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In this talk:
Max:= Maximilien Gadouleau
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Definitions 2: Length of a group

G:= a finite group.
l(G):=length of G = largest size of a chain of proper subgroups of G.

K4 has length 2.
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Robin results

If G ≤ H, then l(G) ≤ l(H).
l(G×H) ≥ l(G) + l(H).
In fact, l(G×H) = l(G) + l(H) and:

Proposition

Let G be a group and N E G. Then

l(G) = l(N) + l(G/N).

Cn:= cyclic group of order n.
C29 has length 1.
C100 has length 4.

If n = pα1
1 pα2

2 · · · p
αk
k , define Ω(n) = α1 + α2 + · · ·+ αk.

If G has order n, then l(G)≤ Ω(n) ≤ log2(n).
Equality holds, for example, for all soluble groups.
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Y. Péresse (Hertfordshire) 28th of July, 2015 4 / 16



Robin results
If G ≤ H, then l(G) ≤ l(H).
l(G×H) ≥ l(G) + l(H).
In fact, l(G×H) = l(G) + l(H) and:

Proposition

Let G be a group and N E G. Then

l(G) = l(N) + l(G/N).

Cn:= cyclic group of order n.
C29 has length 1.
C100 has length 4.

If n = pα1
1 pα2

2 · · · p
αk
k , define Ω(n) = α1 + α2 + · · ·+ αk.

If G has order n, then l(G)

≤ Ω(n) ≤ log2(n).
Equality holds, for example, for all soluble groups.
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The symmetric group

Sn := the symmetric group on n points.

Theorem (Cameron-Solomon-Turull ’89)

l(Sn) =

⌈
3n

2

⌉
− b(n)− 1

where b(n) is the number of ones in the base 2 representation of n.

This gives l(An). Lengths of other simple groups also more or less
understood.

What about semigroups?
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How to define lengths of semigroups: controversy
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Consider K4 again.
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How to define lengths of semigroups: controversy

We get an extra subsemigroup: the empty semigroup!
Y. Péresse (Hertfordshire) 28th of July, 2015 6 / 16



How to bridge the Araujo divide: signs of good will

S - a semigroup.
l(S) := (largest size of a chain of proper subsemigroups) −1.

The length of a finite group does not depend on whether you view it as
a group or a semigroup. But l(∅) = −1.
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Robin results 2: semigroups

Let S be a zero semigroup, i.e. there is some 0 ∈ S such that xy = 0
for all x, y ∈ S.
Then l(S) =|S| − 1.

If S ≤ T , then l(S) ≤ l(T ).
If φ : S −→ T is a surjective homomorphism, then l(S) ≥ l(T ).

Any “decomposition” type result?
Semigroups don’t have normal subgroups.
But Semigroups have ideals:
I ≤ S is an ideal ⇐⇒ xi, ix ∈ I for every s ∈ S, i ∈ I.
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Ideals

Proposition (cf. Ganyushkin-Livinsky ’11)

Let S be a semigroup and let I be an ideal of S. Then

l(S) = l(I) + l(S/I).

S/I = S \ I ∪ {0} with operation ∗.

s ∗ t =

{
st if st ∈ S \ I;

0 otherwise;

and s0 = 0s = 00 = 0.
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Green’s relations

If S is a semigroup and x, y ∈ S, then we write

• xL y if S1x = S1y

• xRy if xS1 = yS1

• xJ y if S1xS1 = S1yS1

• xH y if xL y and xRy

These relations are equivalences called Green’s relations, and their
classes are Green’s classes.
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Principal factors

The principal factor J∗ of a J -class J is the set J ∪ {0} with
multiplication

x ∗ y =

{
xy if x, y, xy ∈ J
0 otherwise.

A semigroup S is regular if for every x ∈ S there exists y ∈ S such that
xyx = x.

Lemma

Let S be a finite regular semigroup and let J1, J2, . . . , Jm be the
J -classes of S. Then

l(S) = l(J∗
1 ) + l(J∗

2 ) + · · ·+ l(J∗
m)− 1.
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The full transformation monoid

Tn := the full transformation monoid on n points.

Theorem

l(Tn) ≥ a(n) = e−2nn − 2e−2(1− e−1)nn−1/3 − o(nn−1/3).

Here are the first few values:

n 2 3 4 5 6 7 8

nn 4 27 256 3 125 46 656 823 543 16 777 216

a(n) 0 0 7 110 1 921 37 795 835 290

We don’t know if l(Tn)/|Tn| tends to a limit as n→∞.

Similar lower bounds for the lengths of:
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Inverse semigroups

An inverse semigroup is a semigroup S such that for all x ∈ S, there
exists a unique x−1 ∈ S where xx−1x = x and x−1xx−1 = x−1.

Theorem (cf. Ganyushkin and Livinsky (2011))

Let S be a finite inverse semigroup with J -classes J1, . . . , Jm. If
ni ∈ N denotes the number of L - and R-classes in Ji, and Gi is any
maximal subgroup of S contained in Ji, then

l(S) = −1 +
m∑
i=1

l(J∗
i )

= −1 +
m∑
i=1

ni(l(Gi) + 1) +
ni(ni − 1)

2
|Gi|+ (ni − 1).
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The symmetric inverse monoid, part I
The symmetric inverse monoid In consists of all bijections between
subsets of X = {1, . . . , n}.

If f ∈ In, then we define:

dom(f) = { x ∈ X : (x)f is defined }
im(f) = { (x)f ∈ X : x ∈ dom(f) }.

If f, g ∈ In, then

• fL g if and only if im(f) = im(g);

• fRg if and only if dom(f) = dom(g);

• fJ g if and only if | dom(f)| = |dom(g)|.

If Ji is the J -class of In consisting of elements f with | dom(f)| = i,
then the number of L - and R-classes in Ji is

(
n
i

)
. Thus

l(In) = −1 +

n∑
i=1

(
n

i

)
(l(Si) + 1) +

(
n
i

)
(
(
n
i

)
− 1)

2
|Si|+

(
n

i

)
− 1.
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Y. Péresse (Hertfordshire) 28th of July, 2015 14 / 16



The symmetric inverse monoid, part I
The symmetric inverse monoid In consists of all bijections between
subsets of X = {1, . . . , n}.
If f ∈ In, then we define:

dom(f) = { x ∈ X : (x)f is defined }
im(f) = { (x)f ∈ X : x ∈ dom(f) }.

If f, g ∈ In, then

• fL g if and only if im(f) = im(g);

• fRg if and only if dom(f) = dom(g);

• fJ g if and only if | dom(f)| = |dom(g)|.

If Ji is the J -class of In consisting of elements f with |dom(f)| = i,
then the number of L - and R-classes in Ji is

(
n
i

)
. Thus

l(In) = −1 +

n∑
i=1

(
n

i

)
(l(Si) + 1) +

(
n
i

)
(
(
n
i

)
− 1)

2
|Si|+

(
n

i

)
− 1.
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The symmetric inverse monoid, part II

n 1 2 3 4 5 6 7 8

|In| 2 7 34 209 1 546 13327 130 922 1 441 729

l(In) 1 6 25 116 722 5 956 59 243 667 500

We used the formula in the previous theorem to show that:

Theorem

l(In)/|In| → 1/2 as n→∞.

The same limit holds for various other well-known inverse semigroups:
the dual symmetric inverse monoid, the semigroup of partial
order-preserving injective mappings, and so on.
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Open problem

Does l(Tn)/|Tn| tend to a limit as n −→∞?

If so, what is the limit?

If not, what are the upper and lower limits?

Thank you for listening!
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