Coupling network models with porous media equations

Richard Tsai

in collaboration with

Jay Chu (Math), Björn Engquist (Math & ICES), and Maša Prodanović (Petroleum Eng.)

University of Texas at Austin

London Mathematical Society Durham Symposium Numerical Analysis of Multiscale Problems, July 5 - July 15, 2010

Objectives

• Effective solution of a conservation law

 $\nabla \cdot F(P, \nabla P, x) = h(x), \quad x_L < x < x_R \qquad \frac{\partial S}{\partial t} + \mathbf{v} \cdot \nabla g(S) = h_w$ $F(x_L) = P_L, F(x_R) = P_R$

• Upscaling very large (nonlinear) network models

Conservation law at continuum

$$\nabla \cdot F(P, \nabla P, x) = h(x)$$
 $F(P, 0, x) \equiv 0$

E.g. linear flux: $F = -k(x)\nabla P$

$$k(x, \frac{x}{\epsilon}; \omega)$$
 $k_{\text{hom}}(x)$ effective flux

numerical homogenization: multiscale finite element methods, dual-porocity method

Effective flux of a pore scale network model.

Challenges from heterogeneous media

Naturally fractured carbonate, dx = $3.1\mu m$ Image courtesy of M. Knackstedt & R. Sok, Australian Nat'l Univ.

Obtaining network models

Model/granular media

Imaged / real media

76673 pores and 166853 throats

Top view of a slice through 3D network

Pore scale network model

conductance:

 $c_{ij} = c(x_i, p_i, p_j)$

conservation of mass:

 $\sum c_{ij}(p_j - p_i) = 0$ $j \in Nbr(i)$

Conductance

- Conductance contains the physics and geometry
- Newtonian fluid of viscosity μ in a tube

$$Cp = b$$

Properties of linear networks:

- positive conductance
- invertibility
- maximum principle

$$q = \frac{\pi r^4}{8\mu L} \Delta P \qquad (r)$$

$$\leftarrow L$$

q: discharge of fluid

Coupling under HMM

• Finite volume discretization for the PDE

 $\nabla \cdot F(P, \nabla P, x) = h(x), \quad x_L < x < x_R \qquad F_{j+\frac{1}{2}} - F_{j-\frac{1}{2}} = \Delta x \ h(x_j)$ $F(x_L) = P_L, F(x_R) = P_R$

• Flux evaluated by small-size network simulations

Coupling

Need to recover the effective pressure field P.

Macro-micro iterations

Macro-micro iterations

 $\mathbf{P}^{n+1} := \mathbf{P}^n - \Delta x^2 \left(\mathbf{K}^n\right)^{-1} G(\mathbf{P}^n)$

$$G(\mathbf{P}) := (D_0 F_j - h_j)^T$$

Properties of the scheme $\mathbf{P}^{n+1} := \mathbf{P}^n - \Delta x^2 \left(\mathbf{K}^n\right)^{-1} G(\mathbf{P}^n)$

Iterations converge under suitable conditions

 $\frac{\partial G}{\partial \mathbf{P}} = \frac{1}{\Delta x^2} \left(\mathbf{K} + \mathbf{A} \right)$

• Linear network: A := 0Newton's method and converges in 1 step.

• Nonlinear network: $\mathbf{A} := \left((D^- P_{j-1}) \frac{\partial K_{j-1/2}}{\partial P_k} - (D^- P_j) \frac{\partial K_{j+1/2}}{\partial P_k} \right)$ Quasi-Newton style iterations. Convergence under some conditions.

Simulation setup

- The conductance c_{ij} is randomly distributed from (0, 1000) with uniform distribution.
- Compare the pressure and the flux from full sampling and partial sampling with results from the direct numerical simulation using the full system.

Error averaged over 100 different random conductance.

Linear network model

$$f_{ij} = -c_{ij}(p_i - p_j)$$

Full sampling

10000/N

	N = 5	N = 10	N = 20	N = 50
Error in pressure	0.0008	0.0014	0.0022	0.0041
Error in flux	0.0048	0.0111	0.0235	0.0620

	M = 40	M = 100	M = 200	M = 400
N = 3	0.0567	0.0273	0.0188	0.0117
N = 5	0.0688	0.0370	0.0218	0.0122
N = 10	0.1454	0.0442	0.0257	0.0158

Error in flux

	M = 40	M = 100	M = 200	M = 400
N = 1	0.0760	0.0514	0.0299	0.0170
N = 3	0.1226	0.0513	0.0334	0.0192
N = 5	0.2111	0.0685	0.0374	0.0214
N = 10	0.6638	0.1347	0.0571	0.0277

Nonlinear network model I

$$f_{ij} = -c_{ij}(p_i + p_j)(p_i - p_j)$$

Full sampling

			I				
1				37 40	37 00	1 37 50	_
			N = 5	N = 10	N = 20	1 N = 50)
				1. 10	1. 20	1. 00	
	From in pro	ocuro	0.0005	0.0009	0.0016	0.0032	
	Error in pre	ssure	0.0005	0.0009	0.0010	0.0052	
			0.0000	0.0000	0.0177	0.0470	_
	Error in flux	2	0.0036	0.0082	0.0177	0.0473	

10000/N

0.0560

0.1048

0.0308

0.0470

0.0168

0.0242

0.1358

0.4330

N = 5

N = 10

Nonlinear network model II

 $f_{ij} = -(c_{ij} + eta c_{ij}^2 |p_i - p_j|)(p_i - p_j)$ (The Forchheimer equation)

10000/N

Full sampling

	N = 5	N = 10	N = 20	N = 50
Error in pressure	0.0007	0.0012	0.0021	0.0039
Error in flux	0.0047	0.0108	0.0235	0.0626

Further macro-micro interaction

- Fluid pressure causes the formation of new crack/fracture.
- Formation of new fracture allows the fluid to enter and extend the crack further.
- Fracture is represented as throats with very high conductance.
- Iterations:

micro: given network conductance and boundary pressure) solve network pressure --> update network conductance --> solve network pressure

Macro: (update continuum model) & update pressure

Conductance and stress

Conductance increases (i.e. crack propagates) if $G = K_1^2 + K_{11}^2 \ge G_C$. $K_I = C_I \sigma_N$ $K_{II} = C_{II}(|\sigma_T| - \mu |\sigma_N|)$

Estimate the normal and tangential stresses (σ_N and σ_T) by local pressure.

Compute stresses in similar fashion by suitable projections in noncartesian network models.

Reference: T. Reuschle (1998), Yuan and Harrison (2006)

Simulation result

Memory effect: $c_{ij}^{n,m+1} = \max(c_{ij}^{n,m}, c_{frac})$

Simulation domain : 21×100 nodes.

Initial conductance is 1 or 1000 (red dot).

 G_{C} (critical crack extension force) is randomly distributed: i.e. some throats open more easily

Summary

- New collaborative work in progress. A lot more work to be done.
- The proposed scheme (multiscale, domain decomposition, subsampling) produces reasonable approximations for linear and nonlinear fluxes defined by uniformly distributed random conductance.
- Local stress computation may be used to capture hydraulic fracturing behavior.

Thank you for your attention.

ID periodic case

The network is 1 x 1001 linear model and the conductance c_i is given by

$$c_i = \frac{1.1 + \cos(x/\epsilon)}{1.1 + \sin(x/\epsilon)},$$

where $x = 2\pi i/1000$. Partially sampling is used: 1, 3, 5, 8 blocks with 10, 20, ..., 90, 100 nodes in each sampling domain.

Figure 1: Illustration of c_i with $\epsilon = 1/5$.

