aligned}
$$

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

It is possible to give the solution explicitly using a "lurking isometry" argument.

Let $\delta(z)=1, Z(z)=z$. Then the positivity condition can be rewritten as

$$
\begin{aligned}
\left([1]-\varphi \varphi^{*}\right) \star k k^{*} & =\gamma \gamma^{*} \quad \Longleftrightarrow \\
\delta \delta^{*}-\varphi \varphi^{*} & =\gamma \gamma^{*} \star\left([1]-Z Z^{*}\right) \\
Z \gamma \gamma^{*} Z^{*}+\delta \delta^{*} & =\gamma \gamma^{*}+\varphi \varphi^{*}
\end{aligned}
$$

Then there is an isometry V such that

$$
V\binom{Z(z) \gamma(z)}{\delta(z)}=\binom{\gamma(z)}{\varphi(z)}
$$

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

$$
\text { Let } V=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \text {. Then we have }
$$

$$
\begin{aligned}
& A z \gamma(z)+B=\gamma(z) \\
& C z \gamma(z)+D=\varphi(z)
\end{aligned}
$$

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

Let $V=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. Then we have

$$
\begin{aligned}
& A z \gamma(z)+B=\gamma(z) \\
& C z \gamma(z)+D=\varphi(z)
\end{aligned}
$$

Solve for γ in the first equation:

$$
\gamma(z)=(1-A z)^{-1} B
$$

Plug into the second equation:

$$
\varphi(z)=D+z C(1-A z)^{-1} B .
$$

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

Let $V=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. Then we have

$$
\begin{aligned}
& A z \gamma(z)+B=\gamma(z) \\
& C z \gamma(z)+D=\varphi(z)
\end{aligned}
$$

Solve for γ in the first equation:

$$
\gamma(z)=(1-A z)^{-1} B
$$

Plug into the second equation:

$$
\varphi(z)=D+z C(1-A z)^{-1} B .
$$

We refer to this as a transfer function representation for φ.

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

The fact that M_{φ}^{*} can be extended from \mathcal{M} to the whole space without increasing the norm is referred to as the Pick property (for $H^{2}(\mathbb{D})$). Spaces with this property are rather special.

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

The fact that M_{φ}^{*} can be extended from \mathcal{M} to the whole space without increasing the norm is referred to as the Pick property (for $H^{2}(\mathbb{D})$). Spaces with this property are rather special.
For example, there is no Hilbert space of functions with the Pick property having $H^{\infty}\left(\mathbb{D}^{2}\right)$ as the space of multipliers. So how do we solve interpolation problems in the function algebra $H^{\infty}\left(\mathbb{D}^{2}\right)$?

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

The fact that M_{φ}^{*} can be extended from \mathcal{M} to the whole space without increasing the norm is referred to as the Pick property (for $H^{2}(\mathbb{D})$). Spaces with this property are rather special.
For example, there is no Hilbert space of functions with the Pick property having $H^{\infty}\left(\mathbb{D}^{2}\right)$ as the space of multipliers. So how do we solve interpolation problems in the function algebra $H^{\infty}\left(\mathbb{D}^{2}\right)$?
The approach we use, due to Jim Agler, is to look at all of the spaces (and their kernels) having $H^{\infty}\left(\mathbb{D}^{2}\right)$ as the multiplier algebra, and require that for all such kernels, $\left([1]-\varphi \varphi^{*}\right) \star \mathbf{k} \geq 0$.

Solution to the classical Nevanlinna-Pick interpolation problem, cont.

The fact that M_{φ}^{*} can be extended from \mathcal{M} to the whole space without increasing the norm is referred to as the Pick property (for $H^{2}(\mathbb{D})$). Spaces with this property are rather special.
For example, there is no Hilbert space of functions with the Pick property having $H^{\infty}\left(\mathbb{D}^{2}\right)$ as the space of multipliers. So how do we solve interpolation problems in the function algebra $H^{\infty}\left(\mathbb{D}^{2}\right)$?
The approach we use, due to Jim Agler, is to look at all of the spaces (and their kernels) having $H^{\infty}\left(\mathbb{D}^{2}\right)$ as the multiplier algebra, and require that for all such kernels, $\left([1]-\varphi \varphi^{*}\right) \star \mathbf{k} \geq 0$. A similar approach applies to the Carathéodory-Fejér interpolation problem: Let $a_{0}, \ldots, a_{n} \in \mathbb{C}$. Is there a function in the closed unit ball of $H^{\infty}(\mathbb{D})$ having these values as the first $n+1$ coefficients of its series expansion about 0 ?

Semigroupoids—Definition and basic properties

Let G be a set with a function from $X \rightarrow G$, where $X \subset G \times G$, called a partial multiplication and written $x y$ for $(x, y) \in X$.

Semigroupoids—Definition and basic properties

Let G be a set with a function from $X \rightarrow G$, where $X \subset G \times G$, called a partial multiplication and written $x y$ for $(x, y) \in X$. We define idempotents as those elements e of G such that $e x=x$ whenever $e x$ is defined and $y e=y$ whenever $y e$ is defined.

Semigroupoids-Definition and basic properties

Let G be a set with a function from $X \rightarrow G$, where $X \subset G \times G$, called a partial multiplication and written $x y$ for $(x, y) \in X$. We define idempotents as those elements e of G such that $e x=x$ whenever $e x$ is defined and $y e=y$ whenever $y e$ is defined.
The following laws are assumed to hold:

1. (associative law) If either $(a b) c$ or $a(b c)$ is defined, then so is the other and they are equal. If $a b, b c$ are defined, then so is $(a b) c$.
2. (existence of idempotents) For all $a \in G$, there exist $e, f \in G$ with $e a=a=a f$. Also, if $e^{2}=e$, then e is idempotent.
3. (nonexistence of inverses) If $a, b \in G$ and $a b=e$ where e is idempotent, then $a=b=e$.
4. (strong artinian law) For all $a \in G$, the set $\{z, b, w: z b w=a\}$ is finite, $+\ldots$..

Semigroupoids-Definition and basic properties

Let G be a set with a function from $X \rightarrow G$, where $X \subset G \times G$, called a partial multiplication and written $x y$ for $(x, y) \in X$. We define idempotents as those elements e of G such that $e x=x$ whenever $e x$ is defined and $y e=y$ whenever $y e$ is defined.
The following laws are assumed to hold:

1. (associative law) If either $(a b) c$ or $a(b c)$ is defined, then so is the other and they are equal. If $a b, b c$ are defined, then so is $(a b) c$.
2. (existence of idempotents) For all $a \in G$, there exist $e, f \in G$ with $e a=a=a f$. Also, if $e^{2}=e$, then e is idempotent.
3. (nonexistence of inverses) If $a, b \in G$ and $a b=e$ where e is idempotent, then $a=b=e$.
4. (strong artinian law) For all $a \in G$, the set $\{z, b, w: z b w=a\}$ is finite, $+\ldots$..

We call such a G a semigroupoid.

Semigroupoids-Definition and basic properties

Let G be a set with a function from $X \rightarrow G$, where $X \subset G \times G$, called a partial multiplication and written $x y$ for $(x, y) \in X$. We define idempotents as those elements e of G such that $e x=x$ whenever $e x$ is defined and $y e=y$ whenever $y e$ is defined.
The following laws are assumed to hold:

1. (associative law) If either $(a b) c$ or $a(b c)$ is defined, then so is the other and they are equal. If $a b, b c$ are defined, then so is $(a b) c$.
2. (existence of idempotents) For all $a \in G$, there exist $e, f \in G$ with $e a=a=a f$. Also, if $e^{2}=e$, then e is idempotent.
3. (nonexistence of inverses) If $a, b \in G$ and $a b=e$ where e is idempotent, then $a=b=e$.
4. (strong artinian law) For all $a \in G$, the set $\{z, b, w: z b w=a\}$ is finite, $+\ldots$.

We call such a G a semigroupoid.
No commutativity or cancellation required!

Semigroupoids-Order

Define a partial order on G as follows:

$$
b \leq a \text { if there exist } z, w \in G \text { such that } a=z b w
$$

Check: $a \leq a$ since $a=e a f$ for some idempotents e, f, etc.

Semigroupoids-Order

Define a partial order on G as follows:

$$
b \leq a \text { if there exist } z, w \in G \text { such that } a=z b w
$$

Check: $a \leq a$ since $a=e a f$ for some idempotents e, f, etc.
By definition G is artinian with respect to this order.

Semigroupoids-Order

Define a partial order on G as follows:

$$
b \leq a \text { if there exist } z, w \in G \text { such that } a=z b w
$$

Check: $a \leq a$ since $a=e a f$ for some idempotents e, f, etc.
By definition G is artinian with respect to this order.
A set $F \subset G$ is lower if $a \in F$ and $b \leq a$ then $b \in F$.

Convolution products

The formal "power series" on a lower set F (ie, functions $f, g: F \rightarrow \mathbb{C}$) form a complex vector space $\mathcal{P}(F)$ indexed by F with pointwise addition.

Since G is artinian there is a well-defined product given by

$$
(f \star g)(a)=\sum_{r s=a} f(r) g(s) \in \mathcal{P}(F)
$$

Convolution products

The formal "power series" on a lower set F (ie, functions $f, g: F \rightarrow \mathbb{C}$) form a complex vector space $\mathcal{P}(F)$ indexed by F with pointwise addition.

Since G is artinian there is a well-defined product given by

$$
(f \star g)(a)=\sum_{r s=a} f(r) g(s) \in \mathcal{P}(F) .
$$

Multiplicative unit:

$$
\delta(x)= \begin{cases}1 & x \in F_{e} \\ 0 & \text { otherwise }\end{cases}
$$

A function f is invertible if and only if $f(x)$ is invertible for all $x \in F_{e}$.

Convolution products, cont.

We also introduce the reverse product

$$
(f \hat{\star} g)(a)=\sum_{r s=a} f(s) g(r) .
$$

The multiplicative unit remains δ and the invertibility condition is the same.

It is unimportant that the functions map into \mathbb{C}.

A bivariate \star product—definition

Michael Jury defines a generalization of the Schur product which is a useful tool for interpolation problems. The equivalent in our setting is the following, which can be viewed as a bivariate version of the convolution product.

A bivariate \star product—definition

Michael Jury defines a generalization of the Schur product which is a useful tool for interpolation problems. The equivalent in our setting is the following, which can be viewed as a bivariate version of the convolution product.

Definition

Let F be a lower set, A, B matrices over \mathbb{C} indexed by F (we use $M(F)$ for the collection of such matrices). Define $A \star B$ by

$$
(A \star B)(a, b)=\sum_{p q=a} \sum_{r s=b} A(p, r) B(q, s) .
$$

A bivariate \star product—definition

Michael Jury defines a generalization of the Schur product which is a useful tool for interpolation problems. The equivalent in our setting is the following, which can be viewed as a bivariate version of the convolution product.

Definition

Let F be a lower set, A, B matrices over \mathbb{C} indexed by F (we use $M(F)$ for the collection of such matrices). Define $A \star B$ by

$$
(A \star B)(a, b)=\sum_{p q=a} \sum_{r s=b} A(p, r) B(q, s) .
$$

We can similarly define $A \hat{\star} B$.

A bivariate \star product—definition

Michael Jury defines a generalization of the Schur product which is a useful tool for interpolation problems. The equivalent in our setting is the following, which can be viewed as a bivariate version of the convolution product.

Definition

Let F be a lower set, A, B matrices over \mathbb{C} indexed by F (we use $M(F)$ for the collection of such matrices). Define $A \star B$ by

$$
(A \star B)(a, b)=\sum_{p q=a} \sum_{r s=b} A(p, r) B(q, s) .
$$

We can similarly define $A \hat{\star} B$.
The assumption that the entries of A and B are in \mathbb{C} is not important, and we will at times use the \star and $\hat{\star}$ product when the entries are in other algebras.

The bivariate \star product-properties

- Associative: $C \star(A \star B)=(C \star A) \star B$.
- Not necessarily commutative!
- $A, B \geq 0 \Longrightarrow A \star B \geq 0$.
- [1] $=\delta \delta^{*}$ (that is, $[1]_{a, b}$ is 1 for a, b both elements of F_{e} and zero otherwise) is the multiplicative unit.
- A invertible $\Longleftrightarrow A_{a b}$ is invertible for all $a, b \in F_{e}$. The inverse is unique.
- The inverse of a positive matrix need not be positive!
- Inverses of selfadjoint elements are selfadjoint.
- $(A \star B)^{*}=A^{*} \star B^{*}$.
- Equivalent statements apply to $A \hat{\star} B$.

Toeplitz representations

Let φ be a function on a (finite) lower set F. Define the associated Toeplitz representation \mathfrak{T} by

$$
(\mathfrak{T}(\varphi))_{a, b}= \begin{cases}\sum_{c} \varphi(c), & c b=a \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\mathfrak{T}(\varphi) f=\varphi \star f$.

Toeplitz representations

Let φ be a function on a (finite) lower set F. Define the associated Toeplitz representation \mathfrak{T} by

$$
(\mathfrak{T}(\varphi))_{a, b}= \begin{cases}\sum_{c} \varphi(c), & c b=a \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\mathfrak{T}(\varphi) f=\varphi \star f$.
In the case that G is the semigroupoid $\mathbb{N}, \mathfrak{T}(\varphi)$ is precisely the Toeplitz matrix associated with the sequence $\{\varphi(j)\}$.

At the other extreme, when $G=G_{e}, \mathfrak{T}(\varphi)$ is simply the diagonal matrix with diagonal entries $\varphi(a)$ for $a \in G$ which, despite our terminology, is very un-Toeplitz like!

Generalized Szegő kernels

Theorem
Let $A \in M(F)$ be positive, and suppose $\|A \star 1\|<1$. Then [1] $-A$ is invertible (with respect to the \star product) and $([1]-A)^{-1} \geq 0$.

Generalized Szegő kernels

Theorem
Let $A \in M(F)$ be positive, and suppose $\|A \star 1\|<1$. Then [1] $-A$ is invertible (with respect to the \star product) and $([1]-A)^{-1} \geq 0$.

Corollary
If $\|\mathfrak{T}(\varphi)\|<1$, then $\left([1]-\varphi \varphi^{*}\right)^{-1}$ is well defined and positive.

Generalized Szegő kernels

Theorem
Let $A \in M(F)$ be positive, and suppose $\|A \star 1\|<1$. Then [1] $-A$ is invertible (with respect to the \star product) and $([1]-A)^{-1} \geq 0$.

Corollary
If $\|\mathfrak{T}(\varphi)\|<1$, then $\left([1]-\varphi \varphi^{*}\right)^{-1}$ is well defined and positive.
Set $A_{a, b}=\varphi(a) \varphi(b)^{*}$. Then $\|A \star 1\|<1$. The result then follows from the last theorem.

Generalized Szegő kernels

Theorem
Let $A \in M(F)$ be positive, and suppose $\|A \star 1\|<1$. Then [1] $-A$ is invertible (with respect to the \star product) and $([1]-A)^{-1} \geq 0$.

Corollary
If $\|\mathfrak{T}(\varphi)\|<1$, then $\left([1]-\varphi \varphi^{*}\right)^{-1}$ is well defined and positive.
Set $A_{a, b}=\varphi(a) \varphi(b)^{*}$. Then $\|A \star 1\|<1$. The result then follows from the last theorem.

Example
Take $G=G_{e}=\mathbb{D}, \varphi(z)=z$, then $\left([1]-\varphi \varphi^{*}\right)^{-1}$ is the Szegő kernel.

Interpolation problem

Let G be semigroupoid, \mathcal{A} a normed algebra of functions on G.
Let F be a finite lower set, $\xi: F \rightarrow \mathbb{C}$ given.
Does there exists a $\varphi \in \mathcal{A}$ with $\|\varphi\|_{\mathcal{A}} \leq 1$ and $\varphi \mid F=\xi$?

Interpolation problem

Let G be semigroupoid, \mathcal{A} a normed algebra of functions on G.
Let F be a finite lower set, $\xi: F \rightarrow \mathbb{C}$ given.
Does there exists a $\varphi \in \mathcal{A}$ with $\|\varphi\|_{\mathcal{A}} \leq 1$ and $\varphi \mid F=\xi$?
Ideally, we want to not only characterize when a solution exists, but also explicitly give the solution.

Examples

- If $G=G_{e}=\mathbb{D}, F$ a finite subset, $\mathcal{A}=H^{\infty}(\mathbb{D})$, this is the classical Nevanlinna-Pick interpolation problem.
- More generally, we could take $G=G_{e}=R \subset \mathbb{C}^{n}$, again F a finite subset, $\mathcal{A}=H^{\infty}(R)$. The case R a polydisk was done by Agler. Other generalised Cartan domains by Ambrozie, Ball, Timotin and others.
- We don't need R simply connected. For example $R \subset \mathbb{C}$ an annulus was considered by Abrahamse.
- Let $G=\mathbb{N}, G_{e}=\{0\}$, the \star product given by addition. Let $F=\{0, \ldots, n\}$, a lower set. In this case we view $\xi(k)$ as the $k^{\text {th }}$ Taylor coefficient of a function expanded about 0 . We then have the Carathéodory-Fejér interpolation problem.
- G is a free semigroup on d letters, G_{e} contains only the empty word, the \star product is concatenation. We can take G to be commutative or noncommutative. The latter case is the sort of generalization of Carathéodory-Fejér interpolation considered by Popescu and others.

More Examples

- More generally, it is possible to consider mixtures of problems from the last slide.
- There are also lots of exotic examples!
- In the above, the semigroupoids were rather tame. For these, if a is not an idempotent and eaf $=a$, then $f=e$. Also, there is cancellation, which is not necessary.

Reproducing kernel Hilbert spaces

We say that a function $\mathbf{k}: G \times G \rightarrow \mathbb{C}$ is a positive kernel on G if for any finite subset A of G, the matrix $(\mathbf{k}(a, b))_{a, b \in A}$ is positive semidefinite.

Define $k: G \rightarrow \mathbb{C}$ as $k(b)=\mathbf{k}(\cdot, b), b \in G$.
In the usual way we form a sesquilinear form $\langle\cdot, \cdot\rangle$ with $\langle k(b), k(a)\rangle=\mathbf{k}(a, b)$, mod out by the kernel, complete to a Hilbert space $\mathcal{H}(\mathbf{k})$.

On $\mathcal{H}(\mathbf{k})$ addition is defined termwise.

Reproducing kernels-the multiplier algebra for a single kernel

Define the multiplier algebra $H^{\infty}(\mathbf{k})$ as the collection of operators $\mathfrak{T}(\varphi): f \mapsto \varphi \star f$ for functions $\varphi: G \rightarrow \mathbb{C}$ satisfying $\varphi \star f \in \mathcal{H}(\mathbf{k})$ for each $f \in \mathcal{H}(\mathbf{k})$.
$H^{\infty}(\mathbf{k})$ is nonempty, since it contains $\mathfrak{T}(\delta)$.
The closed graph theorem implies that the elements of $H^{\infty}(\mathbf{k})$ are bounded.

Reproducing kernels-the multiplier algebra for a single kernel

Define the multiplier algebra $H^{\infty}(\mathbf{k})$ as the collection of operators $\mathfrak{T}(\varphi): f \mapsto \varphi \star f$ for functions $\varphi: G \rightarrow \mathbb{C}$ satisfying $\varphi \star f \in \mathcal{H}(\mathbf{k})$ for each $f \in \mathcal{H}(\mathbf{k})$.
$H^{\infty}(\mathbf{k})$ is nonempty, since it contains $\mathfrak{T}(\delta)$.
The closed graph theorem implies that the elements of $H^{\infty}(\mathbf{k})$ are bounded.

For $f \in \mathcal{H}(\mathbf{k})$,

$$
\langle\mathfrak{T}(\varphi) f, k(a)\rangle=\left\langle f, \sum_{b c=a} \varphi(b)^{*} k(c)\right\rangle .
$$

So $\mathfrak{T}(\varphi)^{*} k(a)=\sum_{b c=a} \varphi(b)^{*} k(c)$; ie, $\quad \mathfrak{T}(\varphi)^{*} k(a)=\left(\varphi^{*} \star k\right)(a)$.

The multiplier algebra, cont.

For a lower set F, if we set \mathcal{M}_{F} to the closed linear span of kernel functions $k(a), a \in F$, then the usual sort of argument gives \mathcal{M}_{F} invariant for adjoints of multipliers $\mathfrak{T}(\varphi)^{*}$.

The multiplier algebra, cont.

For a lower set F, if we set \mathcal{M}_{F} to the closed linear span of kernel functions $k(a), a \in F$, then the usual sort of argument gives \mathcal{M}_{F} invariant for adjoints of multipliers $\mathfrak{T}(\varphi)^{*}$.

The *-product is useful in characterising multipliers.

The multiplier algebra, cont.

For a lower set F, if we set \mathcal{M}_{F} to the closed linear span of kernel functions $k(a), a \in F$, then the usual sort of argument gives \mathcal{M}_{F} invariant for adjoints of multipliers $\mathfrak{T}(\varphi)^{*}$.

The \star-product is useful in characterising multipliers.

$$
\left\|\mathfrak{T}(\varphi)^{*} \mid \mathcal{M}_{F}\right\| \leq 1 \Longleftrightarrow
$$

$$
\begin{aligned}
& \left(\left\langle\left(1-\mathfrak{T}(\varphi) \mathfrak{T}(\varphi)^{*}\right) k(a), k(b)\right\rangle\right) \\
& =\left(\sum_{p q=a} \sum_{s r=b}\left([1]_{p r}-\varphi(p) \varphi(r)^{*}\right) \mathbf{k}(q, s)\right) \\
& =\left([1]-\varphi \varphi^{*}\right) \star \mathbf{k} \geq 0
\end{aligned}
$$

Test functions and families of reproducing kernels

Following Agler, let Ψ denote a collection of functions $\{\psi\}$ with $\|\mathfrak{T}(\psi)\| \leq 1, \psi^{n_{*}} \rightarrow 0$, (and \ldots) called the test functions.
Note that $\left([1]-\psi \psi^{*}\right)^{-1} \geq 0$ for all $\psi \in \Psi$.

Test functions and families of reproducing kernels

Following Agler, let Ψ denote a collection of functions $\{\psi\}$ with $\|\mathfrak{T}(\psi)\| \leq 1, \psi^{n_{*}} \rightarrow 0$, (and \ldots) called the test functions.
Note that $\left([1]-\psi \psi^{*}\right)^{-1} \geq 0$ for all $\psi \in \Psi$.
The family of reproducing kernels associated to Ψ is $\mathcal{K}_{\Psi}=\{\mathbf{k}\}$, where

$$
\left([1]-\psi \psi^{*}\right) \star \mathbf{k} \geq 0
$$

for all $\psi \in \Psi$ and $\mathbf{k} \in \mathcal{K}_{\Psi}$. Our defintion of a semigroupoid ensure that there exists a nontrivial family of test functions (corresponding to the kernel $\mathbf{k}=1$).

Test functions and families of reproducing kernels

Following Agler, let Ψ denote a collection of functions $\{\psi\}$ with $\|\mathfrak{T}(\psi)\| \leq 1, \psi^{n_{*}} \rightarrow 0$, (and \ldots.) called the test functions.
Note that $\left([1]-\psi \psi^{*}\right)^{-1} \geq 0$ for all $\psi \in \Psi$.
The family of reproducing kernels associated to Ψ is $\mathcal{K}_{\Psi}=\{\mathbf{k}\}$, where

$$
\left([1]-\psi \psi^{*}\right) \star \mathbf{k} \geq 0
$$

for all $\psi \in \Psi$ and $\mathbf{k} \in \mathcal{K}_{\Psi}$. Our defintion of a semigroupoid ensure that there exists a nontrivial family of test functions (corresponding to the kernel $\mathbf{k}=1$).
Define the multiplier algebra $H^{\infty}(\mathcal{K})$ as the intersection of all $\bigcap_{\mathbf{k} \in \mathcal{K}} H^{\infty}(\mathbf{k})$, with norm of an element the infimum of its norm over all $H^{\infty}(\mathbf{k})$.

Test functions and families of reproducing kernels

Following Agler, let Ψ denote a collection of functions $\{\psi\}$ with $\|\mathfrak{T}(\psi)\| \leq 1, \psi^{n_{*}} \rightarrow 0$, (and \ldots.) called the test functions.
Note that $\left([1]-\psi \psi^{*}\right)^{-1} \geq 0$ for all $\psi \in \Psi$.
The family of reproducing kernels associated to Ψ is $\mathcal{K}_{\Psi}=\{\mathbf{k}\}$, where

$$
\left([1]-\psi \psi^{*}\right) \star \mathbf{k} \geq 0
$$

for all $\psi \in \Psi$ and $\mathbf{k} \in \mathcal{K}_{\Psi}$. Our defintion of a semigroupoid ensure that there exists a nontrivial family of test functions (corresponding to the kernel $\mathbf{k}=1$).
Define the multiplier algebra $H^{\infty}(\mathcal{K})$ as the intersection of all $\bigcap_{\mathbf{k} \in \mathcal{K}} H^{\infty}(\mathbf{k})$, with norm of an element the infimum of its norm over all $H^{\infty}(\mathbf{k})$.
If $G=G_{e}=\mathbb{D}, \Psi=\{z\}$, then the family of kernels consists of kernels of the form $\gamma \star k \hat{\star} \gamma^{*}$, where $\mathbf{k}(x, y)=\left(1-x y^{*}\right)^{-1}$ (the Szegő kernel).

The evaluation map

Let $C(\Psi)$ be the continuous functions on Ψ, the collection of test functions.

Define $E \in B(G, C(\Psi))$ by

$$
E(x)(\psi)=\psi(x), \quad \psi \in \Psi
$$

and

$$
\|E(x)\|=\sup _{\psi \in \Psi}\{|E(x)(\psi)|\} .
$$

The evaluation map

Let $C(\Psi)$ be the continuous functions on Ψ, the collection of test functions.

Define $E \in B(G, C(\Psi))$ by

$$
E(x)(\psi)=\psi(x), \quad \psi \in \Psi
$$

and

$$
\|E(x)\|=\sup _{\psi \in \Psi}\{|E(x)(\psi)|\} .
$$

- $E(x)$ is the evaluation map on Ψ.
- $\|E(x)\|<1$ for each $x \in G_{e}$ and $\|E(x)\| \leq 1$ otherwise.
- The collection $\{E(x): x \in G\}$ separates points, so the smallest unital C^{*}-algebra containing all the $E(x)$ is $C(\Psi)$.

Colligations and transfer functions

Let E be an evaluation map,
$U=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ unitary on $\mathcal{E} \oplus \mathbb{C}, \mathcal{E}$ a Hilbert space
$\rho: \mathfrak{B} \rightarrow B(\mathcal{E})$ a unital $*$-representation.
Write $\Sigma=(U, \mathcal{E}, \rho)$ (called a colligation).

Colligations and transfer functions

Let E be an evaluation map,
$U=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ unitary on $\mathcal{E} \oplus \mathbb{C}, \mathcal{E}$ a Hilbert space
$\rho: \mathfrak{B} \rightarrow B(\mathcal{E})$ a unital $*$-representation.
Write $\Sigma=(U, \mathcal{E}, \rho)$ (called a colligation).
Define the transfer function by

$$
W_{\Sigma}(x)=\left(D \delta+C \rho(E) \star(\delta-A \rho(E))^{-1} \star(B \delta)\right)(x) .
$$

The Main Result

Theorem (Realization)

Suppose Ψ is a collection of test functions over a semigroupoid G, with associated family of kernels \mathcal{K}. Further, assume $\left\|T_{E}\right\|<1$.
The following are equivalent,
(i) $\varphi \in H^{\infty}(\mathcal{K})$ and $\|\varphi\|_{H^{\infty}(\mathcal{K})} \leq 1$;
(iiF) for each finite lower set $F \subset G$ there exists a positive kernel $\Gamma: F \times F \rightarrow(C(\Psi))^{*}$ so that for all $x, y \in F$

$$
\left([1]-\varphi \varphi^{*}\right)(x, y)=\left(\Gamma \hat{\star}\left([1]-E E^{*}\right)\right)(x, y) ;
$$

(iiG) there exists a positive kernel $\Gamma: G \times G \rightarrow(C(\Psi))^{*}$ so that for all $x, y \in G$

$$
\left([1]-\varphi \varphi^{*}\right)(x, y)=\left(\Gamma \hat{\star}\left([1]-E E^{*}\right)\right)(x, y) ; \text { and }
$$

(iii) there is a colligation Σ so that $\varphi=W_{\Sigma}$.
(iiF) \Longrightarrow (iiG): Kurosh's theorem.

How the main result is proved

(iiF) \Longrightarrow (iiG): Kurosh's theorem.
(iiG) \Longrightarrow (iii): Lurking isometry argument.

How the main result is proved

(iiF) \Longrightarrow (iiG): Kurosh's theorem.
(iiG) \Longrightarrow (iii): Lurking isometry argument.
(iii) \Longrightarrow (i): Tedious calculation.

How the main result is proved

$(\mathrm{iiF}) \Longrightarrow(\mathrm{iiG}):$ Kurosh's theorem.
(iiG) \Longrightarrow (iii): Lurking isometry argument.
(iii) \Longrightarrow (i): Tedious calculation.
(i) \Longrightarrow (ii): Hahn-Banach separation argument.

Agler-Ambrozie-Jury interpolation

Let F be a finite lower set, $\xi: F \rightarrow \mathbb{C}$ given.
Then there exists a $\varphi \in H^{\infty}(\mathcal{K})$ with $\|\varphi\|_{H^{\infty}(\mathcal{K})} \leq 1$ and $\varphi \mid F=\xi$ \Longleftrightarrow for each $k \in \mathcal{K}_{\Psi}$, the kernel

$$
F \times F \ni(x, y) \mapsto\left(\left([1]-\phi \phi^{*}\right) \star k\right)(x, y)
$$

is positive.
Moreover, in this case there is a transfer function representation for the solution.

Agler-Ambrozie-Jury interpolation

Let F be a finite lower set, $\xi: F \rightarrow \mathbb{C}$ given.
Then there exists a $\varphi \in H^{\infty}(\mathcal{K})$ with $\|\varphi\|_{H^{\infty}(\mathcal{K})} \leq 1$ and $\varphi \mid F=\xi$
\Longleftrightarrow for each $k \in \mathcal{K}_{\Psi}$, the kernel

$$
F \times F \ni(x, y) \mapsto\left(\left([1]-\phi \phi^{*}\right) \star k\right)(x, y)
$$

is positive.
Moreover, in this case there is a transfer function representation for the solution.

There is a similar result corresponding to left/right tangential interpolation (eg, solving $(\varphi \star z)(a)=w(a)$ for all a in a finite lower set F).

More on the proof of the realization theorem

(i) $\varphi \in H^{\infty}(\mathcal{K})$ and $\|\varphi\|_{H^{\infty}(\mathcal{K})} \leq 1$;
(iiF) for each finite lower set $F \subset G$ there exists a positive kernel $\Gamma: F \times F \rightarrow(C(\Psi))^{*}$ so that for all $x, y \in F$

$$
\left([1]-\varphi \varphi^{*}\right)(x, y)=\left(\Gamma \hat{\star}\left([1]-E E^{*}\right)\right)(x, y) ;
$$

More on the proof of the realization theorem

(i) $\varphi \in H^{\infty}(\mathcal{K})$ and $\|\varphi\|_{H^{\infty}(\mathcal{K})} \leq 1$;
(iiF) for each finite lower set $F \subset G$ there exists a positive kernel $\Gamma: F \times F \rightarrow(C(\Psi))^{*}$ so that for all $x, y \in F$

$$
\left([1]-\varphi \varphi^{*}\right)(x, y)=\left(\Gamma \hat{\star}\left([1]-E E^{*}\right)\right)(x, y) ;
$$

By contradiction:
Define the cone

$$
\mathcal{C}_{F}=\left\{\left(\Gamma \hat{\star}\left([1]-E E^{*}\right)\right)_{x, y \in F}: \Gamma \in M\left(F, \mathfrak{B}^{*}\right)^{+}\right\},
$$

and assume that

$$
M_{\varphi}=\left(\left([1]-\varphi \varphi^{*}\right)(x, y)\right)_{x, y \in F} \notin \mathcal{C}_{F} .
$$

More on the proof of the realization theorem, cont.

Use a Hahn-Banach separation argument.

- \mathcal{C}_{F} has nonempty interior (in fact it contains all nonnegative matrices in $M(F)$);

More on the proof of the realization theorem, cont.

Use a Hahn-Banach separation argument.

- \mathcal{C}_{F} has nonempty interior (in fact it contains all nonnegative matrices in $M(F)$);
- \mathcal{C}_{F} is closed

More on the proof of the realization theorem, cont.

Use a Hahn-Banach separation argument.

- \mathcal{C}_{F} has nonempty interior (in fact it contains all nonnegative matrices in $M(F)$);
- \mathcal{C}_{F} is closed (Requires a surprisingly involved argument.)

More on the proof of the realization theorem, cont.

Use a Hahn-Banach separation argument.

- \mathcal{C}_{F} has nonempty interior (in fact it contains all nonnegative matrices in $M(F)$);
- \mathcal{C}_{F} is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on \mathcal{C}_{F} and such that $\lambda\left(M_{\phi}\right)<0$.

More on the proof of the realization theorem, cont.

Use a Hahn-Banach separation argument.

- \mathcal{C}_{F} has nonempty interior (in fact it contains all nonnegative matrices in $M(F)$);
- \mathcal{C}_{F} is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on \mathcal{C}_{F} and such that $\lambda\left(M_{\phi}\right)<0$.
Define an inner product on $P(F)$ by $\langle f, g\rangle=\lambda\left(f g^{*}\right)$, and let μ be the left regular representation on the resulting Hilbert space. This is a cyclic representation with cyclic vector δ.

More on the proof of the realization theorem, cont.

Use a Hahn-Banach separation argument.

- \mathcal{C}_{F} has nonempty interior (in fact it contains all nonnegative matrices in $M(F)$);
- \mathcal{C}_{F} is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on \mathcal{C}_{F} and such that $\lambda\left(M_{\phi}\right)<0$.
Define an inner product on $P(F)$ by $\langle f, g\rangle=\lambda\left(f g^{*}\right)$, and let μ be the left regular representation on the resulting Hilbert space. This is a cyclic representation with cyclic vector δ.
$\|\mu(\psi)\| \leq 1$ for test functions. A cyclic representation with this property comes from a reproducing kernel on F which extends to a reproducing kernel in $k \in \mathcal{K}_{\Psi}$.

More on the proof of the realization theorem, cont.

Use a Hahn-Banach separation argument.

- \mathcal{C}_{F} has nonempty interior (in fact it contains all nonnegative matrices in $M(F)$);
- \mathcal{C}_{F} is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on \mathcal{C}_{F} and such that $\lambda\left(M_{\phi}\right)<0$.
Define an inner product on $P(F)$ by $\langle f, g\rangle=\lambda\left(f g^{*}\right)$, and let μ be the left regular representation on the resulting Hilbert space. This is a cyclic representation with cyclic vector δ.
$\|\mu(\psi)\| \leq 1$ for test functions. A cyclic representation with this property comes from a reproducing kernel on F which extends to a reproducing kernel in $k \in \mathcal{K}_{\Psi}$.
Since $\|\mu(\varphi)\|>1$, $\left([1]-\varphi \varphi^{*}\right) \hat{\star} k \nsupseteq 0$.

Applications

This leads to interpolation theorems on all of the algebras mentioned earlier, plus many more!
http://front.math.ucdavis.edu/math.FA/0507083

Applications

This leads to interpolation theorems on all of the algebras mentioned earlier, plus many more!
http://front.math.ucdavis.edu/math.FA/0507083

