Effective Error Estimators for Low Order Elements -from Diffusion to Incompressible Flow Problems

Qifeng Liao and David Silvester
School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

The Model Diffusion Problem and Finite Elements The governing Poisson equation is:

$$
\begin{aligned}
-\nabla^{2} u & =f \text { in } \Omega \\
u & =g \text { on } \partial \Omega
\end{aligned}
$$

where u is the unknown function. Its weak formulation is,

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} v f, \quad \forall v \in H_{0}^{1} \tag{1}
\end{equation*}
$$

The finite element discretization is to find $u_{h} \in X_{E}^{h} \subset H_{E}^{1}$, such that

$$
\begin{equation*}
\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h}=\int_{\Omega} v_{h} f, \quad \forall v_{h} \in X_{0}^{h} \subset H_{0}^{1} \tag{2}
\end{equation*}
$$

where X_{E}^{h} and X_{0}^{h} are finite dimensional spaces.
The (bi-)linear and (bi-)quadratic elements are:

Error Estimation Based on Solving Local Problems The error ($e=u-u_{h}$) satisfies the following equation (from (2)),

$$
\begin{equation*}
\int_{\Omega} \nabla e \cdot \nabla v=\int_{\Omega} v f-\int_{\Omega} \nabla u_{h} \cdot \nabla v, \quad \forall v \in H_{0}^{1} \tag{3}
\end{equation*}
$$

Integrate by parts for (3),

$$
\begin{equation*}
\sum_{T \in T_{h}}(\nabla e, \nabla v)_{T}=\sum_{T \in T_{h}}\left[\left(f+\nabla^{2} u_{h}, v\right)_{T}-\frac{1}{2} \sum_{E \in \partial T}\left\langle\left\|\frac{\partial u_{h}}{\partial n}\right\|, v\right\rangle_{E}\right] \tag{4}
\end{equation*}
$$

Then the localized error equation is,

$$
\begin{equation*}
\left(\nabla e_{T}, \nabla v\right)_{T}=\left(R_{T}, v\right)_{T}-\sum_{E \in \partial T}\left\langle R_{E}, v\right\rangle_{E} \tag{5}
\end{equation*}
$$

where $R_{T}=f+\nabla^{2} u_{h}$ and $R_{E}=\frac{1}{2} \llbracket \frac{\partial u_{h}}{\partial n} \rrbracket$. Note that, e_{T} in (5) is stronger than e in (4).

The local problem error estimation strategy is: choose a suitable finite element space \mathbb{Q}_{T}, and then find $e_{h} \in \mathbb{Q}_{T}$, such that

$$
\begin{equation*}
\left(\nabla e_{h}, \nabla v_{h}\right)_{T}=\left(R_{T}, v_{h}\right)_{T}-\sum_{E \in \partial T}\left\langle R_{E}, v_{h}\right\rangle_{E}, \forall v_{h} \in \mathbb{Q}_{T} \tag{6}
\end{equation*}
$$

Note that \mathbb{Q}_{T} should satisfy two requirements:

- \mathbb{Q}_{T} must be "larger" than the original approximation space;
- \mathbb{Q}_{T} should make the problem (6) solvable-that is reasonable boundary conditions are required.

Estimators for (Bi-)linear Elements

The red circles imply these basis function nodes are removed. In other words, zero boundary values are applied at these points.

The P_{2} and the Q_{2} estimators can provide very accurate estimation for the exact error e and their full analysis can be found in many textbooks.
"Stupid" Estimators for (Bi-)quadratic Elements

These estimators are simply generalized from the estimators for linear elements. With standard analysis techniques, they can mathematically be proven to be equivalent to the exact error. However, in practical computing, they do provide ineffective evaluation for the errors (see [2]).
"Good" Estimators for (Bi-)quadratic Elements

The P_{4} estimator can provide a tight bound for the P_{2} element, but the Q_{4} estimator is still not effective.
"Perfect" Estimator for Bi-quadratic Elements

In order to find the best estimator for the Q_{2} element, three levels of reduction of the Q_{4} element have been tested. The Level 3 is the "perfect" choice: it is very accurate and relatively cheap (only 12 degrees of freedom).

Estimators for Mixed Approximations, Stokes Problems For the steady-state Stokes equations,

$$
\begin{aligned}
-\nabla^{2} \vec{u}+\nabla p & =0 \text { in } \Omega \\
\nabla \cdot \vec{u} & =0 \text { in } \Omega \\
\vec{u} & =\vec{g} \text { on } \partial \Omega_{D} \\
\frac{\partial \vec{u}}{\partial n}-\vec{n} p & =\overrightarrow{0} \text { on } \partial \Omega_{N}
\end{aligned}
$$

our local Poisson problem estimation is: compute $\eta_{P, T}^{2}=\left|\vec{e}_{P, T}\right|_{1, T}^{2}+\left\|\nabla \cdot \vec{u}_{h}\right\|_{0, T}^{2}$, where $\vec{e}_{P, T} \in \mathbb{Q}_{T}$ satisfies,

$$
\left(\nabla \vec{e}_{P, T}, \nabla \vec{v}\right)_{T}=\left(\vec{R}_{T}, \vec{v}\right)_{T}-\sum_{E \in \partial T}\left\langle\vec{R}_{E}, \vec{v}\right\rangle_{E}, \quad \forall \vec{v} \in \mathbb{Q}_{T}
$$

For the classical mixed $Q_{2}-P_{1}$ element, an effective estimator is

In addition, the Q_{3} estimator is also effective for the $Q_{2}-Q_{1}$ (Taylor-Hood) method. This Q_{3} estimator for mixed approximations is analyzed in [1].

Conclusion

For the diffusion problem, the Q_{4} (with reduction Level 4) and the P_{4} estimators are effective for (bi-)quadratic elements and the Q_{3} estimator is effective for the $Q_{2}-P_{1}$ and the $Q_{2}-Q_{1}$ mixed approximations. These new estimators are encoded in version 3.1 of the MATLAB package IFISS [3].

References

[1] Q. Liao, D. Silvester, A simple yet effective a posteriori estimator for classical mixed approximation of Stokes equations, Applied Numerical Mathematics, to appear. doi:10.1016/j.apnum.2010.05.003.
[2] Q. Liao, D. Silvester, A posteriori error estimation for low order elements, Talk in First Manchester SIAM Student Chapter Conference, Website, http://www.maths.manchester.ac.uk/~siam/contents/Liao_ siam_talk.pdf (26th April 2010).
[3] D. Silvester, H. Elman, A. Ramage, Incompressible Flow \& Iterative Solver Software (IFISS), http://www. manchester.ac.uk/ifiss/.

