Spectral Problems Associated with Scattering by Unbounded Surfaces
 Simon Chandler-Wilde

University of Reading
www.reading.ac.uk/~sms03snc
Joint work with: Tilo Arens (Karlsruhe)
Bo Zhang (Coventry/Chinese Acad. Sci.)
Roland Potthast, Eric Heinemeyer (Göttingen)
Kai Haseloh (Hannover)
PhD Students: Anja Meier, Mizanur Rahman, Chris Ross

Funded by: EPSRC, EU
Transport Research Laboratory Ltd

Contents

- Motivation - physical background
- Some simple mathematical problems
- Surface waves
- True eigenfunctions - Anderson localization
- Formulation of scattering problem for real wavenumber
- Boundary integral equations and their spectral theory
- Conclusions

My PhD Background - and a Continuing Interest

Figure 1: Outdoor noise measurements - University of Salford

A Very Different Length Scale Surface Plasmon Polariton Band-Gap Structures

Figure 2: Calculated electric field magnitude 300 nm above an air-gold interface at wavelength 800 nm for a sharp 30° bend created by removing scatterers of height 50 nm , radius 125 nm in a SPPBG structure (Søndergaard \& Bozhelvolnyi (2005)).

Other Similar Scattering Problems Include ...

- Scattering of ground penetrating radar by buried surfaces (Rutherford Appleton Laboratory)
- Scattering of sonar waves from towed seismic transducers by the sea surface
- Scattering of radar waves by the sea surface
- Scattering of light by diffractive optics structures (e.g. the hologram on your passport)

Some Simple Mathematical Problems

Example 1 C-W, Ross, \& Zhang (1999) [2D]

 C-W, Heinemayer, Potthast $(2005 a, b)$ [3D]
f bounded and smooth (to simplify analysis of boundary integral equation methods)

Example 1a C-W \& Monk (2005) [nD]

$$
\Delta u+k^{2} u=g
$$

Example 1a C-W \& Monk (2005) [nD]

$$
\Delta u+k^{2} u=g
$$

Support of g

$$
u=0
$$

1. By Lax-Milgram unique tempered solution when $\Im k>0$. What happens as $\Im k \rightarrow 0$?
2. Formulation for $k>0$: radiation condition?
3. The spectrum is $[0, \infty)$. What sort of 'eigenfunctions' are possible?
4. What happens when ∂D is random?
5. Spectral properties of boundary integral equation formulations?

Special case: Diffraction Grating

Special case: Locally Perturbed Diffraction Grating

$$
\Delta u+k^{2} u=0
$$

$f\left(x_{1}\right)=$ periodic outside finite interval
What solutions of this homogeneous problem are possible?

Special case: Locally Perturbed Diffraction Grating

$$
\Delta u+k^{2} u=0
$$

$f\left(x_{1}\right)=$ periodic outside finite interval
What solutions of this homogeneous problem are possible?

One interesting eigenfunction: the surface wave

Surface wave is one that decays exponentially with distance from the boundary.

Diffraction Grating Case

$$
\Delta u+k^{2} u=0
$$

f periodic with period L

1. If $k L<\pi$ and $f \not \equiv$ constant, then there exists a surface wave solution that is quasi-periodic in the x_{1}-direction (Linton \& Mclver 2002).
2. If $k L>\pi$ there are no (rigorous) mathematical results. For periodic geometries and an air-metal interface there are theoretical justifications for the existence of a band-gap structure ('polaritonic crystals', Zayats et al., Physics Reports 2005). Nothing appears (rigorously) known.

General (not necessarily periodic) Case $\Delta u+k^{2} u=0$

f bounded and at least piecewise smooth

1. There exists no surface wave in the 2D case (C-W \& Zhang 1998).
2. If f is not the graph of a function then there is still no surface wave if $k\left(f_{+}-f_{-}\right)<\sqrt{2}$ (C-W \& Monk 2005).
3. If f is periodic (but not the graph of a function) then there is an example of a surface wave (Gotlib 2000).
4. Nothing known for 3D case. No general criteria for existence of surface waves. Band gaps?

True ($L^{2}(D)$) eigenfunctions

Surface Plasmon Polariton Band-Gap Structures

Figure 3: Calculated electric field magnitude 300 nm above an air-gold interface at wavelength 800 nm for a sharp 30° bend created by removing scatterers of height 50 nm , radius 125 nm in a SPPBG structure (Søndergaard \& Bozhelvolnyi (2005)).

Locally Perturbed Diffraction Grating

Can true eigenfunctions exist for this configuration? Nobody knows a proof of non-existence or existence of an eigenfunction even in the case when f is periodic with period L if $k L>\pi$.
f random: Anderson Localization?

$$
\Delta u+k^{2} u=0
$$

f bounded and at least piecewise smooth

1. There exists no eigenfunction (in 2D or 3 D) if $k\left(f_{+}-f_{-}\right)<\sqrt{2}$ or if

$$
x \in D, s>0 \Rightarrow x+s e_{n} \in D
$$

(C-W \& Monk 2005)

f random: Anderson Localization?

$$
\begin{aligned}
& \partial \frac{\partial u}{} u+k^{2} u=0 \\
& \frac{\partial n}{\partial n}=0
\end{aligned}
$$

f bounded and at least piecewise smooth

1. Maybe Anderson Localization happens here if f is random?
2. No rigorous results are known for surface scattering, but see de Monvel \& Stollmann 2003 for an analogous configuration for the Schrödinger equation.
3. Significant numerical evidence of (approximate?) localization, e.g. Saillard (1994).

Formulation of Scattering Problem for $k>0$

Mathematical Formulation for $k>0$

Assume $f \in B C(\mathbb{R}):=\{$ bounded, continuous functions on $\mathbb{R}\}$, and at least piecewise smooth. Let $g:=-\left.u^{i}\right|_{\Gamma} \in B C(\Gamma)$.

BVP1. Given $k>0, g \in B C(\Gamma)$, find scattered field $u \in C^{2}(D) \cap C(\bar{D})$ such that

$$
\Delta u+k^{2} u=0 \text { in } D, \quad u=g \text { on } \Gamma
$$

and ?

Let $g:=-\left.u^{i}\right|_{\Gamma} \in B C(\Gamma)$.
BVP1. Given $k>0, g \in B C(\Gamma)$, find scattered field $u \in C^{2}(D) \cap C(\bar{D})$ such that

$$
\Delta u+k^{2} u=0 \text { in } D, \quad u=g \text { on } \Gamma,
$$

u is bounded in $D \backslash U_{h}$ for every $h>0$, and u is 'outgoing'.

$\xrightarrow{x_{2}} \quad$| $\Delta u+k^{2} u=0$ | D |
| :--- | :--- |
| $u=g$ | |

Let

$$
\Phi(x, y):=\frac{i}{4} H_{0}^{(1)}(k|x-y|), \quad x, y \in \mathbb{R}^{2}, x \neq y
$$

and define the Dirichlet Green's function

$$
G(x, y):=\Phi(x, y)-\Phi\left(x, y^{\prime}\right),
$$

where

$$
y=\left(y_{1}, y_{2}\right), \quad y^{\prime}=\left(y_{1},-y_{2}\right) .
$$

$\Delta u+k^{2} u=0$	D
$u=g$	Γ

x_{1}

For $g \in B C(\Gamma)$ the correct solution satisfying limiting absortion condition is

$$
\begin{equation*}
u(x)=\int_{\Gamma} \frac{\partial G(x, y)}{\partial y_{2}} g(y) d s(y)=2 \int_{\Gamma} \frac{\partial \Phi(x, y)}{\partial y_{2}} g(y) d s(y) . \tag{*}
\end{equation*}
$$

BVP1. Given $k>0, g \in B C(\Gamma)$, find scattered field $u \in C^{2}(D) \cap C(\bar{D})$ such that

$$
\Delta u+k^{2} u=0 \text { in } D, \quad u=g \text { on } \Gamma,
$$

u is bounded in $D \backslash U_{h}$ for every $h>0$, and u is 'outgoing'.

BVP1. Given $k>0, g \in B C(\Gamma)$, find $u \in C^{2}(D) \cap C(\bar{D})$ such that

$$
\Delta u+k^{2} u=0 \text { in } D, \quad u=g \text { on } \Gamma,
$$

u is bounded in $D \backslash U_{h}$ for every $h>0$, and, for some $h>0$,

$$
u(x)=2 \int_{\Gamma_{h}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) d s(y), \quad x \in U_{h} .
$$

We'll call this condition the Upward Propagating Radiation Condition (UPRC).

BVP1. Given $k>0, g \in B C(\Gamma)$, find $u \in C^{2}(D) \cap C(\bar{D})$ such that

$$
\Delta u+k^{2} u=0 \text { in } D, \quad u=g \text { on } \Gamma,
$$

u is bounded in $D \backslash U_{h}$ for every $h>0$, and, for some $h>0$,

$$
u(x)=2 \int_{\Gamma_{h}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) d s(y), \quad x \in U_{h} .
$$

Theorem. (C-W \& Zhang 1998) This problem has at most one solution.

Boundary Integral Equation Formulation

Existence of Solution

Look for a solution as

$$
u(x)=\int_{\Gamma}\left(\frac{\partial G(x, y)}{\partial n(y)}-i \eta G(x, y)\right) \phi(y) d s(y), x \in D
$$

where $\eta>0$ is fixed coupling parameter and $\phi \in B C(\Gamma)$ is unknown density.

Theorem. u satisfies BVP1 provided

$$
\phi(x)=2 g(x)-2 \int_{\Gamma}\left(\frac{\partial G(x, y)}{\partial n(y)}-i \eta G(x, y)\right) \phi(y) d s(y), x \in \Gamma
$$

In operator notation

$$
\phi=\psi+K_{f} \phi, \quad \psi:=2 g
$$

If the boundary is flat, i.e. $f \equiv$ constant, then equation has form

$$
\phi=\psi+\kappa_{f} * \phi
$$

with $\kappa_{f} \in L^{1}(\mathbb{R})$. Then K_{f} has continuous spectrum and so is not compact.

Pick $c_{1}, c_{2}>0$ and let

$$
B:=\left\{f \in C^{1,1}(\mathbb{R}): f \geq c_{1},\|f\|_{C_{1,1}(\mathbb{R})} \leq c_{2}\right\}
$$

Theorem. (Zhang \& C-W 2003, Arens et al 2003)
There exists $f^{*} \in B$ such that, for every non-zero $\lambda \in \mathbb{C}$ and for $Y=B C(\Gamma)$ or $Y=L^{p}(\Gamma), 1 \leq p \leq \infty$, the following statements are equivalent:
(a) $\lambda \notin \Sigma_{Y}\left(K_{f^{*}}\right)$;
(b) $\lambda \notin \Sigma_{Y}\left(K_{f}\right)$ for all $f \in B$;
(c) $\lambda \notin \Sigma_{B C(Г)}^{p}$ for all $f \in B$.

As (c) holds for $\lambda=1$ we get existence of solution to BIE and BVP.
(See talk by Lindner (tomorrow at 10.50!) for the operator theory behind this.)

The 3D Case: C-W, Heinemeyer, Potthast, 2005a,b

Theorem. If $g \in B C(\Gamma) \cap L^{2}(\Gamma)$ then u satisfies BVP1 provided

$$
\phi(x)=2 g(x)-2 \int_{\Gamma}\left(\frac{\partial G(x, y)}{\partial n(y)}-i \eta G(x, y)\right) \phi(y) d s(y), x \in \Gamma .
$$

In operator notation

$$
\phi=\psi+K_{f} \phi, \quad \psi:=2 g .
$$

The operator is now strongly singular (not quite of Calderón-Zygmund type as the kernel is oscillatory). K_{f} is bounded as an operator on $L^{2}(\Gamma)$ and on $L^{2}(\Gamma) \cap B C(\Gamma)$ and invertible on each of these spaces with, by direct arguments (cf. Verchota 1984, Meyer \& Coifman 2000),

$$
\left\|\left(I-K_{f}\right)^{-1}\right\|_{L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)}<5(1+L)^{2}
$$

where L is maximum surface slope, if $\eta:=\kappa / 2$.

Conclusions

- We've considered some problems of scattering by unbounded surfaces, localised in the x_{n} direction
- Quite a lot is known about the scattering problem and its integral equation formulation in one or two simple 2D and 3D cases
- A little is (rigorously) known about existence of 'surface wave eigenfunctions', and some non-existence results are known
- Many open problems

A Few Open Analysis Problems

- Is the 3D scattering problem ever well-defined for $k>0$ and plane wave incidence?
- When do surface waves exist for the Neumann boundary condition (or Maxwell perfectly reflecting b.c.)? Are there band gaps?
- What is the correct limiting absorption principle when surface waves/eigenfunctions exist?
- Can we establish Anderson localization for surface scattering? (Done recently for a model problem in Schrödinger case (de Monvel \& Stollmann 2003)).

