Long chains of subsemigroups

Yann Péresse

University of Hertfordshire

28th of July, 2015

Definitions 1

Definitions 1

In this talk: Max:= Maximilien Gadouleau Peter:= Peter Cameron James:= James Mitchell

Y. Péresse (Hertfordshire)

Definitions 2: Length of a group

G:= a finite group.

l(G):=*length* of G = largest size of a chain of proper subgroups of G.

Definitions 2: Length of a group

G:= a finite group.

l(G):=*length* of G = largest size of a chain of proper subgroups of G.

Definitions 2: Length of a group

G := a finite group.

l(G):=*length* of G = largest size of a chain of proper subgroups of G.

 K_4 has length 2.

Robin results

Robin results If $G \leq H$, then

Robin results If $G \leq H$, then $l(G) \leq l(H)$.

```
Robin results
If G \le H, then l(G) \le l(H).
l(G \times H) \ge
```

```
Robin results
If G \le H, then l(G) \le l(H).
l(G \times H) \ge l(G) + l(H).
```

Proposition

Let G be a group and $N \trianglelefteq G$. Then

l(G) = l(N) + l(G/N).

Proposition

Let G be a group and $N \trianglelefteq G$. Then

$$l(G) = l(N) + l(G/N).$$

 $C_n :=$ cyclic group of order n.

Proposition

Let G be a group and $N \trianglelefteq G$. Then

l(G) = l(N) + l(G/N).

 $C_n :=$ cyclic group of order n. C_{29} has length

Proposition

Let G be a group and $N \trianglelefteq G$. Then

l(G) = l(N) + l(G/N).

 $C_n :=$ cyclic group of order n. C_{29} has length 1.

Proposition

Let G be a group and $N \trianglelefteq G$. Then

l(G) = l(N) + l(G/N).

 $C_n :=$ cyclic group of order n. C_{29} has length 1. C_{100} has length

Proposition

Let G be a group and $N \trianglelefteq G$. Then

l(G) = l(N) + l(G/N).

 $C_n :=$ cyclic group of order n. C_{29} has length 1. C_{100} has length 4.

Proposition

Let G be a group and $N \trianglelefteq G$. Then

$$l(G) = l(N) + l(G/N).$$

 $C_n :=$ cyclic group of order n. C_{29} has length 1. C_{100} has length 4.

If $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, define $\Omega(n) = \alpha_1 + \alpha_2 + \cdots + \alpha_k$.

Proposition

Let G be a group and $N \trianglelefteq G$. Then

$$l(G) = l(N) + l(G/N).$$

 $C_n :=$ cyclic group of order *n*. C_{29} has length 1. C_{100} has length 4.

If $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, define $\Omega(n) = \alpha_1 + \alpha_2 + \cdots + \alpha_k$. If G has order n, then l(G)

Proposition

Let G be a group and $N \trianglelefteq G$. Then

l(G) = l(N) + l(G/N).

 $C_n :=$ cyclic group of order *n*. C_{29} has length 1. C_{100} has length 4.

If $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, define $\Omega(n) = \alpha_1 + \alpha_2 + \cdots + \alpha_k$. If G has order n, then $l(G) \leq \Omega(n) \leq \log_2(n)$.

Proposition

Let G be a group and $N \trianglelefteq G$. Then

l(G) = l(N) + l(G/N).

 $C_n :=$ cyclic group of order *n*. C_{29} has length 1. C_{100} has length 4.

If $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, define $\Omega(n) = \alpha_1 + \alpha_2 + \cdots + \alpha_k$. If G has order n, then $l(G) \leq \Omega(n) \leq \log_2(n)$. Equality holds, for example, for all soluble groups.

 $S_n :=$ the symmetric group on n points.

 $S_n :=$ the symmetric group on n points.

Theorem (Cameron-Solomon-Turull '89)

$$l(S_n) = \left\lceil \frac{3n}{2} \right\rceil - b(n) - 1$$

where b(n) is the number of ones in the base 2 representation of n.

 $S_n :=$ the symmetric group on n points.

Theorem (Cameron-Solomon-Turull '89)

$$l(S_n) = \left\lceil \frac{3n}{2} \right\rceil - b(n) - 1$$

where b(n) is the number of ones in the base 2 representation of n.

This gives $l(A_n)$. Lengths of other simple groups also more or less understood.

 $S_n :=$ the symmetric group on n points.

Theorem (Cameron-Solomon-Turull '89)

$$l(S_n) = \left\lceil \frac{3n}{2} \right\rceil - b(n) - 1$$

where b(n) is the number of ones in the base 2 representation of n.

This gives $l(A_n)$. Lengths of other simple groups also more or less understood.

What about semigroups?

How to define lengths of semigroups: controversy

How to define lengths of semigroups: controversy

Consider K_4 again.

How to define lengths of semigroups: controversy Consider K_4 again.

Forget that K_4 is a group.

How to define lengths of semigroups: controversy

How to define lengths of semigroups: controversy

We get an extra subsemigroup: the empty semigroup!

How to bridge the Araujo divide: signs of good will

l(S) := (largest size of a chain of proper subsemigroups) -1.

l(S) := (largest size of a chain of proper subsemigroups) -1.

The length of a finite group does not depend on whether you view it as a group or a semigroup.

l(S) := (largest size of a chain of proper subsemigroups) -1.

The length of a finite group does not depend on whether you view it as a group or a semigroup. But $l(\emptyset) = -1$.

l(S) := (largest size of a chain of proper subsemigroups) -1.

The length of a finite group does not depend on whether you view it as a group or a semigroup. But $l(\emptyset) = -1$.

Robin results 2: semigroups
Let S be a zero semigroup, i.e. there is some $0 \in S$ such that xy = 0 for all $x, y \in S$. Then l(S) =

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that xy = 0for all $x, y \in S$. Then l(S) = |S| - 1.

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that xy = 0 for all $x, y \in S$. Then l(S) = |S| - 1.

If $S \leq T$,

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that xy = 0 for all $x, y \in S$. Then l(S) = |S| - 1.

If $S \leq T$, then $l(S) \leq l(T)$.

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that xy = 0 for all $x, y \in S$. Then l(S) = |S| - 1.

If $S \leq T$, then $l(S) \leq l(T)$. If $\phi: S \longrightarrow T$ is a surjective homomorphism, then

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that xy = 0 for all $x, y \in S$. Then l(S) = |S| - 1.

If $S \leq T$, then $l(S) \leq l(T)$. If $\phi: S \longrightarrow T$ is a surjective homomorphism, then $l(S) \geq l(T)$.

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that xy = 0 for all $x, y \in S$. Then l(S) = |S| - 1.

If $S \leq T$, then $l(S) \leq l(T)$. If $\phi: S \longrightarrow T$ is a surjective homomorphism, then $l(S) \geq l(T)$.

Any "decomposition" type result?

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that xy = 0 for all $x, y \in S$. Then l(S) = |S| - 1.

If $S \leq T$, then $l(S) \leq l(T)$. If $\phi: S \longrightarrow T$ is a surjective homomorphism, then $l(S) \geq l(T)$.

Any "decomposition" type result? Semigroups don't have normal subgroups.

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that xy = 0 for all $x, y \in S$. Then l(S) = |S| - 1.

If $S \leq T$, then $l(S) \leq l(T)$. If $\phi: S \longrightarrow T$ is a surjective homomorphism, then $l(S) \geq l(T)$.

Any "decomposition" type result? Semigroups don't have normal subgroups. But Semigroups have ideals: $I \leq S$ is an ideal $\iff xi, ix \in I$ for every $s \in S, i \in I$.

Ideals

Proposition (cf. Ganyushkin-Livinsky '11) Let S be a semigroup and let I be an ideal of S. Then l(S) = l(I) + l(S/I).

Ideals

Proposition (cf. Ganyushkin-Livinsky '11)

Let S be a semigroup and let I be an ideal of S. Then

l(S) = l(I) + l(S/I).

 $S/I = S \setminus I \cup \{0\}$ with operation *.

$$s * t = \begin{cases} st \text{ if } st \in S \setminus I; \\ 0 \text{ otherwise;} \end{cases}$$

and s0 = 0s = 00 = 0.

Green's relations

If S is a semigroup and $x, y \in S$, then we write

- $x \mathscr{L} y$ if $S^1 x = S^1 y$
- $x \mathscr{R} y$ if $x S^1 = y S^1$
- $x \mathscr{J} y$ if $S^1 x S^1 = S^1 y S^1$
- $x \mathscr{H} y$ if $x \mathscr{L} y$ and $x \mathscr{R} y$

Green's relations

If S is a semigroup and $x, y \in S$, then we write

- $x \mathscr{L} y$ if $S^1 x = S^1 y$
- $x \mathscr{R} y$ if $x S^1 = y S^1$
- $x \not J y$ if $S^1 x S^1 = S^1 y S^1$
- $x \mathscr{H} y$ if $x \mathscr{L} y$ and $x \mathscr{R} y$

These relations are equivalences called *Green's relations*, and their classes are *Green's classes*.

Principal factors

The principal factor J^* of a $\mathscr{J}\operatorname{-class} J$ is the set $J\cup\{0\}$ with multiplication

$$x * y = \begin{cases} xy & \text{if } x, y, xy \in J \\ 0 & \text{otherwise.} \end{cases}$$

Principal factors

The principal factor J^* of a $\mathscr{J}\text{-class}\ J$ is the set $J\cup\{0\}$ with multiplication

$$x * y = \begin{cases} xy & \text{if } x, y, xy \in J \\ 0 & \text{otherwise.} \end{cases}$$

A semigroup S is *regular* if for every $x \in S$ there exists $y \in S$ such that xyx = x.

Principal factors

The principal factor J^* of a $\mathscr{J}\text{-class}\ J$ is the set $J\cup\{0\}$ with multiplication

$$x * y = \begin{cases} xy & \text{if } x, y, xy \in J \\ 0 & \text{otherwise.} \end{cases}$$

A semigroup S is *regular* if for every $x \in S$ there exists $y \in S$ such that xyx = x.

Lemma

Let S be a finite regular semigroup and let J_1, J_2, \ldots, J_m be the \mathcal{J} -classes of S. Then

$$l(S) = l(J_1^*) + l(J_2^*) + \dots + l(J_m^*) - 1.$$

 $T_n :=$ the full transformation monoid on n points.

 $T_n :=$ the full transformation monoid on n points.

Theorem

$$l(T_n) \ge a(n) = e^{-2}n^n - 2e^{-2}(1 - e^{-1})n^{n-1/3} - o(n^{n-1/3}).$$

 $T_n :=$ the full transformation monoid on n points.

Theorem

$$l(T_n) \ge a(n) = e^{-2}n^n - 2e^{-2}(1 - e^{-1})n^{n-1/3} - o(n^{n-1/3}).$$

Here are the first few values:

n	2	3	4	5	6	7	8
n^n	4	27	256	3 125	46 656	823 543	$16\ 777\ 216$
a(n)	0	0	7	110	$1 \ 921$	37 795	$835 \ 290$

 $T_n :=$ the full transformation monoid on n points.

Theorem

$$l(T_n) \ge a(n) = e^{-2}n^n - 2e^{-2}(1 - e^{-1})n^{n-1/3} - o(n^{n-1/3}).$$

Here are the first few values:

n	2	3	4	5	6	7	8
n^n	4	27	256	3 125	46 656	823 543	$16\ 777\ 216$
a(n)	0	0	7	110	$1 \ 921$	37 795	$835\ 290$

We don't know if $l(T_n)/|T_n|$ tends to a limit as $n \to \infty$.

 $T_n :=$ the full transformation monoid on n points.

Theorem

$$l(T_n) \ge a(n) = e^{-2}n^n - 2e^{-2}(1 - e^{-1})n^{n-1/3} - o(n^{n-1/3}).$$

Here are the first few values:

n	2	3	4	5	6	7	8
n^n	4	27	256	3 125	46 656	823 543	$16\ 777\ 216$
a(n)	0	0	7	110	$1 \ 921$	37 795	$835\ 290$

We don't know if $l(T_n)/|T_n|$ tends to a limit as $n \to \infty$.

Similar lower bounds for the lengths of:

- order-preserving transformations O_n
- the general linear semigroup GLS(n,q).

Inverse semigroups

An inverse semigroup is a semigroup S such that for all $x \in S$, there exists a unique $x^{-1} \in S$ where $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

Inverse semigroups

An *inverse semigroup* is a semigroup S such that for all $x \in S$, there exists a unique $x^{-1} \in S$ where $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

Theorem (cf. Ganyushkin and Livinsky (2011))

Let S be a finite inverse semigroup with \mathscr{J} -classes J_1, \ldots, J_m . If $n_i \in \mathbb{N}$ denotes the number of \mathscr{L} - and \mathscr{R} -classes in J_i , and G_i is any maximal subgroup of S contained in J_i , then

$$l(S) = -1 + \sum_{i=1}^{m} l(J_i^*)$$

Inverse semigroups

An *inverse semigroup* is a semigroup S such that for all $x \in S$, there exists a unique $x^{-1} \in S$ where $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

Theorem (cf. Ganyushkin and Livinsky (2011))

Let S be a finite inverse semigroup with \mathscr{J} -classes J_1, \ldots, J_m . If $n_i \in \mathbb{N}$ denotes the number of \mathscr{L} - and \mathscr{R} -classes in J_i , and G_i is any maximal subgroup of S contained in J_i , then

$$\begin{aligned} l(S) &= -1 + \sum_{i=1}^{m} l(J_i^*) \\ &= -1 + \sum_{i=1}^{m} n_i (l(G_i) + 1) + \frac{n_i(n_i - 1)}{2} |G_i| + (n_i - 1). \end{aligned}$$

The symmetric inverse monoid, part I The symmetric inverse monoid I_n consists of all bijections between subsets of $X = \{1, ..., n\}$.

The symmetric inverse monoid I_n consists of all bijections between subsets of $X = \{1, \ldots, n\}$.

If $f \in I_n$, then we define:

$$dom(f) = \{ x \in X : (x)f \text{ is defined } \}$$

$$im(f) = \{ (x)f \in X : x \in dom(f) \}.$$

The symmetric inverse monoid I_n consists of all bijections between subsets of $X = \{1, \ldots, n\}$.

If $f \in I_n$, then we define:

$$dom(f) = \{ x \in X : (x)f \text{ is defined } \}$$

$$im(f) = \{ (x)f \in X : x \in dom(f) \}.$$

If $f, g \in I_n$, then

- $f \mathscr{L}g$ if and only if im(f) = im(g);
- $f \mathscr{R} g$ if and only if dom(f) = dom(g);
- $f \mathscr{J}g$ if and only if $|\operatorname{dom}(f)| = |\operatorname{dom}(g)|$.

The symmetric inverse monoid I_n consists of all bijections between subsets of $X = \{1, ..., n\}$.

If $f \in I_n$, then we define:

$$dom(f) = \{ x \in X : (x)f \text{ is defined } \}$$

$$im(f) = \{ (x)f \in X : x \in dom(f) \}.$$

If $f, g \in I_n$, then

- $f \mathscr{L}g$ if and only if im(f) = im(g);
- $f \mathscr{R} g$ if and only if dom(f) = dom(g);
- $f \mathscr{J}g$ if and only if $|\operatorname{dom}(f)| = |\operatorname{dom}(g)|$.

If J_i is the \mathscr{J} -class of I_n consisting of elements f with $|\operatorname{dom}(f)| = i$, then the number of \mathscr{L} - and \mathscr{R} -classes in J_i is $\binom{n}{i}$.

The symmetric inverse monoid I_n consists of all bijections between subsets of $X = \{1, ..., n\}$.

If $f \in I_n$, then we define:

$$dom(f) = \{ x \in X : (x)f \text{ is defined } \}$$

$$im(f) = \{ (x)f \in X : x \in dom(f) \}.$$

If $f, g \in I_n$, then

- $f \mathscr{L}g$ if and only if im(f) = im(g);
- $f \mathscr{R} g$ if and only if dom(f) = dom(g);
- $f \mathscr{J}g$ if and only if $|\operatorname{dom}(f)| = |\operatorname{dom}(g)|$.

If J_i is the \mathscr{J} -class of I_n consisting of elements f with $|\operatorname{dom}(f)| = i$, then the number of \mathscr{L} - and \mathscr{R} -classes in J_i is $\binom{n}{i}$. Thus

$$l(I_n) = -1 + \sum_{i=1}^n \binom{n}{i} (l(S_i) + 1) + \frac{\binom{n}{i} \binom{n}{i} - 1}{2} |S_i| + \binom{n}{i} - 1.$$

n	1	2	3	4	5	6	7	8
$ I_n $	2	7	34	209	1 546	13327	$130 \ 922$	$1 \ 441 \ 729$
$l(I_n)$	1	6	25	116	722	$5\ 956$	$59\ 243$	667 500

n	1	2	3	4	5	6	7	8
$ I_n $	2	7	34	209	1 546	13327	$130 \ 922$	$1 \ 441 \ 729$
$l(I_n)$	1	6	25	116	722	$5 \ 956$	$59\ 243$	667 500

We used the formula in the previous theorem to show that:

Theorem $l(I_n)/|I_n| \to 1/2 \text{ as } n \to \infty.$

n	1	2	3	4	5	6	7	8
$ I_n $	2	7	34	209	1 546	13327	$130 \ 922$	$1 \ 441 \ 729$
$l(I_n)$	1	6	25	116	722	$5 \ 956$	$59\ 243$	667 500

We used the formula in the previous theorem to show that:

Theorem $l(I_n)/|I_n| \to 1/2 \text{ as } n \to \infty.$

The same limit holds for various other well-known inverse semigroups: the dual symmetric inverse monoid, the semigroup of partial order-preserving injective mappings, and so on.

Open problem

Does $l(T_n)/|T_n|$ tend to a limit as $n \longrightarrow \infty$?

Open problem

Does $l(T_n)/|T_n|$ tend to a limit as $n \longrightarrow \infty$?

If so, what is the limit?

Open problem

Does $l(T_n)/|T_n|$ tend to a limit as $n \longrightarrow \infty$?

If so, what is the limit?

If not, what are the upper and lower limits?
Open problem

Does $l(T_n)/|T_n|$ tend to a limit as $n \to \infty$?

If so, what is the limit?

If not, what are the upper and lower limits?

Thank you for listening!