Coupling network models with porous media equations

Richard Tsai
in collaboration with
Jay Chu (Math), Björn Engquist (Math \& ICES), and Maša Prodanović (Petroleum Eng.)
University of Texas at Austin
London Mathematical Society Durham Symposium
Numerical Analysis of Multiscale Problems, July 5 - July 15, 2010

Objectives

- Effective solution of a conservation law

$$
\begin{aligned}
& \nabla \cdot F(P, \nabla P, x)=h(x), \quad x_{L}<x<x_{R} \quad \frac{\partial S}{\partial t}+\mathbf{v} \cdot \nabla g(S)=h_{w} \\
& F\left(x_{L}\right)=P_{L}, F\left(x_{R}\right)=P_{R}
\end{aligned}
$$

- Upscaling very large (nonlinear) network models

Conservation law at continuum

$$
\nabla \cdot F(P, \nabla P, x)=h(x) \quad F(P, 0, x) \equiv 0
$$

E.g. linear flux: $\quad F=-k(x) \nabla P$
$k\left(x, \frac{x}{\epsilon} ; \omega\right) \quad k_{\text {hom }}(x) \quad$ effective flux
numerical homogenization:
multiscale finite element methods, dual-porocity method

Effective flux of a pore scale network model.

Challenges from heterogeneous media

Naturally fractured carbonate, $\mathrm{dx}=3.1 \mu \mathrm{~m}$
Image courtesy of M. Knackstedt \& R. Sok, Australian Nat'I Univ.

Obtaining network models

Model/granular media

Imaged / real media

76673 pores and 166853 throats

Top view of a slice through 3D network

Pore scale network model

conductance:

$$
c_{i j}=c\left(x_{i}, p_{i}, p_{j}\right)
$$

conservation of mass:

$$
\sum_{j \in \operatorname{Nbr}(i)} c_{i j}\left(p_{j}-p_{i}\right)=0
$$

Conductance

- Conductance contains the physics and geometry
- Newtonian fluid of viscosity μ in a tube

$$
C p=b
$$

Properties of linear networks:

- positive conductance
- invertibility
- maximum principle

Coupling under HMM

- Finite volume discretization for the PDE

$$
\begin{aligned}
& \nabla \cdot F(P, \nabla P, x)=h(x), \quad x_{L}<x<x_{R} \quad F_{j+\frac{1}{2}}-F_{j-\frac{1}{2}}=\Delta x h\left(x_{j}\right) \\
& F\left(x_{L}\right)=P_{L}, F\left(x_{R}\right)=P_{R}
\end{aligned}
$$

- Flux evaluated by small-size network simulations

$$
\longrightarrow \quad F_{j+\frac{1}{2}}
$$

Cf: Balhoff et al. 2007 (domain decomp.)

Coupling

Need to recover the effective pressure field P .

Macro-micro iterations

Continuum:

Network domain:

$$
\begin{aligned}
F_{j-\frac{1}{2}}^{n+1}:= & f^{n+1} \\
& \simeq K^{n} \frac{P_{j}^{n+1}-P_{j-1}^{n+1}}{\Delta x} \\
f^{n+1} \uparrow & K^{n}:=\frac{F^{n}}{\Delta P^{n}} \Delta x
\end{aligned}
$$

$$
\begin{array}{rl}
P_{j-\frac{1}{2}}^{L, n+1} \longmapsto P_{j-\frac{1}{2}}^{R, n+1} & f=\sum \sum f_{i j} \\
C^{n+1} p^{n+1}=b^{n+1} & f_{i j}=-c_{i j}\left(p_{i}+p_{j}\right)\left(p_{i}-p_{j}\right)
\end{array}
$$

Macro-micro iterations

$$
\begin{gathered}
\mathbf{P}^{n+1}:=\mathbf{P}^{n}-\Delta x^{2}\left(\mathbf{K}^{n}\right)^{-1} G\left(\mathbf{P}^{n}\right) \\
G(\mathbf{P}):=\left(D_{0} F_{j}-h_{j}\right)^{T}
\end{gathered}
$$

Continuum:

$$
f=F_{j-\frac{1}{2}}^{n+1} \simeq K^{n} \frac{P_{j}^{n+1}-P_{j-1}^{n+1}}{\Delta x} \quad K^{n}:=\frac{F^{n}}{\Delta P^{n}} \Delta x
$$

Network domain:

$$
P_{j-\frac{1}{2}}^{L, n+1} \longmapsto P_{j-\frac{1}{2}}^{R, n+1} \quad f^{n+1}
$$

Properties of the scheme

$$
\mathbf{P}^{n+1}:=\mathbf{P}^{n}-\Delta x^{2}\left(\mathbf{K}^{n}\right)^{-1} G\left(\mathbf{P}^{n}\right)
$$

- Iterations converge under suitable conditions

$$
\frac{\partial G}{\partial \mathbf{P}}=\frac{1}{\Delta x^{2}}(\mathbf{K}+\mathbf{A})
$$

- Linear network: A:=0

Newton's method and converges in I step.

- Nonlinear network:

$$
\mathbf{A}:=\left(\left(D^{-} P_{j-1}\right) \frac{\partial K_{j-1 / 2}}{\partial P_{k}}-\left(D^{-} P_{j}\right) \frac{\partial K_{j+1 / 2}}{\partial P_{k}}\right)
$$

Quasi-Newton style iterations.
Convergence under some conditions.

Simulation setup

- The conductance $c_{i j}$ is randomly distributed from $(0,1000)$ with uniform distribution.
- Compare the pressure and the flux from full sampling and partial sampling with results from the direct numerical simulation using the full system.

Error averaged over 100 different random conductance.

Linear network model

$$
f_{i j}=-c_{i j}\left(p_{i}-p_{j}\right)
$$

Full sampling

	$N=5$	$N=10$	$N=20$	$N=50$
Error in pressure	0.0008	0.0014	0.0022	0.0041
Error in flux	0.0048	0.0111	0.0235	0.0620

Partial sampling

Error in pressure

	$M=40$	$M=100$	$M=200$	$M=400$
$N=3$	0.0567	0.0273	0.0188	0.0117
$N=5$	0.0688	0.0370	0.0218	0.0122
$N=10$	0.1454	0.0442	0.0257	0.0158

Error in flux

	$M=40$	$M=100$	$M=200$	$M=400$
$N=1$	0.0760	0.0514	0.0299	0.0170
$N=3$	0.1226	0.0513	0.0334	0.0192
$N=5$	0.2111	0.0685	0.0374	0.0214
$N=10$	0.6638	0.1347	0.0571	0.0277

Nonlinear network model I

$$
f_{i j}=-c_{i j}\left(p_{i}+p_{j}\right)\left(p_{i}-p_{j}\right)
$$

Full sampling

	$N=5$	$N=10$	$N=20$	$N=50$
Error in pressure	0.0005	0.0009	0.0016	0.0032
Error in flux	0.0036	0.0082	0.0177	0.0473

Partial sampling

Error in pressure

	$M=40$	$M=100$	$M=200$	$M=400$
$N=3$	0.0373	0.0184	0.0116	0.0072
$N=5$	0.0532	0.0253	0.0176	0.0093
$N=10$	0.1076	0.0365	0.0207	0.0118

Error in flux

	$M=40$	$M=100$	$M=200$	$M=400$
$N=1$	0.0661	0.0370	0.0244	0.0173
$N=3$	0.0987	0.0382	0.0258	0.0140
$N=5$	0.1358	0.0560	0.0308	0.0168
$N=10$	0.4330	0.1048	0.0470	0.0242

Nonlinear network model II

$$
f_{i j}=-\left(c_{i j}+\beta c_{i j}^{2}\left|p_{i}-p_{j}\right|\right)\left(p_{i}-p_{j}\right) \quad \text { (The Forchheimer equation) }
$$

Full sampling

	$N=5$	$N=10$	$N=20$	$N=50$
Error in pressure	0.0007	0.0012	0.0021	0.0039
Error in flux	0.0047	0.0108	0.0235	0.0626

Partial sampling

Error in pressure

	$M=40$	$M=100$	$M=200$	$M=400$
$N=3$	0.0481	0.0274	0.0176	0.0101
$N=5$	0.0695	0.0332	0.0213	0.0118
$N=10$	0.1474	0.0442	0.0259	0.0150

Error in flux

	$M=40$	$M=100$	$M=200$	$M=400$
$N=1$	0.0749	0.0474	0.0298	0.0184
$N=3$	0.1424	0.0602	0.0373	0.0209
$N=5$	0.2133	0.0795	0.0403	0.0203
$N=10$	0.7410	$0.15 \frac{2}{2} 4$	0.0657	0.0296

Further macro-micro interaction

- Fluid pressure causes the formation of new crack/fracture.
- Formation of new fracture allows the fluid to enter and extend the crack further.
- Fracture is represented as throats with very high conductance.
- Iterations:
micro: given network conductance and boundary pressure) solve network pressure --> update network conductance --> solve network pressure

Macro: (update continuum model) \& update pressure

Conductance and stress

Conductance increases (i.e. crack propagates) if $G=K_{l}^{2}+K_{\| \|}{ }^{2} \geqq G_{C}$.

$$
K_{I}=C_{I} \sigma_{N} \quad K_{I I}=C_{I I}\left(\left|\sigma_{T}\right|-\mu\left|\sigma_{N}\right|\right)
$$

Estimate the normal and tangential stresses (σ_{N} and σ_{T}) by local pressure.

Compute stresses in similar fashion by suitable projections in noncartesian network models.
Reference: T. Reuschle (1998),Yuan and Harrison (2006)

Simulation result

Memory effect: $\quad c_{i j}^{n, m+1}=\max \left(c_{i j}^{n, m}, c_{f r a c}\right)$
Simulation domain : 21×100 nodes.
Initial conductance is I or 1000 (red dot).
G_{C} (critical crack extension force) is randomly distributed: i.e. some throats open more easily

Summary

- New collaborative work in progress. A lot more work to be done.
- The proposed scheme (multiscale, domain decomposition, subsampling) produces reasonable approximations for linear and nonlinear fluxes defined by uniformly distributed random conductance.
- Local stress computation may be used to capture hydraulic fracturing behavior.

Thank you for your attention.

ID periodic case

The network is 1×1001 linear model and the conductance c_{i} is given by

$$
c_{i}=\frac{1.1+\cos (x / \epsilon)}{1.1+\sin (x / \epsilon)},
$$

where $x=2 \pi i / 1000$. Partially sampling is used: $1,3,5,8$ blocks with 10 , $20, \ldots, 90,100$ nodes in each sampling domain.

Figure 1: Illustration of c_{i} with $\epsilon=1 / 5$.
$\varepsilon=0.2$

$\varepsilon=0.04$

$\varepsilon=0.05$

$$
\varepsilon=0.025
$$

