Long chains of subsemigroups

Yann Péresse

University of Hertfordshire
28th of July, 2015

Definitions 1

Definitions 1

In this talk:
Max:= Maximilien Gadouleau
Peter:= Peter Cameron
James:= James Mitchell

Definitions 2: Length of a group

$G:=$ a finite group. $l(G):=$ length of $G=$ largest size of a chain of proper subgroups of G.

Definitions 2: Length of a group

$G:=$ a finite group. $l(G):=$ length of $G=$ largest size of a chain of proper subgroups of G.

Definitions 2: Length of a group

$G:=$ a finite group. $l(G):=$ length of $G=$ largest size of a chain of proper subgroups of G.

K_{4} has length 2.

Robin results

Robin results

If $G \leq H$, then

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq$

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.
In fact, $l(G \times H)=l(G)+l(H)$ and:

Proposition

Let G be a group and $N \unlhd G$. Then

$$
l(G)=l(N)+l(G / N) .
$$

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.
In fact, $l(G \times H)=l(G)+l(H)$ and:

Proposition

Let G be a group and $N \unlhd G$. Then

$$
l(G)=l(N)+l(G / N)
$$

$C_{n}:=$ cyclic group of order n.

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.
In fact, $l(G \times H)=l(G)+l(H)$ and:

Proposition

Let G be a group and $N \unlhd G$. Then

$$
l(G)=l(N)+l(G / N)
$$

$C_{n}:=$ cyclic group of order n.
C_{29} has length

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.
In fact, $l(G \times H)=l(G)+l(H)$ and:

Proposition

Let G be a group and $N \unlhd G$. Then

$$
l(G)=l(N)+l(G / N)
$$

$C_{n}:=$ cyclic group of order n.
C_{29} has length 1.

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.
In fact, $l(G \times H)=l(G)+l(H)$ and:

Proposition

Let G be a group and $N \unlhd G$. Then

$$
l(G)=l(N)+l(G / N)
$$

$C_{n}:=$ cyclic group of order n.
C_{29} has length 1.
C_{100} has length

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.
In fact, $l(G \times H)=l(G)+l(H)$ and:

Proposition

Let G be a group and $N \unlhd G$. Then

$$
l(G)=l(N)+l(G / N)
$$

$C_{n}:=$ cyclic group of order n.
C_{29} has length 1.
C_{100} has length 4.

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.
In fact, $l(G \times H)=l(G)+l(H)$ and:

Proposition

Let G be a group and $N \unlhd G$. Then

$$
l(G)=l(N)+l(G / N)
$$

$C_{n}:=$ cyclic group of order n.
C_{29} has length 1.
C_{100} has length 4.

If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, define $\Omega(n)=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$.

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.
In fact, $l(G \times H)=l(G)+l(H)$ and:

Proposition

Let G be a group and $N \unlhd G$. Then

$$
l(G)=l(N)+l(G / N)
$$

$C_{n}:=$ cyclic group of order n.
C_{29} has length 1.
C_{100} has length 4.

If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, define $\Omega(n)=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$. If G has order n, then $l(G)$

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.
In fact, $l(G \times H)=l(G)+l(H)$ and:

Proposition

Let G be a group and $N \unlhd G$. Then

$$
l(G)=l(N)+l(G / N)
$$

$C_{n}:=$ cyclic group of order n.
C_{29} has length 1.
C_{100} has length 4.

If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, define $\Omega(n)=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$. If G has order n, then $l(G) \leq \Omega(n) \leq \log _{2}(n)$.

Robin results

If $G \leq H$, then $l(G) \leq l(H)$.
$l(G \times H) \geq l(G)+l(H)$.
In fact, $l(G \times H)=l(G)+l(H)$ and:

Proposition

Let G be a group and $N \unlhd G$. Then

$$
l(G)=l(N)+l(G / N)
$$

$C_{n}:=$ cyclic group of order n.
C_{29} has length 1.
C_{100} has length 4.

If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, define $\Omega(n)=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$.
If G has order n, then $l(G) \leq \Omega(n) \leq \log _{2}(n)$.
Equality holds, for example, for all soluble groups.

The symmetric group

$S_{n}:=$ the symmetric group on n points.

The symmetric group

$S_{n}:=$ the symmetric group on n points.

Theorem (Cameron-Solomon-Turull '89)

$$
l\left(S_{n}\right)=\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.

The symmetric group

$S_{n}:=$ the symmetric group on n points.

Theorem (Cameron-Solomon-Turull '89)

$$
l\left(S_{n}\right)=\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.

This gives $l\left(A_{n}\right)$. Lengths of other simple groups also more or less understood.

The symmetric group

$S_{n}:=$ the symmetric group on n points.

Theorem (Cameron-Solomon-Turull '89)

$$
l\left(S_{n}\right)=\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.

This gives $l\left(A_{n}\right)$. Lengths of other simple groups also more or less understood.

What about semigroups?

How to define lengths of semigroups: controversy

How to define lengths of semigroups: controversy

Consider K_{4} again.

How to define lengths of semigroups: controversy
Consider K_{4} again.

Forget that K_{4} is a group.

How to define lengths of semigroups: controversy

How to define lengths of semigroups: controversy

We get an extra subsemigroup: the empty semigroup!

How to bridge the Araujo divide: signs of good will

How to bridge the Araujo divide: signs of good will S - a semigroup.
$l(S):=$ (largest size of a chain of proper subsemigroups) -1 .

How to bridge the Araujo divide: signs of good will

 S - a semigroup.$l(S):=$ (largest size of a chain of proper subsemigroups) -1 .
The length of a finite group does not depend on whether you view it as a group or a semigroup.

How to bridge the Araujo divide: signs of good will

 S - a semigroup.$l(S):=$ (largest size of a chain of proper subsemigroups) -1 .
The length of a finite group does not depend on whether you view it as a group or a semigroup. But $l(\emptyset)=-1$.

How to bridge the Araujo divide: signs of good will S - a semigroup.
$l(S):=$ (largest size of a chain of proper subsemigroups) -1.
The length of a finite group does not depend on whether you view it as a group or a semigroup. But $l(\emptyset)=-1$.

Robin results 2: semigroups

Robin results 2: semigroups

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that $x y=0$ for all $x, y \in S$.
Then $l(S)=$

Robin results 2: semigroups

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that $x y=0$ for all $x, y \in S$.
Then $l(S)=|S|-1$.

Robin results 2: semigroups

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that $x y=0$ for all $x, y \in S$.
Then $l(S)=|S|-1$.
If $S \leq T$,

Robin results 2: semigroups

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that $x y=0$ for all $x, y \in S$.
Then $l(S)=|S|-1$.
If $S \leq T$, then $l(S) \leq l(T)$.

Robin results 2: semigroups

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that $x y=0$ for all $x, y \in S$.
Then $l(S)=|S|-1$.
If $S \leq T$, then $l(S) \leq l(T)$.
If $\phi: S \longrightarrow T$ is a surjective homomorphism, then

Robin results 2: semigroups

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that $x y=0$ for all $x, y \in S$.
Then $l(S)=|S|-1$.
If $S \leq T$, then $l(S) \leq l(T)$.
If $\phi: S \longrightarrow T$ is a surjective homomorphism, then $l(S) \geq l(T)$.

Robin results 2: semigroups

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that $x y=0$ for all $x, y \in S$.
Then $l(S)=|S|-1$.
If $S \leq T$, then $l(S) \leq l(T)$.
If $\phi: S \longrightarrow T$ is a surjective homomorphism, then $l(S) \geq l(T)$.
Any "decomposition" type result?

Robin results 2: semigroups

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that $x y=0$ for all $x, y \in S$.
Then $l(S)=|S|-1$.
If $S \leq T$, then $l(S) \leq l(T)$.
If $\phi: S \longrightarrow T$ is a surjective homomorphism, then $l(S) \geq l(T)$.
Any "decomposition" type result?
Semigroups don't have normal subgroups.

Robin results 2: semigroups

Let S be a zero semigroup, i.e. there is some $0 \in S$ such that $x y=0$ for all $x, y \in S$.
Then $l(S)=|S|-1$.
If $S \leq T$, then $l(S) \leq l(T)$.
If $\phi: S \longrightarrow T$ is a surjective homomorphism, then $l(S) \geq l(T)$.
Any "decomposition" type result?
Semigroups don't have normal subgroups.
But Semigroups have ideals:
$I \leq S$ is an ideal $\Longleftrightarrow x i, i x \in I$ for every $s \in S, i \in I$.

Ideals

Proposition (cf. Ganyushkin-Livinsky '11)

Let S be a semigroup and let I be an ideal of S. Then

$$
l(S)=l(I)+l(S / I)
$$

Ideals

Proposition (cf. Ganyushkin-Livinsky '11)

Let S be a semigroup and let I be an ideal of S. Then

$$
l(S)=l(I)+l(S / I)
$$

$S / I=S \backslash I \cup\{0\}$ with operation $*$.

$$
s * t=\left\{\begin{array}{l}
s t \text { if } s t \in S \backslash I ; \\
0 \text { otherwise }
\end{array}\right.
$$

and $s 0=0 s=00=0$.

Green's relations

If S is a semigroup and $x, y \in S$, then we write

- $x \mathscr{L} y$ if $S^{1} x=S^{1} y$
- $x \mathscr{R} y$ if $x S^{1}=y S^{1}$
- $x \mathscr{J} y$ if $S^{1} x S^{1}=S^{1} y S^{1}$
- $x \mathscr{H} y$ if $x \mathscr{L} y$ and $x \mathscr{R} y$

Green's relations

If S is a semigroup and $x, y \in S$, then we write

- $x \mathscr{L} y$ if $S^{1} x=S^{1} y$
- $x \mathscr{R} y$ if $x S^{1}=y S^{1}$
- $x \mathscr{J} y$ if $S^{1} x S^{1}=S^{1} y S^{1}$
- $x \mathscr{H} y$ if $x \mathscr{L} y$ and $x \mathscr{R} y$

These relations are equivalences called Green's relations, and their classes are Green's classes.

Principal factors

The principal factor J^{*} of a \mathscr{J}-class J is the set $J \cup\{0\}$ with multiplication

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in J \\ 0 & \text { otherwise }\end{cases}
$$

Principal factors

The principal factor J^{*} of a \mathscr{J}-class J is the set $J \cup\{0\}$ with multiplication

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in J \\ 0 & \text { otherwise }\end{cases}
$$

A semigroup S is regular if for every $x \in S$ there exists $y \in S$ such that $x y x=x$.

Principal factors

The principal factor J^{*} of a \mathscr{J}-class J is the set $J \cup\{0\}$ with multiplication

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in J \\ 0 & \text { otherwise }\end{cases}
$$

A semigroup S is regular if for every $x \in S$ there exists $y \in S$ such that $x y x=x$.

Lemma

Let S be a finite regular semigroup and let $J_{1}, J_{2}, \ldots, J_{m}$ be the \mathscr{J}-classes of S. Then

$$
l(S)=l\left(J_{1}^{*}\right)+l\left(J_{2}^{*}\right)+\cdots+l\left(J_{m}^{*}\right)-1
$$

The full transformation monoid

The full transformation monoid

$T_{n}:=$ the full transformation monoid on n points.

The full transformation monoid

$T_{n}:=$ the full transformation monoid on n points.
Theorem

$$
l\left(T_{n}\right) \geq a(n)=\mathrm{e}^{-2} n^{n}-2 \mathrm{e}^{-2}\left(1-\mathrm{e}^{-1}\right) n^{n-1 / 3}-o\left(n^{n-1 / 3}\right)
$$

The full transformation monoid

$T_{n}:=$ the full transformation monoid on n points.

Theorem

$l\left(T_{n}\right) \geq a(n)=\mathrm{e}^{-2} n^{n}-2 \mathrm{e}^{-2}\left(1-\mathrm{e}^{-1}\right) n^{n-1 / 3}-o\left(n^{n-1 / 3}\right)$.

Here are the first few values:

n	2	3	4	5	6	7	8
n^{n}	4	27	256	3125	46656	823543	16777216
$a(n)$	0	0	7	110	1921	37795	835290

The full transformation monoid

$T_{n}:=$ the full transformation monoid on n points.

Theorem

$l\left(T_{n}\right) \geq a(n)=\mathrm{e}^{-2} n^{n}-2 \mathrm{e}^{-2}\left(1-\mathrm{e}^{-1}\right) n^{n-1 / 3}-o\left(n^{n-1 / 3}\right)$.

Here are the first few values:

n	2	3	4	5	6	7	8
n^{n}	4	27	256	3125	46656	823543	16777216
$a(n)$	0	0	7	110	1921	37795	835290

We don't know if $l\left(T_{n}\right) /\left|T_{n}\right|$ tends to a limit as $n \rightarrow \infty$.

The full transformation monoid

$T_{n}:=$ the full transformation monoid on n points.

Theorem

$l\left(T_{n}\right) \geq a(n)=\mathrm{e}^{-2} n^{n}-2 \mathrm{e}^{-2}\left(1-\mathrm{e}^{-1}\right) n^{n-1 / 3}-o\left(n^{n-1 / 3}\right)$.

Here are the first few values:

n	2	3	4	5	6	7	8
n^{n}	4	27	256	3125	46656	823543	16777216
$a(n)$	0	0	7	110	1921	37795	835290

We don't know if $l\left(T_{n}\right) /\left|T_{n}\right|$ tends to a limit as $n \rightarrow \infty$.
Similar lower bounds for the lengths of:

- order-preserving transformations O_{n}
- the general linear semigroup $G L S(n, q)$.

Inverse semigroups

An inverse semigroup is a semigroup S such that for all $x \in S$, there exists a unique $x^{-1} \in S$ where $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

Inverse semigroups

An inverse semigroup is a semigroup S such that for all $x \in S$, there exists a unique $x^{-1} \in S$ where $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

Theorem (cf. Ganyushkin and Livinsky (2011))

Let S be a finite inverse semigroup with \mathscr{J}-classes J_{1}, \ldots, J_{m}. If $n_{i} \in \mathbb{N}$ denotes the number of \mathscr{L} - and \mathscr{R}-classes in J_{i}, and G_{i} is any maximal subgroup of S contained in J_{i}, then

$$
l(S)=-1+\sum_{i=1}^{m} l\left(J_{i}^{*}\right)
$$

Inverse semigroups

An inverse semigroup is a semigroup S such that for all $x \in S$, there exists a unique $x^{-1} \in S$ where $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

Theorem (cf. Ganyushkin and Livinsky (2011))

Let S be a finite inverse semigroup with \mathscr{J}-classes J_{1}, \ldots, J_{m}. If $n_{i} \in \mathbb{N}$ denotes the number of \mathscr{L} - and \mathscr{R}-classes in J_{i}, and G_{i} is any maximal subgroup of S contained in J_{i}, then

$$
\begin{aligned}
l(S) & =-1+\sum_{i=1}^{m} l\left(J_{i}^{*}\right) \\
& =-1+\sum_{i=1}^{m} n_{i}\left(l\left(G_{i}\right)+1\right)+\frac{n_{i}\left(n_{i}-1\right)}{2}\left|G_{i}\right|+\left(n_{i}-1\right)
\end{aligned}
$$

The symmetric inverse monoid, part I

The symmetric inverse monoid I_{n} consists of all bijections between subsets of $X=\{1, \ldots, n\}$.

The symmetric inverse monoid, part I

The symmetric inverse monoid I_{n} consists of all bijections between subsets of $X=\{1, \ldots, n\}$.
If $f \in I_{n}$, then we define:

$$
\begin{aligned}
\operatorname{dom}(f) & =\{x \in X:(x) f \text { is defined }\} \\
\operatorname{im}(f) & =\{(x) f \in X: x \in \operatorname{dom}(f)\}
\end{aligned}
$$

The symmetric inverse monoid, part I

The symmetric inverse monoid I_{n} consists of all bijections between subsets of $X=\{1, \ldots, n\}$.
If $f \in I_{n}$, then we define:

$$
\begin{aligned}
\operatorname{dom}(f) & =\{x \in X:(x) f \text { is defined }\} \\
\operatorname{im}(f) & =\{(x) f \in X: x \in \operatorname{dom}(f)\}
\end{aligned}
$$

If $f, g \in I_{n}$, then

- $f \mathscr{L} g$ if and only if $\operatorname{im}(f)=\operatorname{im}(g)$;
- $f \mathscr{R} g$ if and only if $\operatorname{dom}(f)=\operatorname{dom}(g)$;
- $f \mathscr{J} g$ if and only if $|\operatorname{dom}(f)|=|\operatorname{dom}(g)|$.

The symmetric inverse monoid, part I

The symmetric inverse monoid I_{n} consists of all bijections between subsets of $X=\{1, \ldots, n\}$.
If $f \in I_{n}$, then we define:

$$
\begin{aligned}
\operatorname{dom}(f) & =\{x \in X:(x) f \text { is defined }\} \\
\operatorname{im}(f) & =\{(x) f \in X: x \in \operatorname{dom}(f)\}
\end{aligned}
$$

If $f, g \in I_{n}$, then

- $f \mathscr{L} g$ if and only if $\operatorname{im}(f)=\operatorname{im}(g)$;
- $f \mathscr{R} g$ if and only if $\operatorname{dom}(f)=\operatorname{dom}(g)$;
- $f \mathscr{J} g$ if and only if $|\operatorname{dom}(f)|=|\operatorname{dom}(g)|$.

If J_{i} is the \mathscr{J}-class of I_{n} consisting of elements f with $|\operatorname{dom}(f)|=i$, then the number of \mathscr{L} - and \mathscr{R}-classes in J_{i} is $\binom{n}{i}$.

The symmetric inverse monoid, part I

The symmetric inverse monoid I_{n} consists of all bijections between subsets of $X=\{1, \ldots, n\}$.
If $f \in I_{n}$, then we define:

$$
\begin{aligned}
\operatorname{dom}(f) & =\{x \in X:(x) f \text { is defined }\} \\
\operatorname{im}(f) & =\{(x) f \in X: x \in \operatorname{dom}(f)\}
\end{aligned}
$$

If $f, g \in I_{n}$, then

- $f \mathscr{L} g$ if and only if $\operatorname{im}(f)=\operatorname{im}(g)$;
- $f \mathscr{R} g$ if and only if $\operatorname{dom}(f)=\operatorname{dom}(g)$;
- $f \mathscr{J} g$ if and only if $|\operatorname{dom}(f)|=|\operatorname{dom}(g)|$.

If J_{i} is the \mathscr{J}-class of I_{n} consisting of elements f with $|\operatorname{dom}(f)|=i$, then the number of \mathscr{L} - and \mathscr{R}-classes in J_{i} is $\binom{n}{i}$. Thus

$$
l\left(I_{n}\right)=-1+\sum_{i=1}^{n}\binom{n}{i}\left(l\left(S_{i}\right)+1\right)+\frac{\left.\binom{n}{i}\binom{n}{i}-1\right)}{2}\left|S_{i}\right|+\binom{n}{i}-1 .
$$

The symmetric inverse monoid, part II

n	1	2	3	4	5	6	7	8
$\left\|I_{n}\right\|$	2	7	34	209	1546	13327	130922	1441729
$l\left(I_{n}\right)$	1	6	25	116	722	5956	59243	667500

The symmetric inverse monoid, part II

n	1	2	3	4	5	6	7	8
$\left\|I_{n}\right\|$	2	7	34	209	1546	13327	130922	1441729
$l\left(I_{n}\right)$	1	6	25	116	722	5956	59243	667500

We used the formula in the previous theorem to show that:

Theorem

$l\left(I_{n}\right) /\left|I_{n}\right| \rightarrow 1 / 2$ as $n \rightarrow \infty$.

The symmetric inverse monoid, part II

n	1	2	3	4	5	6	7	8
$\left\|I_{n}\right\|$	2	7	34	209	1546	13327	130922	1441729
$l\left(I_{n}\right)$	1	6	25	116	722	5956	59243	667500

We used the formula in the previous theorem to show that:

Theorem

$l\left(I_{n}\right) /\left|I_{n}\right| \rightarrow 1 / 2$ as $n \rightarrow \infty$.

The same limit holds for various other well-known inverse semigroups: the dual symmetric inverse monoid, the semigroup of partial order-preserving injective mappings, and so on.

Open problem

Does $l\left(T_{n}\right) /\left|T_{n}\right|$ tend to a limit as $n \longrightarrow \infty$?

Open problem

Does $l\left(T_{n}\right) /\left|T_{n}\right|$ tend to a limit as $n \longrightarrow \infty$?
If so, what is the limit?

Open problem

Does $l\left(T_{n}\right) /\left|T_{n}\right|$ tend to a limit as $n \longrightarrow \infty$?
If so, what is the limit?

If not, what are the upper and lower limits?

Open problem

Does $l\left(T_{n}\right) /\left|T_{n}\right|$ tend to a limit as $n \longrightarrow \infty$?
If so, what is the limit?

If not, what are the upper and lower limits?

Thank you for listening!

