MANCE

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Catherine E. Powell

c.powell@manchester.ac.uk

School of Mathematics University of Manchester, UK MANCH

Collaborators:

- Elisabeth Ullmann, University of Freiberg, Germany.
- Andrew Gordon, University of Manchester, UK.

MANCH

Galerkin mixed finite element approximation for two field PDE problems on $D \subset \mathbb{R}^{2,3}$, leads to variational problems of the form

find $u_h(\boldsymbol{x}) \in V_h$ and $p_h(\boldsymbol{x}) \in W_h$ such that:

$$a(u_h, v) + b(p_h, v) = g(v), \quad \forall v \in V_h$$

$$b(w, u_h) = f(w), \quad \forall w \in W_h$$

and saddle point systems

$$\left(\begin{array}{cc} A & B^T \\ B & 0 \end{array}\right) \left(\begin{array}{c} \underline{u} \\ \underline{p} \end{array}\right) = \left(\begin{array}{c} \underline{g} \\ \underline{f} \end{array}\right)$$

for which the study of efficient solvers is mature.

PDEs with Random Data

Stochastic Galerkin mixed finite element approximation for two field PDE problems with random data, on $D \times \Gamma$, with $\Gamma \subset \mathbb{R}^M$, leads to

find $u_{hd}(\boldsymbol{x}, \boldsymbol{\xi}) \in V_{\boldsymbol{h}} \otimes S_{\boldsymbol{d}}$ and $p_{hd}(\boldsymbol{x}, \boldsymbol{\xi}) \in W_{\boldsymbol{h}} \otimes S_{\boldsymbol{d}}$ such that:

$$\hat{a}(u_{hd}, v) + \hat{b}(p_{hd}, v) = \hat{g}(v), \quad \forall v \in V_h \otimes S_d$$

$$\hat{b}(w, u_{hd}) = \hat{f}(w), \quad \forall w \in W_h \otimes S_d$$

and saddle point systems

$$\left(\begin{array}{cc} \hat{A} & \hat{B}^T \\ \hat{B} & 0 \end{array}\right) \left(\begin{array}{c} \underline{u} \\ \underline{p} \end{array}\right) = \left(\begin{array}{c} \underline{g} \\ \underline{f} \end{array}\right)$$

which are much larger and more complicated to solve.

$$\begin{array}{rcl} -T\nabla p &=& \boldsymbol{u}, & \text{ in } D \\ \nabla \cdot \boldsymbol{u} &=& 0, & \text{ in } D \\ p &=& g, & \text{ on } \partial D_D \\ T\nabla p \cdot \boldsymbol{n} &=& 0, & \text{ on } \partial D_N = \partial D \backslash \partial D_D \end{array}$$

Solution variables:

p	=	$p(oldsymbol{x})$	hydraulic head (pressure)			
$oldsymbol{u}$	=	$oldsymbol{u}(oldsymbol{x})$	velocity field			

Data:

T	=	$T(\boldsymbol{x})$	transmissivity coefficients
g	=	$g(oldsymbol{x})$	boundary data
D	\subset	\mathbb{R}^{d}	spatial domain

MANCHESTER

Outline

• Stochastic Galerkin methods for:

$$T(\boldsymbol{x},\omega)^{-1}\boldsymbol{u}(\boldsymbol{x},\omega) - \nabla p(\boldsymbol{x},\omega) = 0, \ \nabla \cdot \boldsymbol{u}(\boldsymbol{x},\omega) = 0$$

 \triangleright Solving single very large saddle point system

• Stochastic collocation methods for:

$$T(\boldsymbol{x},\omega)^{-1}\boldsymbol{u}(\boldsymbol{x},\omega) - \nabla p(\boldsymbol{x},\omega) = 0, \ \nabla \cdot \boldsymbol{u}(\boldsymbol{x},\omega) = 0$$

> Solving many small deterministic saddle point systems (see A. Gordon's poster)

MANCH

Stochastic PDE Problem

Let $T(\boldsymbol{x}, \omega) : D \times \Omega \to \mathbb{R}$ be a correlated random field.

Approximate $T^{-1}(\boldsymbol{x}, \omega)$ by a function $T_M^{-1}(\boldsymbol{x}, \boldsymbol{\xi})$ involving a finite number of random variables $\boldsymbol{\xi} = (\xi_1, \dots, \xi_M)$ taking values in $\Gamma = \prod_{i=1}^M \Gamma_i \subset \mathbb{R}^M$.

Find $p(\boldsymbol{x}, \boldsymbol{\xi}), \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{\xi})$ such that *P*-a.s.

$$\begin{split} T_M^{-1}\left(\boldsymbol{x},\boldsymbol{\xi}\right)\boldsymbol{u}\left(\boldsymbol{x},\boldsymbol{\xi}\right) &- \nabla p\left(\boldsymbol{x},\boldsymbol{\xi}\right) &= 0, \\ \nabla\cdot\boldsymbol{u}\left(\boldsymbol{x},\boldsymbol{\xi}\right) &= 0 & \text{ in } D\times\Gamma, \\ p\left(\boldsymbol{x},\boldsymbol{\xi}\right) &= g(\boldsymbol{x}) & \text{ on } \partial D_D\times\Gamma, \\ \boldsymbol{u}\left(\boldsymbol{x},\boldsymbol{\xi}\right)\cdot\boldsymbol{n} &= 0 & \text{ on } \partial D_N\times\Gamma. \end{split}$$

MANCH

Finite-dimensional Noise Assumption

Popular choices are:

• Truncated Karhunen-Loève expansion (linear)

$$T_M^{-1}(\boldsymbol{x},\boldsymbol{\xi}) = \mu(\boldsymbol{x}) + \sum_{k=1}^M t_k(\boldsymbol{x}) \,\boldsymbol{\xi}_k, \qquad t_k(\boldsymbol{x}) = \sqrt{\lambda_k} c_k(\boldsymbol{x})$$

 $\{\lambda_k, c_k(\boldsymbol{x})\}, k = 1, 2, \dots$ are the eigenvalues and eigenfunctions of covariance $\{\xi_1, \xi_2, \dots\}$ are uncorrelated, with mean zero and unit variance

• Truncated Polynomial Chaos expansion (nonlinear)

$$T_M^{-1}(\boldsymbol{x},\boldsymbol{\xi}(\omega)) = \mu(\boldsymbol{x}) + \sum_{k=1}^N t_k(\boldsymbol{x}) \, \boldsymbol{\psi}_k(\boldsymbol{\xi}), \qquad t_k(\boldsymbol{x}) = \left\langle T^{-1} \boldsymbol{\psi}_k(\boldsymbol{\xi}) \right\rangle$$

The University of Mancheste

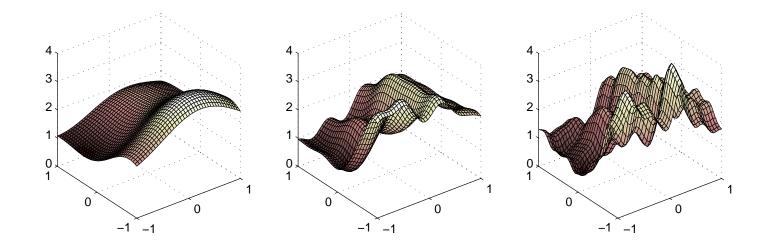
Example - KL expansion

Consider the covariance function

$$C_{T^{-1}}(\boldsymbol{x}, \boldsymbol{y}) = \exp\left(-\parallel \boldsymbol{x} - \boldsymbol{y} \parallel_{1}\right)$$

 $D = [0, 1] \times [0, 1]$ and Gaussian random variables.

Realisations of T_M^{-1} with M = 5, 20, 50, with $\mu(\boldsymbol{x}) = 0$



If the random variables are independent then the joint density function has the form:

$$\rho(\boldsymbol{\xi}) = \prod_{i} \rho_i(\xi_i)$$

and

MANCH

$$E\left[g(\boldsymbol{\xi})
ight] = \langle g(\boldsymbol{\xi})
angle = \int_{\Gamma}
ho(\boldsymbol{y}) g(\boldsymbol{y}) \, d\boldsymbol{y}.$$

Orthonormal polynomials in $\boldsymbol{\xi}$ are constructed via

$$\psi_i(\boldsymbol{\xi}) = \prod_{s=1}^M \psi_{i_s}(\xi_s)$$

where $\psi_{i_s}(\xi_s)$ is a univariate polynomial of degree i_s , orthonormal w.r.t to $\langle \cdot, \cdot \rangle = E[\cdot]$.

MANCHESTER

Weak Formulation

$$V = L^2_{\rho}(\Gamma, H(div; D)) \qquad \qquad W = L^2_{\rho}(\Gamma, L^2(D))$$

We seek $\boldsymbol{u}(\boldsymbol{x},\boldsymbol{\xi})\in V$ and $p(\boldsymbol{x},\boldsymbol{\xi})\in W$ such that:

$$igg \langle \left(T_M^{-1} oldsymbol{u}, oldsymbol{v}
ight)
ight
angle + \langle (p,
abla \cdot oldsymbol{v})
angle = \langle (g, oldsymbol{v} \cdot oldsymbol{n})_{\partial \Gamma_D}
ight
angle,$$

 $\langle (w,
abla \cdot oldsymbol{u})
angle = 0,$

 $\forall \ \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{\xi}) \in V \text{ and } w(\boldsymbol{x}, \boldsymbol{\xi}) \in W.$

Find $\boldsymbol{u}_{hd}(\boldsymbol{x},\boldsymbol{\xi}) \in V_h \otimes S_d$ and $p_{hd}(\boldsymbol{x},\boldsymbol{\xi}) \in W_h \otimes S_d$ satisfying:

$$\left\langle \left(T_M^{-1}\boldsymbol{u}_{hd},\boldsymbol{v}\right)\right\rangle + \left\langle \left(p_{hd},\nabla\cdot\boldsymbol{v}\right)
ight
angle = \left\langle \left(g,\boldsymbol{v}\cdot\boldsymbol{n}\right)_{\partial\Gamma_D}\right\rangle,$$

$$\langle (w, \nabla \cdot \boldsymbol{u}_{hd}) \rangle = 0,$$

 $\forall \ \boldsymbol{v} \in V_h \otimes S_d \text{ and } w \in W_h \otimes S_d.$

MANCH

The University of Manchester

Stochastic Galerkin Equations

Find $\boldsymbol{u}_{hd}(\boldsymbol{x},\boldsymbol{\xi}) \in V_h \otimes S_d$ and $p_{hd}(\boldsymbol{x},\boldsymbol{\xi}) \in W_h \otimes S_d$ satisfying:

$$\left\langle \left(T_M^{-1} \boldsymbol{u}_{hd}, \boldsymbol{v}\right) \right\rangle + \left\langle \left(p_{hd}, \nabla \cdot \boldsymbol{v}\right) \right\rangle = \left\langle \left(g, \boldsymbol{v} \cdot \boldsymbol{n}\right)_{\partial \Gamma_D} \right\rangle,$$

$$\langle (w, \nabla \cdot \boldsymbol{u}_{hd}) \rangle = 0,$$

 $\forall \ \boldsymbol{v} \in V_h \otimes S_d \text{ and } w \in W_h \otimes S_d.$

• $V_h \subset H(div; D), W_h \subset L^2(D)$ are a deterministic inf-sup stable pairing

•
$$S_d \subset L^2(\Gamma)$$

MANCH

The University of Manchester

For S_d we choose M-variate polynomials of total degree d.

Use orthonormal polynomial chaos basis

$$S_d = \operatorname{span}\left\{\psi_1(\boldsymbol{\xi}), \dots, \psi_{N_{\boldsymbol{\xi}}}(\boldsymbol{\xi})\right\}, \qquad N_{\boldsymbol{\xi}} = \frac{(M+d)!}{M!d!}$$

M = 1			M = 5			M = 10		
d = 1	d = 2	d = 3	d = 1	d = 2	d = 3	d = 1	d = 2	d = 3
2	3	4	6	21	56	11	66	286

MANCH

Saddle point systems

MANCHESTER

The University of Manchester

$$V_{h} = \operatorname{span} \{ \boldsymbol{\varphi}_{i}(\boldsymbol{x}) \}_{i=1}^{N_{u}}, \quad W_{h} = \operatorname{span} \{ \phi_{j}(\boldsymbol{x}) \}_{j=1}^{N_{p}}, \quad S_{d} = \operatorname{span} \{ \psi_{k}(\boldsymbol{\xi}) \}_{k=1}^{N_{\xi}}$$
$$\begin{pmatrix} \hat{A} & \hat{B}^{T} \\ \hat{B} & 0 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{p} \end{pmatrix} = \begin{pmatrix} \underline{g} \\ \underline{f} \end{pmatrix}$$

(never assembled) of dimension $N_x N_{\xi} \times N_x N_{\xi}$ where $N_x = N_u + N_p$ and

Saddle point systems

MANCHESTER

The University of Manchester

$$V_{h} = \operatorname{span} \{ \varphi_{i}(\boldsymbol{x}) \}_{i=1}^{N_{u}}, \quad W_{h} = \operatorname{span} \{ \phi_{j}(\boldsymbol{x}) \}_{j=1}^{N_{p}}, \quad S_{d} = \operatorname{span} \{ \psi_{k}(\boldsymbol{\xi}) \}_{k=1}^{N_{\xi}}$$
$$\begin{pmatrix} \hat{A} & \hat{B}^{T} \\ \hat{B} & 0 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{p} \end{pmatrix} = \begin{pmatrix} \underline{g} \\ \underline{f} \end{pmatrix}$$

(never assembled) of dimension $N_x N_{\xi} \times N_x N_{\xi}$ where $N_x = N_u + N_p$ and

$$\left(\begin{array}{cc} \hat{A} & \hat{B}^{T} \\ \hat{B} & 0 \end{array}\right) = \left(\begin{array}{cc} I \otimes A_{0} + \sum_{k=1}^{N} G_{k} \otimes A_{k} & I \otimes B^{T} \\ & & & \\ I \otimes B & 0 \end{array}\right)$$

$$[A_0]_{ij} = \int_D \mu(\boldsymbol{x}) \, \boldsymbol{\varphi}_i \cdot \boldsymbol{\varphi}_j \, d\boldsymbol{x}, \qquad [A_k]_{ij} = \int_D t_k(\boldsymbol{x}) \, \boldsymbol{\varphi}_i \cdot \boldsymbol{\varphi}_j \, d\boldsymbol{x}.$$

Linear (KL) Case

$$T_M^{-1}(\boldsymbol{x},\boldsymbol{\xi}) = \mu(\boldsymbol{x}) + \sum_{k=1}^M t_k(\boldsymbol{x})\xi_k$$

- N = M (the number of random variables)
- G_k matrices have at most two non-zeros entries per row.

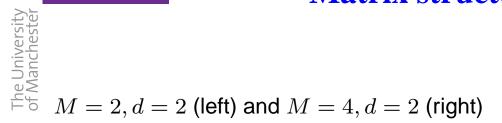
$$[G_k]_{rs} = \left\langle \xi_k \psi_r(\boldsymbol{\xi}) \psi_s(\boldsymbol{\xi}) \right\rangle, \qquad k = 1: M$$

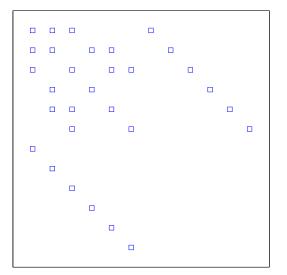
- $\sum_{k=1}^{N} G_k$ is sparse so \hat{A} is block sparse.
- Matrix-vector products are cheap

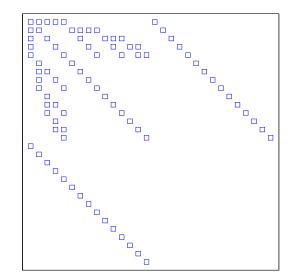
Â	$O(M(N_u N_{\xi}))$			
\hat{B}, \hat{B}^T	$O(N_p N_{\xi})$			

MANCE

Matrix structure







Nonlinear (PC) Case

$$T_M^{-1}(\boldsymbol{x}, \boldsymbol{\xi}) = \mu(\boldsymbol{x}) + \sum_{k=1}^N t_k(\boldsymbol{x})\psi_k$$

- $N = \frac{(M+2d)!}{M!(2d)!} >> N_{\xi}$
- G_k matrices have non-trivial sparsity pattern

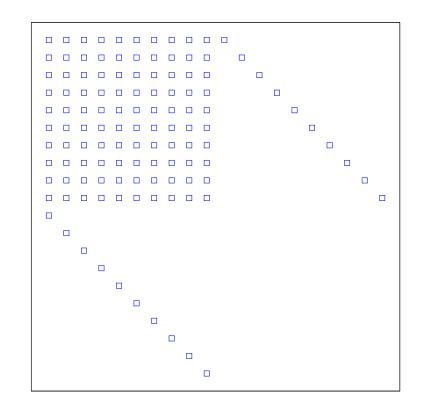
$$[G_k]_{rs} = \langle \psi_k(\boldsymbol{\xi})\psi_r(\boldsymbol{\xi})\psi_s(\boldsymbol{\xi})\rangle, \qquad k = 1:N$$

- $\sum_{k=1}^{M} G_k$ is dense so \hat{A} is block dense.
- Matrix-vector products are expensive

$$\hat{A} \qquad O(N(N_u N_{\xi})) - O(N(N_u N_{\xi}^2)) \\ \hat{B}, \hat{B}^T \qquad O(N_p N_{\xi})$$

MANCH

Matrix structure



Want to perform as few matrix vector products with this as possible!

The University of Manchester

(Minres) preconditioning strategies

There are two well-known classes of block-diagonal preconditioners.

Schur-Complement Preconditioning

$$\left(\begin{array}{cc} \hat{A} & 0 \\ 0 & \hat{B}\hat{A}^{-1}\hat{B}^T \end{array}\right)$$

Augmented Preconditioning

$$\left(\begin{array}{cc} \hat{A} + \gamma^{-1}\hat{B}^T\hat{W}^{-1}\hat{B} & 0\\ 0 & \gamma\hat{W} \end{array}\right)$$

The University of Manchester

(Minres) preconditioning strategies

There are two well-known classes of block-diagonal preconditioners.

Schur-Complement Preconditioning

$$\left(\begin{array}{cc} \hat{A} & 0 \\ 0 & \hat{B}\hat{A}^{-1}\hat{B}^T \end{array}\right)$$

Augmented Preconditioning

$$\begin{pmatrix} \hat{A} + \gamma^{-1}\hat{B}^T\hat{W}^{-1}\hat{B} & 0 \\ 0 & \gamma\hat{W} \end{pmatrix}$$

Both require cheap, robust approximations to \hat{A}

Schur-Complement Preconditioning

MANCH

Approximate $\hat{A} \approx L \otimes \text{diag}(A_0)$ where L is s.p.d. A practical preconditioner is:

$$P = \begin{pmatrix} L \otimes \operatorname{diag}(A_0) & 0 \\ 0 & \hat{B} (L \otimes \operatorname{diag}(A_0))^{-1} \hat{B}^T \end{pmatrix}$$
$$= \begin{pmatrix} L \otimes \operatorname{diag}(A_0) & 0 \\ 0 & L \otimes (B \operatorname{diag}(A_0)^{-1} B^T) \end{pmatrix}$$

Schur-Complement Preconditioning

MANCH

Approximate $\hat{A} \approx L \otimes \text{diag}(A_0)$ where *L* is s.p.d. A practical preconditioner is:

$$P = \begin{pmatrix} L \otimes \operatorname{diag}(A_0) & 0 \\ 0 & \hat{B} \left(L \otimes \operatorname{diag}(A_0) \right)^{-1} \hat{B}^T \end{pmatrix}$$
$$= \begin{pmatrix} L \otimes \operatorname{diag}(A_0) & 0 \\ 0 & L \otimes \left(B \operatorname{diag}(A_0)^{-1} B^T \right) \end{pmatrix}$$

For the model problem, $B \text{diag}(A_0)^{-1} B^T \approx \nabla \cdot \mu \nabla$ and optimal deterministic elliptic PDE solvers (eg. AMG) can be applied.

Schur-Complement Preconditioning

MANCH

Approximate $\hat{A} \approx L \otimes \text{diag}(A_0)$ where *L* is s.p.d. A practical preconditioner is:

$$P = \begin{pmatrix} L \otimes \operatorname{diag}(A_0) & 0 \\ 0 & \hat{B} \left(L \otimes \operatorname{diag}(A_0) \right)^{-1} \hat{B}^T \end{pmatrix}$$
$$= \begin{pmatrix} L \otimes \operatorname{diag}(A_0) & 0 \\ 0 & L \otimes \left(B \operatorname{diag}(A_0)^{-1} B^T \right) \end{pmatrix}$$

For the model problem, $B \text{diag}(A_0)^{-1} B^T \approx \nabla \cdot \mu \nabla$ and optimal deterministic elliptic PDE solvers (eg. AMG) can be applied.

Simplest choice: L = I. Approximating $P^{-1}\underline{r}$ requires:

- One solve with a diagonal matrix
- N_{ξ} V-cycles of multigrid (e.g. AMG) on a deterministic matrix of dimension N_p .

Cost is $O(N_{\xi}(N_u + N_p))$.

Convergence analysis

$$P = \begin{pmatrix} I \otimes \operatorname{diag}(A_0) & 0 \\ 0 & I \otimes \operatorname{amg}(B\operatorname{diag}(A_0)^{-1}B^T) \end{pmatrix}$$

Theorem

MANCH

The University of Manchester

Let $0 < \hat{\nu}_1 \dots \leq \hat{\nu}_N$ be the eigenvalues of $\operatorname{diag}(\hat{A})^{-1}\hat{A}$. The eigenvalues of the preconditioned saddle-point matrix lie in the union of the bounded intervals,

$$\begin{bmatrix} \frac{1}{2} \left(\hat{\nu}_1 - \sqrt{\hat{\nu}_1^2 + 4\Theta^2} \right), \frac{1}{2} \left(\hat{\nu}_N - \sqrt{\hat{\nu}_N^2 + 4\Theta^2} \right) \end{bmatrix}$$
$$\cup \begin{bmatrix} \hat{\nu}_1, \frac{1}{2} \left(\hat{\nu}_N + \sqrt{\hat{\nu}_N^2 + 4\Theta^2} \right) \end{bmatrix}.$$

When L = I, this preconditioner is 'mean-based'.

Linear (KL) case

Theorem

MANCH

E.g. if lowest-order Raviart-Thomas elements are used, the eigenvalues of $\operatorname{diag}(\hat{A})^{-1}\hat{A}$ lie in the bounded interval $\left[\frac{1}{2} - c_d \tau, \frac{3}{2} + c_d \tau\right]$ where

$$\tau = \frac{3\sigma}{2\mu} \sum_{k=1}^{M} \sqrt{\lambda_k} \parallel t_k(\boldsymbol{x}) \parallel_{\infty},$$

 σ and μ are the standard deviation and mean of $T^{-1}(\boldsymbol{x}, \omega)$, and $\boldsymbol{c_d}$ is a constant (possibly) depending on d.

Linear (KL) case

Theorem

MANCH

E.g. if lowest-order Raviart-Thomas elements are used, the eigenvalues of $\operatorname{diag}(\hat{A})^{-1}\hat{A}$ lie in the bounded interval $\left[\frac{1}{2} - c_d \tau, \frac{3}{2} + c_d \tau\right]$ where

$$\tau = \frac{3\sigma}{2\mu} \sum_{k=1}^{M} \sqrt{\lambda_k} \parallel t_k(\boldsymbol{x}) \parallel_{\infty},$$

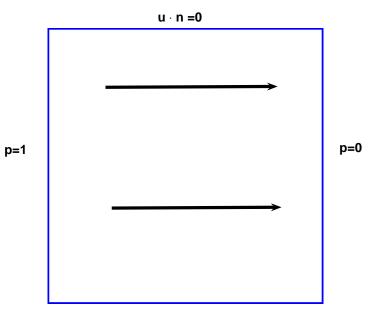
 σ and μ are the standard deviation and mean of $T^{-1}(\boldsymbol{x}, \omega)$, and $\boldsymbol{c_d}$ is a constant (possibly) depending on d.

When T_M^{-1} is a KL expansion this is OK because

- $\frac{\sigma}{\mu}$ is small for well-posed problem.
- $c_d = O(1)$ (bounded rvs), $c_d = O(\sqrt{d})$ (Gaussian rvs)

MANCH

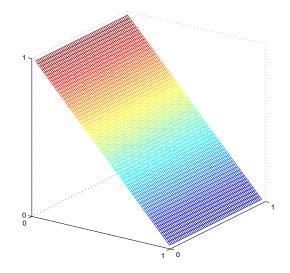
Let $D = [0, 1] \times [0, 1]$, f = 0 with mixed bcs. We choose a Bessel covariance function for the random input with $\mu(\mathbf{x}) = 1$ and $\lambda = 1 \Rightarrow M = 6$ random variables capture 98% of the variance.

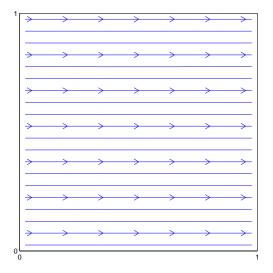


u · n =0

Mean of numerical solution

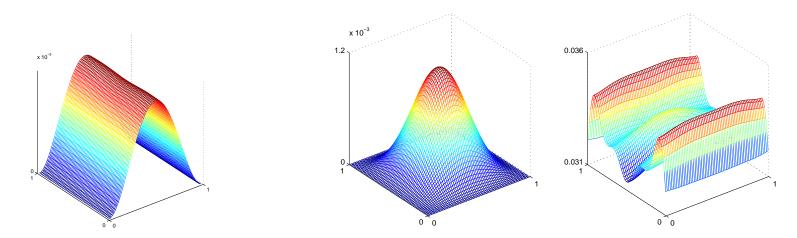
Pressure (left), Flux (right)





Variance of numerical solution

Pressure (left), y component (middle) and x component (right) of the Flux



MANCHESTER 1824

Preconditioned minres iterations

	d	2	3	4	5
	$N_{\xi}(N_u + N_p)$	344,064	1,032,192	2,580,480	5,677,056
$\frac{\sigma}{\mu} = 0.1$	total iters	45	46	48	48
<i>P</i> ~	N_V	1,260	3,864	10,080	22,176
	total solve time	14.0s	45.35s	119.01s	262.04s
$\frac{\sigma}{\mu} = 0.2$	total iters	55	59	62	63
	N_V	1,540	4,956	13,020	29,106
	total solve time	17.18s	58.51s	154.82s	379.01
$\frac{\sigma}{\mu} = 0.3$	total iters	66	74	80	86
•	N_V	1,848	6,216	16,800	39,732
	total solve time	20.66s	72.97s	199.75s	486.74

Theorem

MANCH

E.g. if lowest-order Raviart-Thomas elements are used, the eigenvalues of $\operatorname{diag}(\hat{A})^{-1}\hat{A}$ lie in the bounded interval $\left[\frac{1}{2} - c_d \tau, \frac{3}{2} + c_d \tau\right]$ where, for lognormal diffusion coefficients in particular,

- au depends nonlinearly on σ_G
- $c_d = O\left(\exp(dM)\right)$

The Schur-complement preconditioner is too weak for large d and σ_G requiring an excessive number of matrix-vector products.

MANCH

Previous test problem. $T_M(\boldsymbol{x}, \boldsymbol{\xi}) = \exp(G_M(\boldsymbol{x}, \boldsymbol{\xi}))$ where underlying Gaussian field $G(\boldsymbol{x}, \omega)$ has Bessel covariance function. M = 5.

	d	1	2	3	4
	$N_{\xi}(N_u + N_p)$	31,104	108,864	290,304	653,184
	N	21	126	462	1287
$\sigma_G = 0.2$	total iters	47	57	65	74
	total solve time	2s	22s	245s	2979s
$\sigma_G = 0.4$	total iters	61	89	121	148
	total solve time	3s	35s	534s	6321s
$\sigma_G = 0.6$	total iters	77	139	225	345
	total solve time	3s	53s	1369s	13794s
$\sigma_G = 0.8$	total iters	99	219	425	747
	total solve time	4s	84s	2604s	29808s

Augmented Preconditioning

MANCH

Consider the 'ideal' preconditioner

$$P = \begin{pmatrix} \hat{A} + \gamma^{-1} \hat{B}^T \hat{W}^{-1} \hat{B} & 0 \\ 0 & \gamma \hat{W} \end{pmatrix}$$

Theorem

Let $\hat{W} = I \otimes M$, where $\underline{w}^T (I \otimes M) \underline{w} = || w ||_{L^2(\Gamma, L^2(D))}^2$. The eigenvalues of the preconditioned saddle-point matrix are bounded and lie in

$$\left(-1, -\frac{\hat{\beta}^2 t_{min}}{\gamma + \hat{\beta}^2 t_{min}}\right] \cup \{1\}$$

where $\hat{\beta}$ is the inf-sup constant and $T_M \ge t_{min}$ a.e.

Augmented Preconditioning

Suppose we approximate \hat{A} by $L \otimes A_0$ where L is any s.p.d $N_{\xi} \times N_{\xi}$ matrix and replace \hat{W} with $L^{-1} \otimes M$ then,

$$P = \begin{pmatrix} L \otimes \left(A_0 + \gamma^{-1} B^T M^{-1} B\right) & 0 \\ 0 & L^{-1} \otimes \gamma M \end{pmatrix}$$

MANCH

Suppose we approximate \hat{A} by $L \otimes A_0$ where L is any s.p.d $N_{\xi} \times N_{\xi}$ matrix and replace \hat{W} with $L^{-1} \otimes M$ then,

$$P = \begin{pmatrix} L \otimes \left(A_0 + \gamma^{-1} B^T M^{-1} B\right) & 0 \\ 0 & L^{-1} \otimes \gamma M \end{pmatrix}$$

For this model problem,

$$\underline{v}^{T} \left(A_{0} + \gamma^{-1} B^{T} M^{-1} B \right) \underline{v} = \left(T_{M}^{-1} \boldsymbol{v}, \boldsymbol{v} \right) + \gamma^{-1} \left(\nabla \cdot \boldsymbol{v}, \nabla \cdot \boldsymbol{v} \right).$$

The matrix in red is a discretisation of a weighted H(div) operator on the velocity space.

Optimal deterministic solvers (geometric multigrid) can be exploited.

Augmented Preconditioning

Simplest choice: L = I ('mean-based' preconditioner)

$$P = \begin{pmatrix} L \otimes \left(A_0 + \gamma^{-1} B^T M^{-1} B\right) & 0 \\ 0 & L \otimes \gamma M \end{pmatrix}$$

Approximating $P^{-1}\underline{r}$ requires:

- N_{ξ} solves with M and N_p multiplications with L.
- N_{ξ} V-cycles of multigrid (e.g. Arnold-Falk-Winther) on a deterministic matrix of dimension N_u and N_u solves with L.

Even if L is dense, still cheaper than a matrix-vector product with saddle point matrix!

Convergence analysis

$$P = \begin{pmatrix} L \otimes \left(A_0 + \gamma^{-1} B^T M^{-1} B\right) & 0 \\ 0 & L \otimes \gamma M \end{pmatrix}$$

Spectral bounds for preconditioned system matrix depend on choice of *L* and the efficiency of the approximation $\hat{A} \approx L \otimes A_0$ and γ .

MANCH

Convergence analysis

$$P = \begin{pmatrix} L \otimes \left(A_0 + \gamma^{-1} B^T M^{-1} B\right) & 0\\ 0 & L \otimes \gamma M \end{pmatrix}$$

Spectral bounds for preconditioned system matrix depend on choice of *L* and the efficiency of the approximation $\hat{A} \approx L \otimes A_0$ and γ .

However, asymptotically, as $\gamma \rightarrow 0$, we can show

- all $N_{\xi}N_p$ negative eigenvalues cluster at -1.
- $N_{\xi}N_p$ positive eigenvalues cluster at +1
- $N_{\xi}(N_u N_p)$ positive eigenvalues lie in $[\hat{\nu}_1, \hat{\nu}_n]$ where

$$\hat{\nu}_1 \le \frac{\underline{v}^T \hat{A} \underline{v}}{\underline{v}^T \left(L \otimes A_0 \right) \underline{v}} \le \hat{\nu}_n$$

MANCH

Preconditioned minres iterations

MANCH

Previous test problem. Now $T_M(\boldsymbol{x}, \boldsymbol{\xi}) = \exp(G_M(\boldsymbol{x}, \boldsymbol{\xi}))$ where underlying Gaussian field $G(\boldsymbol{x}, \omega)$ has Bessel covariance function. M = 5. Choose L = I and $\gamma = 10^{-3}$.

	d	1	2	3	4
	$N_{\xi}(N_u + N_p)$	31,104	108,864	290,304	653,184
	N	21	126	462	1287
$\sigma_G = 0.2$	total iters	24	19	16	16
	total solve time	3s	9s	65s	399s
$\sigma_G = 0.4$	total iters	28	24	24	27
	total solve time	3s	12s	97s	668s
$\sigma_G = 0.6$	total iters	33	32	35	43
	total solve time	4s	17s	140s	1063s
$\sigma_G = 0.8$	total iters	39	42	51	67
	total solve time	5s	19s	203s	1658s

Improved choice of \boldsymbol{L}

Could use Pitsianis-Van Loan so-called 'best Kronecker product approximation':

$$L = \operatorname{argmin} \{ H \in \mathbb{R}^{N_{\xi} \times N_{\xi}} : ||\hat{A} - H \otimes A_0||_F \}$$

L is the symmetric and positive definite matrix

$$L = I + \sum_{k=1}^{N} \frac{\operatorname{tr}(A_{k}^{T}A_{0})}{\operatorname{tr}(A_{0}^{T}A_{0})} G_{k}$$

Preconditioned minres iterations

MANCH

Previous test problem. Now $T_M(\boldsymbol{x}, \boldsymbol{\xi}) = \exp(G_M(\boldsymbol{x}, \boldsymbol{\xi}))$ where underlying Gaussian field $G(\boldsymbol{x}, \omega)$ has Bessel covariance function. M = 5.

	d	1	2	3	4
	$N_{\xi}(N_u + N_p)$	31,104	108,864	290,304	653,184
	N	21	126	462	1287
$\sigma_G = 0.2$	total iters	21	15	13	13
	total solve time	3s	8s	54s	328s
$\sigma_G = 0.4$	total iters	24	19	18	17
	total solve time	3s	11s	73s	429s
$\sigma_G = 0.6$	total iters	26	21	21	23
	total solve time	4s	12s	86s	576s
$\sigma_G = 0.8$	total iters	28	24	26	29
	total solve time	4s	14s	106s	723s

Average time in seconds per minres iteration and (av. mat-vec time + av. preconditioner time)

	<i>d</i> =2	<i>d</i> =3	<i>d</i> =4
L = I	0.58 (0.33 + 0.22)	4.00 (3.40 + 0.50)	24.80 (23.30 + 1.09)
Improved L	0.59 (0.33 + 0.23)	4.08 (3.40 + 0.53)	25.02 (23.30 + 1.23)

Summary

If random inputs are KL expansions:

- Mean-based preconditioners are cheap and robust within the range of statistical parameters where the problem is well-posed.
- Schur-complement preconditioners are OK as matrix-vector products are cheap.

The University of Manchester

Summary

If random inputs are KL expansions:

- Mean-based preconditioners are cheap and robust within the range of statistical parameters where the problem is well-posed.
- Schur-complement preconditioners are OK as matrix-vector products are cheap.

If the random inputs are PC expansions

- Mean-based preconditioners are still cheap but are inadequate as σ and d increase.
- Augmented preconditioners are promising because fewer matrix-vector products are required

Summary

If random inputs are KL expansions:

- Mean-based preconditioners are cheap and robust within the range of statistical parameters where the problem is well-posed.
- Schur-complement preconditioners are OK as matrix-vector products are cheap.

If the random inputs are PC expansions

- Mean-based preconditioners are still cheap but are inadequate as σ and d increase.
- Augmented preconditioners are promising because fewer matrix-vector products are required

But:

• Also need to look at stopping criteria for iteration.

References

- C.E.Powell, E. Ullmann, Preconditioning stochastic Galerkin saddle point systems, Submitted.
- H. Elman, D. Furnival, C.E. Powell, H(div) preconditioning for a mixed finite element formulation of the stochastic diffusion equation. Math. Comp. 2010.
- O.G. Ernst, C.E. Powell, D. Silvester and E. Ullmann, Efficient solvers for a Linear Stochastic Galerkin Mixed Formulation of the Steady-State Diffusion Equation, SIAM J. Sci. Comput. 2009.
- C.E. Powell, H. Elman, Block-diagonal preconditioning for spectral stochastic finite element systems, IMA J. Numer Anal. 2008/9.