
RESOLVENT CONDITIONS FOR PERTURBATIONS

Well-posed Cauchy problem in a Banach space X

u0(t) = Au(t) (t � 0); u(0) = x

A generates a C0-semigroup fT (t) : t � 0g, where

u(t) = T (t)x; T (t) \ = " etA;

R(�;A) := (�I �A)�1 =
Z 1

0
e��tT (t) dt

Given B : D(A)! X (always bounded for the graph norm),
when does A+B generate a C0-semigroup?

Dyson-Phillips series

S(t) = T (t) +
1X
n=1

(V nT )(t)

(V F )(t) =
Z t

0
T (t� s)BF (s) ds; F : [0;1)! B(X)

This works for:

� B 2 B(X) (Phillips)

� Miyadera-Voigt conditions (Schr�odinger operators, de-
lay equations):Z t

0
kBT (s)xk ds � qkxk (x 2 D(A))

where q < 1.

� Desch-Schappacher conditions (population dynamics)
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Resolvent estimates

General Hille-Yosida conditions are not amenable to pertur-
bations.

First-order resolvent conditions are amenable:

R(�;A+B) = R(�;A)(I �BR(�;A))�1

� T contractive, A dissipative, k�R(�;A)k � 1 (� > 0).

If B is dissipative with A-bound less than 1, then
A+B generates. (Lumer-Phillips)

� T holomorphic, k�R(�;A)k � c (Re� > !).

If B has A-bound 0, then A+B generates. (Hille)

If B is A-compact, then A+ B generates. (Desch-
Schappacher)
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A second-order integral condition

Second-order resolvent conditions are reasonably amenable
to perturbations.

Theorem (Gomilko, Shi-Feng). Suppose that A is closed
and densely de�ned with �(A) � f� : Re� � 0g, and suppose
that for all x 2 X and y 2 X�,

sup
a>0

a
Z 1
�1

��hR(a+ is; A)2x; yi�� ds <1:
Then A generates a bounded C0-semigroup on X.

Corollary. Suppose that A is closed and densely de�ned on
a Hilbert space H. Then A generates a C0-semigroup if and
only if there exists ! such that, for all x 2 H,

sup
a>!

a
Z 1
�1
kR(a+ is; A)xk2 ds <1;

sup
a>!

a
Z 1
�1
kR(a+ is; A)�xk2 ds <1:

Theorem (Kaiser-Weis; B.). Suppose that A generates
a C0-semigroup on a Hilbert space H, and B : D(A) !
H. Suppose that there exist q < 1 and ! such that �(A) �
fRe� � !g and

kBR(�;A)k � q; kR(�;A)Byk � qkyk (y 2 D(A))

whenever Re� > !. Then A + B generates a C0-semigroup
on H.
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A converse result

Desch and Schappacher showed that their theorem for rel-
atively compact perturbations of holomorphic semigroups
does not apply to any other semigroups:

Theorem. Suppose that A+B generates a C0-semigroup T
for every rank-1 operator B : D(A)! X of arbitrarily small
A-norm. Then T is holomorphic.

Sketch of proof. For each B, R(�;A + B) is bounded
on a right half-plane (depending on B). A Baire category
argument implies that �R(�;A) is bounded on a right half-
plane.

The argument can be abstracted. Suppose that

� A is densely de�ned,

� C : D(A)! X is A-bounded,

� CR(�;A)x is bounded in some region for su�ciently
many x,

� for each B of the form Bx = hCx; b�ia with kak kb�k ar-
bitrarily small, A+B satis�es one of a countable family
of more or less arbitrary resolvent growth conditions in
suitable regions.

Then CR(�;A) is bounded in one of the regions.

Theorem above remains valid if A + B generates a \distri-
bution semigroup" in the sense of Lions.
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Cosine functions

Cosine functions are to second-order Cauchy problems as C0-
semigroups are to �rst-order problems. Thus A generates a
cosine function fC(t) : t � 0g if and only if

u00(t) = Au(t) (t � 0);
u(0) = x;
u0(0) = 0

is well-posed. The solutions are given by u(t) = C(t)x, and

R(�2; A) = �
Z 1

0
e��tC(t) dt (Re� > !):

Example. Let A0 generate a C0-group fU(t) : t � 0g and
A = A2

0. Then A generates a cosine function given by

C(t) =
1
2

(U(t) + U(�t)):

IfA generates a cosine function, then there is a unique \phase
space" W . If B : W ! X is bounded, then A+B generates
a cosine function.

If X is a UMD-space, then W = D((!I�A)1=2) for suitable
!. (Fattorini)

Theorem. Suppose that A generates a cosine function, and
let  > 1

2 . Suppose that, for each B : D((!I � A)) ! X
of rank-1 and arbitrarily small norm, A + B generates an
(integrated) cosine function. Then A is bounded.
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Semigroups and fractional powers

Suppose that A generates a semigroup. Fix  2 (0; 1) and
assume that, for each B : D((!I �A))! X (of rank-1 and
small norm), A+B generates a semigroup. Then
(CP)
kR(a+ is; A)k = O(jsj��) as jsj ! 1 for some/all a;

equivalently,

T (t)(X) � D(A) and kAT (t)k = O(t��) as t # 0:

Here � is approximately equal to  and � is approximately
its reciprocal.

Conversely, suppose that A generates a C0-semigroup and
satis�es (CP). Let B : D((!I � A)) ! X be bounded,
where 0 <  < �. Then A + B generates a C0-semigroup
(via Phillips-Miyadera-Voigt) and also satis�es (CP).

This is also true if X is a Hilbert space, � =  and B is �nite
rank (via Gomilko-Shi-Feng).
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Perturbations of di�erentiable semigroups

A C0-semigroup T is eventually di�erentiable if it is norm-
di�erentiable on (t0;1) for some t0 � 0; equivalently, T (t)
maps X into D(A) for t > 0; i.e., mild solutions of the
homogeneous Cauchy problem become classical solutions.

T is immediately di�erentiable if t0 = 0.

Phillips asked: If A generates an immediately di�erentiable
semigroup and B 2 B(X) is the semigroup generated by
A+B eventually di�erentiable?

Pazy: T is eventually/immediately di�erentiable if and only
if kR(�;A)k � Cj�jm in an exponential region jyj � ce�bx,
for some/all b > 0.

Hence, Phillips's question has a positive answer when
kR(�;A)k ! 0 as j Im�j ! 1 in an exponential region.

Renardy showed that the answer to Phillips's question is
negative.

In fact,

A+B generates an eventually di�erentiable semigroup
for every B 2 B(X) in a uniform way

if and only if

kR(�;A)k ! 0 as j Im�j ! 1 in an exponential region.
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Delay equations

Consider the delay di�erential equation:

(DDE) u0(t) = Au(t) + �ut (t � 0); u0 = f:

Here,

ut(�) = u(t+ �) (t � 0; � 2 [�1; 0]);
� : C := C([�1; 0]; X); X)! X (bounded)

There is an associated semigroup V � on C generated by B�:

D(B�) =
�
f 2 C1 : f(0) 2 D(A) and f 0(0) = Af(0) + �f

	
B�f = f 0:

Solutions of (DDE) are given by u(t) = (V�(t)f)(0).

Question: When is V� eventually di�erentiable, i.e., when do
all mild solutions of (DDE) become classical solutions after
some �xed time?

Theorem. Assume that the semigroup generated by A is
immediately di�erentiable. The following are equivalent:

(1) V� is eventually di�erentiable for every �;
(2) V� is eventually di�erentiable when �(f) = f(�1);
(3) A satis�es (CP).


