Least Squares

Plane Waves

Finite Elements

Maxwell's equations

Conclusion

The solution of time harmonic wave equations using complete families of elementary solutions

Peter Monk

Department of Mathematical Sciences University of Delaware Newark, DE 19716 USA email: monk@math.udel.edu

Research supported in part by a grant from AFOSR

Introduction ●0000	Least Squares	Plane Waves	Finite Elements	Maxwell's equations	Conclusion
Outline					

- Least squares methods for Helmholtz:
- Ultra Weak Variational Formulation
- Discretization
 - Using plane waves
 - Using finite elements
- Maxwell's equations
- Comments and conclusions

Introduction 00000	Least Squares	Plane Waves	Finite Elements	Maxwell's equations	Conclusion
Model	Problem				

Given a bounded domain $\Omega \subset \mathbb{R}^N$, N = 2, 3, find *u* such that

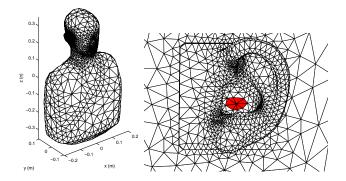
$$\Delta u + \kappa^2 u = 0 \text{ in } \Omega$$

$$\frac{\partial u}{\partial n} - i\kappa u = g \text{ on } \Gamma := \partial \Omega.$$

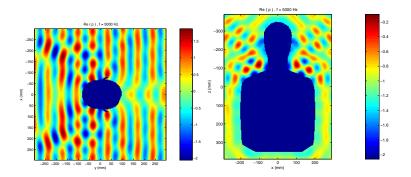
Assume κ is real.

The presentation focuses on "volume" methods for the Helmholtz equation.

Investigate coupling of sound into the human ear (head related transfer function) across the audible spectrum.



Real part of the pressure field at 5kHz (using the two meshes we can compute the audible range to 20kHz)



Least Squares

Plane Waves

Finite Elements

Maxwell's equations

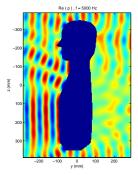
Conclusion

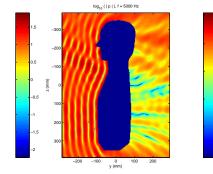
-0.5

-1

-1.5

Human hearing (continued)





Introduction Least Squares Plane Waves Finite Elements Maxwell's equations Conclusion

The Least Squares Method

Use the mesh T_h consisting of tetrahedra or triangles T_j , $1 \le j \le J_h$, of maximum diameter *h*. At first we shall consider the "exact" least squares method so that

- Define u_j to be any $H^1(T_j)$ solution of the Helmholtz equation on T_j .
- To compute the exact solution we need to enforce continuity of *u* and ∂*u*/∂*n* on interior faces/edges and enforce the boundary condition.

Later we can discretize u_j for each j.

Some notation:

 $\Gamma_{j,k} = \partial T_j \cap \partial T_k$ and $\Gamma_j = \partial T_j \cap \Gamma$. We denote by n_j the outward normal to T_j .

Introduction Least Squares Plane Waves Finite Elements Maxwell's equations Conclusion

Required continuity between elements

For the piecewise defined function $(u_1, u_2, \dots, u_{J_h})$ to be a global solution of the Helmholtz equation we need

$$\frac{\partial u_k}{\partial n_k} + i\kappa u_k = -\frac{\partial u_j}{\partial n_j} + i\kappa u_j$$
$$\frac{\partial u_k}{\partial n_k} - i\kappa u_k = -\frac{\partial u_j}{\partial n_j} - i\kappa u_j$$

on $\Gamma_{j,k}$. The boundary condition on Γ_j is then

$$\frac{\partial u_j}{\partial n} - \mathrm{i}\kappa u_j = g$$

Let $\vec{u} = (u_1, u_2, \dots, u_{J_h})$ where u_j satisfies the Helmholtz equation in $H^1(T_j)$. To assure a global solution fitting the boundary condition we could minimize the functional $\mathcal{J}(\vec{u})$ over all such functions:

$$\mathcal{J}(\vec{u}) = \sum_{j} \sum_{k \neq j} \left\| \left(-\frac{\partial u_j}{\partial \mathbf{n}_j} + i\kappa u_j \right) - \left(\frac{\partial u_k}{\partial \mathbf{n}_k} + i\kappa u_k \right) \right\|_{L^2(\partial T_j)}^2 + \sum_{j} \left\| \left(-\frac{\partial u_j}{\partial \mathbf{n}_j} + i\kappa u_j \right) + g \right\|_{L^2(\Gamma_j)}^2$$

There is a unique minimizer (existence and uniqueness of the standard boundary value problem) at least if the domain is smooth.

Introduction Least Squares Plane Waves Finite Elements Maxwell's equations Conclusion

Rewriting the Least Squares Method

Let $X = \prod_{j=1}^{J_h} L^2(\partial T_j)$ with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|_X$. Let $\mathcal{X} \in X$ and write $\mathcal{X} = (\mathcal{X}_1, \cdots, \mathcal{X}_{J_h})$. Define

 $\blacksquare \Pi : X \to X \text{ such that}$

$$\begin{aligned} \Pi \mathcal{X}_{j}|_{\Gamma_{j,k}} &= \mathcal{X}_{k}|_{\Gamma_{j,k}} \text{ when } \Gamma_{j,k} \neq \phi \\ \Pi \mathcal{X}_{j}|_{\Gamma_{j}} &= 0 \text{ when } \Gamma_{j} \neq \phi. \end{aligned}$$

■ $F : X \to X$ so that if $F(\mathcal{X}) = (F_1(\mathcal{X}_1), \cdots, F_{J_h}(\mathcal{Y}\mathcal{X}_{J_h}))$ and if $w_j \in H^1(T_j)$ satisfies

$$\Delta w_j + \kappa^2 w_j = 0 \text{ in } T_j$$

$$\frac{\partial w_j}{\partial n_j} + i\kappa w_j = \mathcal{X}_j \text{ on } \partial T_j$$

then $F_j(\mathcal{X}_j) = -\partial w_j / \partial n_j + i \kappa w_j$ on ∂T_j

Introduction	Least Squares	Plane Waves	Finite Elements	Maxwell's equations	Conclusion
		N 4 11	1.1.1		

The Least Squares Method obscured

Let

$$\mathcal{X}_{k} = \left. \left(\frac{\partial u_{k}}{\partial n_{k}} + \mathrm{i} \kappa u_{k} \right) \right|_{\partial T_{k}}, \quad \mathcal{X} = (\mathcal{X}_{1}, \cdots, \mathcal{X}_{J_{h}}),$$

the we may write the least squares problem as the problem of finding $\mathcal{X} \in X$ that minimizes

$$\mathcal{J}(\mathcal{X}) = \| F \mathcal{X} - \Pi \mathcal{X} + \tilde{g} \|_{\mathcal{X}}^2.$$

where $\tilde{g} \in X$ is such that $\tilde{g}|_{\Gamma} = g$ and vanishes on other faces in the mesh (we have just parametrized the solution by it's boundary impedance trace on each element).

Lemma (Cessenat and Després) $\|\Pi\|_{X\to X} \leq 1$ and *F* is an isometry (*F***F* = *I*).

Introduction	Least Squares ooooo●o	Plane Waves	Finite Elements	Maxwell's equations	Conclusion
A New	Method				

We know that there is a unique minimizer $\mathcal{X} \in X$ such that $\mathcal{J}(\mathcal{X}) = 0$ so

$$F\mathcal{X} - \Pi\mathcal{X} + \tilde{g} = 0.$$

Operating by F* we get

$$\mathcal{X} - F^* \Pi \mathcal{X} = -F^* \tilde{g}$$

This is the Ultra Weak Variational Formulation (UWVF) of the Helmholtz equation [Cessenat & Després]. Compare to Least Squares normal equations

$$(I - F^*\Pi)^*(I - F^*\Pi)\mathcal{X} = -(I - F^*\Pi)F^*\tilde{g}$$

We expect the UWVF to be better conditioned. The UWVF can also be seen as

An upwind discontinuous Galerkin method (see also work of Gabard and Hiptmair, Perugia et al) using special degrees of freedom and test functions.

It is convenient to write a Galerkin formulation: Find $\mathcal{X} \in X$ such that

$$\langle \mathcal{X}, \mathcal{Y} \rangle - \langle \mathsf{\Pi} \mathcal{X}, \mathsf{F}(\mathcal{Y}) \rangle = \langle \tilde{g}, \mathsf{F}(\mathcal{Y}) \rangle.$$

for all $\mathcal{Y} \in X$.

To clarify: suppose T_j is an interior tetrahedron surrounded by four other tetrahedra

$$\int_{\partial T_j} \mathcal{X}_j \overline{\mathcal{Y}_j} \, d\boldsymbol{s} - \sum_{k \neq j} \int_{\Gamma_{k,j}} \mathcal{X}_k \overline{F_j(\mathcal{Y}_k)} \, d\boldsymbol{s} = 0.$$

Introduction Least Squares Plane Waves Finite Elements Maxwell's equations Conclusion

The Discrete UWVF [Cessenat & Després]

For each element T_k we choose p_k directions d_j on the unit circle (or unit sphere [Sloan]) and define the solution on that element to be a sum of traces of plane waves

$$\mathcal{X}_{k}^{h} = \sum_{j=1}^{p_{k}} x_{j}^{k} \left(\frac{\partial \exp(\mathrm{i}\kappa \boldsymbol{d}_{j} \cdot \boldsymbol{x})}{\partial n_{k}} + \mathrm{i}\kappa \exp(\mathrm{i}\kappa \boldsymbol{d}_{j} \cdot \boldsymbol{x}) \right) \Big|_{\partial T_{k}}$$

The test function is, for $1 \le r \le p_k$,

$$\mathcal{Y}_{k}^{h} = \left. \left(\frac{\partial \exp(\mathrm{i}\kappa \boldsymbol{d}_{r} \cdot \boldsymbol{x})}{\partial n_{k}} + \mathrm{i}\kappa \exp(\mathrm{i}\kappa \boldsymbol{d}_{r} \cdot \boldsymbol{x}) \right) \right|_{\partial T_{k}}$$

In this case $F_k(\mathcal{Y}_k^h)$ is easy to compute:

$$F_{k}(\mathcal{Y}_{k}^{h}) = \left. \left(-\frac{\partial \exp(\mathrm{i}\kappa \boldsymbol{d}_{r} \cdot \boldsymbol{x})}{\partial n_{k}} + \mathrm{i}\kappa \exp(\mathrm{i}\kappa \boldsymbol{d}_{r} \cdot \boldsymbol{x}) \right) \right|_{\partial T_{k}}$$

Introduction Least Squares

Plane Waves 00000000 **Finite Elements**

Maxwell's equations

Conclusion

Properties of the acoustic UWVF

Uniform mesh: Number of $DoF = O(h^{-d}p^{d-1})$. • [Cessenat/Després, 2D] Let $p = 2\mu + 1$, $\mu > 0$,

$$\|\mathcal{X} - \mathcal{X}^h\|_{L^2(\Gamma)} \leq C(\kappa) h^{\mu-1/2} \|u\|_{\mathcal{C}^{\mu+1}(\Omega)}$$

[Monk/Buffa] Using DG techniques, for a convex 2D domain with u^h reconstructed from \mathcal{X}^h .

$$\|u-u^h\|_{L^2(\Omega)}\leq \mathcal{C}(\kappa)h^{\mu-1}\|u\|_{\mathcal{C}^{\mu+1}(\Omega)}$$

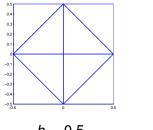
[Hiptmair, Moiola, Perugia, 2009] General DG, 2D, 3D, explicit constants and p-version error estimate (using k-dependent norms):

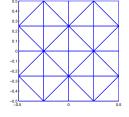
$$\kappa \|u-u_{\hbar}\|_{L^{2}(\Omega)} \leq Ch^{r-1} \left(rac{\log(p)}{p}
ight)^{r-1/2} \|u\|_{r+1,\kappa,\Omega}$$

The discrete problem has the form $(B - C)\mathbf{x} = \mathbf{b}$ where B is Hermitian positive definite and the eigenvalues of $B^{-1}C$ lie in the closure of the unit disk excluding 1

Numerical results: 2D mesh refinement

We take $u(\mathbf{x}) = \frac{i}{4}H_0^{(1)}(k|\mathbf{x} - \mathbf{x}_0|)$ with \mathbf{x}_0 is outside the computational domain.





h = 0.5

h = 0.25

Introduction Least Sc 00000 000000

Least Squares

Plane Waves

Finite Elements

Maxwell's equations

Conclusion

Results for k = 20, M = 15 (p = 7)

Mesh size h	$L^2(\Omega)$ Error (%)	Order	cond(D)	Order
0.50	4.38	-	0.64×10 ²	-
0.25	0.01873	7.9	$0.20 imes10^{6}$	-11.6
0.10	1.51×10^{-5}	7.8	$0.22 imes 10^{11}$	-12.7

Measured global convergence $O(h^{7.8})$.

Cessenat and Després predict that the condition number of D will increase $O(h^{-12})$

Least Squares

Plane Waves

Finite Elements

Maxwell's equations

Conclusion

Results for k = 40, M = 21 (p = 10).

Mesh size h	$L^2(\Omega)$ Error (%)	Order	cond(D)	Order
0.50	25.2	-	8.7	-
0.25	0.0337	9.55	0.94×10 ⁵	-13.4
0.1	2.32×10 ⁻⁶	10.5	0.14×10 ¹³	-18

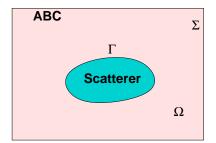
Measured global convergence $O(h^{10})$.

Cessenat and Després predict that the condition number of *D* increases $O(h^{-18})$.

A Model Scattering Problem [Huttunen & Monk]

Let $\Omega \subset \mathbb{R}^3$ (or \mathbb{R}^2) with disjoint boundaries Γ and Σ . Approximate *u* which satisfies

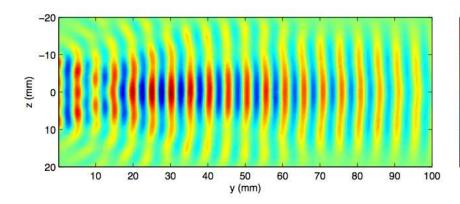
$$\Delta u + \kappa^2 u = 0 \text{ in } \Omega$$
$$u = g \text{ on } \Gamma$$
$$\frac{\partial u}{\partial \nu} - i\kappa u = 0 \text{ on } \Sigma$$



where *g* describes the incoming plane wave. The region Ω is meshed with simplicial elements and the UWVF applied there. ABC = Absorbing Boundary Condition
 Introduction
 Least Squares
 Plane Waves
 Finite Elements
 Maxwell's equations
 Conclusion

 Comparison to FEMLAB in 3D acoustics [Huttunen]

FEMLAB P₂ FEM with low order ABC.



Introduction

Least Squares

Plane Waves

Finite Elements

Maxwell's equations

Conclusion

Comparison continued

f (kHz)	h (mm)	Elem.	CPU (s)	Error (%)	Mem (GB)		
100	3	101 978	448	30.88	1.4		
150	1.8	478 471	4699	25.39	2.5		
200	1.8	478 471	5321	20.64	2.5		
300	1.8	478 471	5391	30.13	2.5		

FEMI AB (two meshes):

UWVF (one mesh, variable # directions):

	••••	(00	,		·/·
f (kHz)	h (mm)	Elem.	CPU (s)	Error (%)	Mem (GB)
100	15	16 926	275	28.56	0.2
150	15	16 926	353	23.22	0.3
200	15	16 926	449	20.07	0.4
300	15	16 926	854	18.96	1.1

Introduction	Least Squares	Plane Waves ○○○○○○○●	Finite Elements	Maxwell's equations	Conclusion
			1 1		

UWVF near a singularity and at low κ

- Near a singularity the plane wave UWVF requires very small elements
- If κ is small the plane wave UWVF becomes poorly conditioned.

We now examine a way of using standard piecewise polynomial basis functions on each element within UWVF framework.

Introduction Least Squares Plane Waves Finite Elements Maxwell's equations Conclusion

Recall the (slightly modified) definition of F

 $F_j : L^2(\partial T_j) \to L^2(\partial T_j)$ is defined using an auxiliary function $w_j \in H^1(T_j)$ that satisfies

$$\Delta w_j + \kappa^2 w_j = 0 \text{ in } T_j,$$

$$\frac{1}{i\kappa} \frac{\partial w_j}{\partial n_j} + w_j = \mathcal{X}_j \text{ on } \partial T_j,$$

then

$$F_j(\mathcal{X}_j) = -\frac{1}{\mathrm{i}\kappa} \frac{\partial w_j}{\partial n_j} + w_j \text{ on } \partial T_j$$

Basic idea: Approximate F_j by a finite element method inside each element Joint work with J. Schoeberl and A. Sinwel

Let $\mathcal{X}_j \in L^2(\partial T_j)$ and define $(w_j, v_j) \in L^2(T_j) \times H(\text{div}; T_j)$ such that

$$\begin{aligned} -\mathrm{i}\kappa \mathbf{w}_j &= \nabla \cdot \mathbf{v}_j \text{ in } T_j \\ -\mathrm{i}\kappa \mathbf{v}_j &= \nabla \mathbf{w}_j \text{ in } T_j \\ -\mathbf{v}_j \cdot \mathbf{n}_j + \mathbf{w}_j &= \mathcal{X}_j \text{ on } \partial T_j \end{aligned}$$

where n_i is the unit outward normal to T_i then F_i is given by

$$F_j(\mathcal{X}_j) = \mathbf{v}_j \cdot \mathbf{n}_j + \mathbf{w}_j = \mathcal{X}_j + 2\mathbf{n}_j \cdot \mathbf{v}_j$$
 on ∂T_j .

Introduction 00000	Least Squares	Plane Waves	Finite Elements	Maxwell's equations	Conclusion 00	
Raviart-Thomas elements						

We use Raviart-Thomas subspaces $U \subset L^2(T_j)$ and $V \subset H(\text{div}; T_j)$:

- $U_h :=$ degree *p* polynomials on T_j
- $V_h :=$ vector-valued polynomials of degree p + 1 on T_j for which the normal component on ∂T_j is of degree p

Introduction Least Squares Plane Waves Finite Elements Maxwell's equations Conclusion

A discrete approximation to F_j using RT_p

We can compute $(u_h, \boldsymbol{v}_h) \in U_h \times V_h$ such that

$$\int_{T_j} (\nabla \cdot \mathbf{v}_{j,h} + i\kappa \mathbf{w}_{j,h}) \xi \, dV = 0 \text{ for all } \xi \in U_h$$
$$\int_{T_j} \mathbf{w}_{j,h} \nabla \cdot \boldsymbol{\tau} - i\kappa \mathbf{v}_{j,h} \cdot \boldsymbol{\tau} \, dV = \int_{\partial T_j} (\mathcal{X}_j + \mathbf{v}_{j,h} \cdot \mathbf{n}_j) \, \boldsymbol{\tau} \cdot \mathbf{n}_j \, dA$$
for all $\boldsymbol{\tau} \in V_h$.

Then we define $F_{T_j,h}: L^2(\partial T_j) \to L^2(\partial T_j)$ by

$$F_{T_{j},h}(\mathcal{X}_{j}) = \mathcal{X}_{j} + 2\boldsymbol{v}_{j,h} \cdot \boldsymbol{n}_{j} \text{ on } \partial K.$$

Lemma

If h is small enough, $F_{K,h} : L^2(\partial K) \to L^2(\partial K)$ is an isometry.

Introduction	Least Squares	Plane Waves	Finite Elements	Maxwell's equations	Conclusion		
FE basis on the edges							

The basis functions on each element used to construct U_h and V_h are the standard Raviart-Thomas RT_p elements. The fully discrete finite element UWVF is obtained by letting

$$X_{h,j} = \left\{ oldsymbol{n}_j \cdot oldsymbol{v}_j |_{\partial K} \mid orall oldsymbol{v}_j \in V_h
ight\}$$

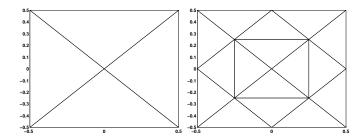
and using $F_{i,h}$ on each element.

Lemma

If p is fixed on all elements and h is small enough, the discrete FE-UWVF has a unique solution. Furthermore the local solution computed from \mathcal{X}_h coincides with the solution of the standard Raviart-Thomas method for this problem.

Remark: We have thus accomplished a hybridization of the RT system. This turns out to be exactly equivalent to an HDG method (see our paper).

Exact solution: $u = \exp(i\kappa \mathbf{d} \cdot \mathbf{x})$ with $\kappa = 10$ and $\mathbf{d} = (\cos(1), \sin(1))$.



Left: Initial mesh (h = 1). Right: one refinement (h = 1/2).

Least Squares

Plane Waves

Finite Elements

Maxwell's equations

Conclusion

Dependence on mesh width h for RT₀

Mesh size	Relative $L^2(\Omega)$	Number of	
h	error (%)	biCG iterations	
1	100	5	
1/2	100	26	
1/4	28	61	
1/8	5.8	95	
1/16	1.4	188	
1/32	0.35	371	
1/64	$8.7 imes 10^{-2}$	742	

The error is computed by quadrature at the centroid of each element. Error is $O(h^2)$, number of iterations is O(1/h).

 Introduction
 Least Squares
 Plane Waves

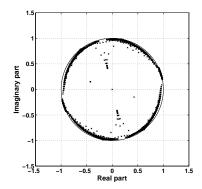
 00000
 0000000
 00000000

Finite Elements

Maxwell's equations

Conclusion

Distribution of eigenvalues



Eigenvalues of $D^{-1}C$ when h = 1/16. The eigenvalues are known to lie in the unit disc with $\lambda = 1$ excluded.

Least Squares

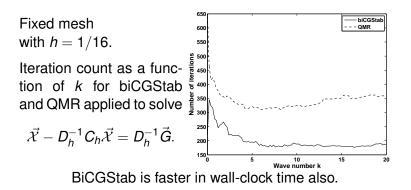
Plane Waves

Finite Elements

Maxwell's equations

Conclusion

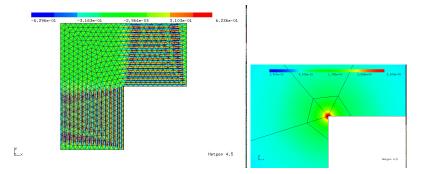
Dependence on wave number



 Introduction
 Least Squares
 Plane Waves
 Finite Elements
 Maxwell's equations
 Conclusion

 L-shaped domain - RT_p elements

Dirichlet boundary condition at the reentrant corner produces a singularity that requires a refined mesh near that point.



Solved via NETGEN

Least Squares

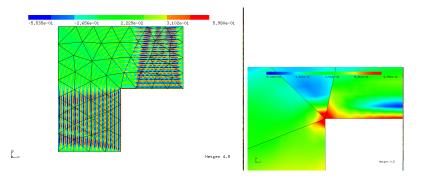
Plane Waves

Finite Elements

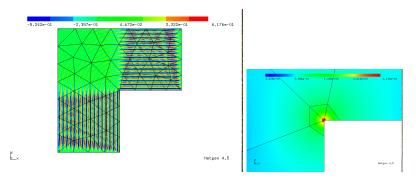
Maxwell's equations

Conclusion

L-shaped domain - PW - UWVF without refinement



Using RT elements near the re-entrant corner and classical PW UWVF further away gives the "best" of both worlds.



Least Squares

Plane Waves

Finite Elements

Maxwell's equations

Conclusion

Maxwell's equations: Cavity problem

- E, H: Unknown electric/magnetic field
- k: Wave-number
- ϵ_r : Relative permittivity (piecewise constant)
- μ_r : Relative permeability (piecewise constant)
- Ω: Bounded domain

$$\begin{aligned} -\mathrm{i}k\epsilon_{r}\boldsymbol{E} - \nabla \times \boldsymbol{H} &= 0 \text{ in } \Omega \\ -\mathrm{i}k\mu_{r}\boldsymbol{H} + \nabla \times \boldsymbol{E} &= 0 \text{ in } \Omega \\ \boldsymbol{H} \times \boldsymbol{n} - \eta \boldsymbol{E}_{T} &= \boldsymbol{Q}(\boldsymbol{H} \times \boldsymbol{n} + \eta \boldsymbol{E}_{T}) - \sqrt{2\eta}\boldsymbol{g} \text{ on } \Gamma = \partial\Omega \end{aligned}$$

Introduction	Least Squares	Plane Waves	Finite Elements	Maxwell's equations	Conclusion		
Variational Problem							

Let ξ_k , ψ_k satisfy the *adjoint* Maxwell system on Ω_k

$$-ik\overline{\epsilon_r}\boldsymbol{\xi}_k - \nabla \times \boldsymbol{\psi}_k = \mathbf{0}, \ -ik\overline{\mu_r}\boldsymbol{\psi}_k + \nabla \times \boldsymbol{\xi}_k = \mathbf{0},$$

The unknown traces are

$$\mathcal{X}_{k} = \boldsymbol{E}_{k} \times \boldsymbol{n}^{K_{k}} - \eta(\boldsymbol{H}_{k})_{T}\Big|_{\partial\Omega_{k}}$$
 and if $\mathcal{Y}_{k} = \boldsymbol{\xi}_{k} \times \boldsymbol{n}^{K_{k}} - \eta(\psi_{k})_{T}\Big|_{\partial\Omega_{k}}$

then

$$F_k(\mathcal{Y}_k) = -\boldsymbol{\xi}_k imes \boldsymbol{n}^{K_k} - \eta(\psi_k)_T \Big|_{\partial\Omega_k}$$

then, for a tetrahedron surrounded by four other tetrahedra

$$\int_{\partial\Omega_k} \frac{1}{\eta} \mathcal{X}_k \overline{\mathcal{Y}_k} \, ds = -\sum_j \int_{\Sigma_{k,j}} \frac{1}{\eta} \mathcal{X}_j \overline{F_k(\mathcal{Y}_k)} \, ds.$$

Vector plane waves are used to discretize on each element.

Maxwell's equations: Typical Application [thanks to Tomi Huttunen]

Finite Elements

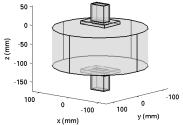
Plane Waves

Example: Simulate microwave interaction with wood.

Least Squares

Introduction

A transmitting and receiving antenna are shown.



Maxwell's equations

Conclusion

Introduction	

Least Squares

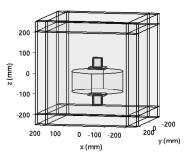
Plane Waves

Finite Elements

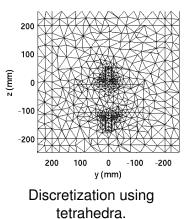
Maxwell's equations

Conclusion

Modeling



Truncation by a suitable. layer and boundary condition.



Least Squares

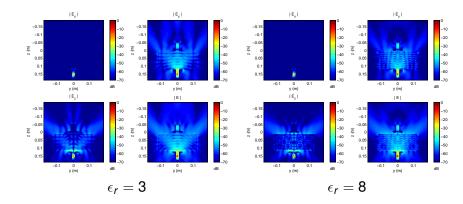
Plane Waves

Finite Elements

Maxwell's equations

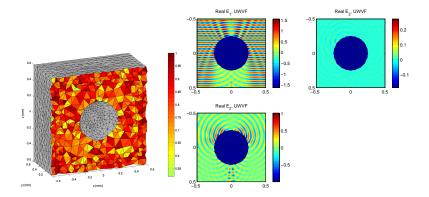
Conclusion

Typical Results at 5GHz



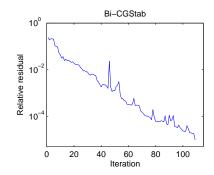
Scattering from a sphere (electromagnetic!)

Sphere of radius 0.25 inside cube $[-.5, .5]^3$, $\kappa = 100$, $\epsilon = \mu = 1$ ($\lambda = 0.06$). PML width 0.1 (uses 3,474,770 degrees of freedom).



Iterative solution

The UWVF linear system can be solved by simple iterative scheme. We use BiCGStab.



BiCGStab convergence for a problem having 3,474,770 degrees of freedom using a 24 processor cluster (2.8GHz P4, 48Gb memory total, 1000BaseT). Solution time is 451s using 25.3 GB memory (109 iterations).

Introduction Least Squares Plane Waves Finite Elements Maxwell's equations Conclusion

The unknown total field *E* and scattered field *E*^s satisfy

$$\begin{aligned} \nabla \times \left(\mu_r^{-1} \nabla \times \boldsymbol{E} \right) - k^2 \epsilon_r \boldsymbol{E} &= \boldsymbol{F} \text{ in } \mathbb{R}^3 \setminus \overline{D}, \\ \boldsymbol{E} &= \boldsymbol{E}^i + \boldsymbol{E}^s \text{ in } \mathbb{R}^3 \setminus \overline{D}, \\ \boldsymbol{E} \times \boldsymbol{\nu} &= 0 \text{ on } \Gamma, \\ \lim_{\rho \to \infty} \rho \left(\left(\nabla \times \boldsymbol{E}^s \right) \times \hat{\boldsymbol{x}} - ik \boldsymbol{E}^s \right) &= 0 \text{ as } r \to \infty. \end{aligned}$$

For ease of exposition $\epsilon_r = \mu_r = 1$. *D* is bounded, simply connected with simply connected complement.

Least Squares

Plane Waves

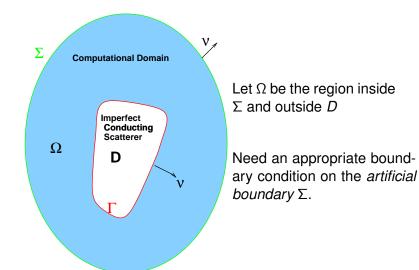
Finite Elements

Maxwell's equations

Conclusion

How to truncate the problem?

Introduce a surface Σ containing the scatterer in it's interior.



 Introduction
 Least Squares
 Plane Waves
 Finite Elements
 Maxwell's equations
 Conclusion

 00000
 00000000
 000000000
 000000000
 000
 000

Hazard and Lenoir overlapping formulation

The integral representation outside Γ is provided by an extension of the *Stratton-Chu* formula. Let

$$\mathbb{G}(\boldsymbol{x}, \boldsymbol{y}) = \Phi(\boldsymbol{x}, \boldsymbol{y}) I + k^{-2} Hess(\Phi)(\boldsymbol{x}, \boldsymbol{y}),$$

where I is the identity matrix. For x outside C

$$\begin{aligned} \boldsymbol{E}^{s}(\boldsymbol{x},\boldsymbol{y}) &= \int_{\Gamma} (\mathbb{G}(\boldsymbol{x},\boldsymbol{y}))^{T} \boldsymbol{\nu}_{y} \times (\nabla \times \boldsymbol{E}^{s}(\boldsymbol{y})) \\ &+ (\nabla \times \mathbb{G}(\boldsymbol{x},\boldsymbol{y}))^{T} (\boldsymbol{\nu}_{y} \times \boldsymbol{E}^{s}(\boldsymbol{y})) \, d\boldsymbol{A}(\boldsymbol{y}) \\ &= : \mathcal{I}(\boldsymbol{E}^{s}). \end{aligned}$$

Using the fact $\mathcal{I}(\boldsymbol{E}^{i}) = 0$, $\boldsymbol{E} = \boldsymbol{E}^{i} + \mathcal{I}(\boldsymbol{E})$ in the neighborhood Σ

Least Squares

Plane Waves

Finite Elements

Maxwell's equations

Conclusion

An iterative scheme

We use the Ultra Weak Variational Formulation in the computational domain. Note:

- Both fields are available on Γ.
- Solving the resulting coupled problem by a biConjugate Gradient method (biCGStab) requires to evaluate *I*(*E*) and this can be done using the multilevel fast multipole method.

This algorithm is described in a paper with Eric Darrigrand.

Least Squares

Plane Waves

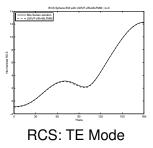
Finite Elements

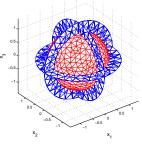
Maxwell's equations

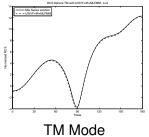
Conclusion

Unit Sphere: k = 3, $\lambda = 2.1$

The finite element grid is chosen approximately two elements think, and each element is approximately $\lambda/10$ in diameter. This does not exercise the high order capability of UWVF.







Least Squares

Plane Waves

Finite Elements

Maxwell's equations

Conclusion

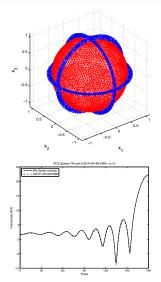
Unit Sphere: $k = 10, \lambda = 0.63$

The mesh becomes finer but still only two elements thick.

INCS Schere FM with LIMA/FallRaM FMM - k=10

RCS: TE Mode

Mie Series solution
 UWVF+IR+MLFMI



Least Squares

Plane Waves

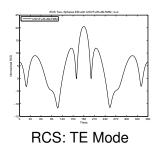
Finite Elements

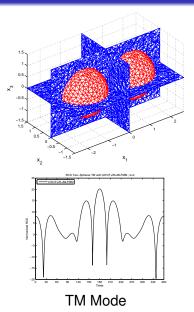
Maxwell's equations

Conclusion

Two Spheres: k = 4, $\lambda = 1.6$

When objects are close together (in terms of wavelengths), the space between must be meshed.





Least Squares

Plane Waves

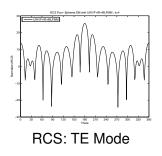
Finite Elements

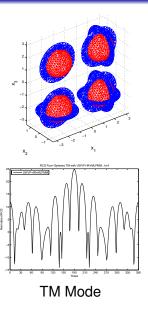
Maxwell's equations

Conclusion

Four Spheres: k = 4, $\lambda = 1.6$

When objects are sufficiently far apart (in terms of wavelengths), the meshes can be disjoint.





Introduction 00000	Least Squares	Plane Waves	Finite Elements	Maxwell's equations	Conclusion ●○		
Conclusions							

- Accuracy can be obtained if the complete family is well matched to the problem
- Robustness is an issue (particularly ill-conditioning)
- These techniques can help with the numerical linear algebra aspects. But a better solver would be useful.
- Need to choose plane wave directions carefully.

Least Squares

Plane Waves

Finite Elements

Maxwell's equations

Conclusion

A partial bibliography of the UWVF

A. Buffa and P. Monk.

Error estimates for the Ultra Weak Variational Formulation of the Helmholtz equation. ESAIM: Mathematical Modeling and Numerical Analysis, 42:925–40, 2008.

O. Cessenat and B. Després.

Application of the ultra-weak variational formulation of elliptic PDEs to the 2-dimensional Helmholtz problem. SIAM J. Numer. Anal., 35:255–99, 1998.

C. Gittelson, R. Hiptmair, and I. Perugia.

Plane wave discontinuous Galerkin methods. ESAIM: Mathematical Modeling and Numerical Analysis, 43:297–331, 2009.

Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. http://www.sam.math.ethz.ch/reports/2009/20, 2009.

T. Huttunen, M. Malinen, and P.B. Monk.

Solving Maxwell's equations using the Ultra Weak Variational Formulation. J. Comput. Phys., 223:731–58, 2007.

T. Huttunen, E.T. Seppälä, O Kirkeby, A. Kärkkäinen, and L. Kärkkäinen.

Simulation of the transfer function for a head-and-torso model over the entire audible frequency range. J. Comp. Acoustics, 2007.

P. Monk, J. Schöberl, and A. Sinwel.

Hybridizing Raviart-Thomas elements for the Helmholtz equation. *Electromagnetics*, 30:149–176, 2010.