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Outline

1. Numerical challenges of high frequency wave propagation
2. Fast multi-pole methods (FMM)
3. Fast iterative solver for the full Helmholtz equation -

preconditioners (variable c(x))

“New efficient solution techniques based on
low rank matrix compressions”



1. High frequency wave propagation and
boundary integral techniques

• Applications: electro-magnetic, acoustic scattering and elastic
wave propagation and scattering
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High frequency wave propagation

• Computational challenge: Shannon sampling theorem - at least
2 unknowns/wavelenth  →  ≥ O(λ-3) unknowns and O(λ-4) flops

• Alternatives to FDM, FEM direct wave field approximation
– Asymptotic techniques: geometrical optics, GTD, Gaussian

beams
– Dimensional reduction, frequency domain ( O(λ-4) → O(λ-3) )

and boundary integral formulation for constant coeff. 
( → O(λ-2) )



Boundary integral techniques

• Applications: time harmonic wave propagation in piecewise
homogeneous media
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Discretisation (Galerkin, Nystrom)
generates dense matrix problem



Boundary integral techniques, continued

• The choice of integral formulation and discretization technique
are important but will not be discussed now

• Number of unknowns for given accuracy O(λ-2)=O(ω2) = O(N)
• Iterative method often enough - example GMRES or just

• The challenge: large (O(ω2)×O(ω2)), dense matrices
• For efficiency we need fast matrix vector multiplication

algorithms! 
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Fast matrix vector multiplications

• Exact decomposition

– Examples FFT (matrix-vector), Strassen (matrix-matrix)

• Approximate decomposition based on approximate low rank
interaction

– Examples: FMM [Rokhlin, Greengard], H-matrix methods
[Hackbusch], wavelet based compression [Beylkin]
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2. Fast Multipole methods (FMM)

• Standard point to point charge interaction or equivalently matrix-
vector multiply requires O(N2) operations

• For one level FMM: decompose domain or interaction matrix
• Example: compress interaction of domains that are far apart
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Classical fast multipole methods (FMM)

• For one level FMM: decompose domain or interaction matrix
• Example, compress interaction of domains that are far apart
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Classical fast multipole methods (FMM)

• For one level FMM: decompose domain or interaction matrix
• Example, compress interaction of domains that are far apart
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Classical fast multipole methods (FMM)

• For one level FMM: decompose domain or interaction matrix
• Example, compress interaction of domains that are far apart

! 

Fj = ai, juk

k=1

N

" =
uk

xk # x j( )k=1

N

" , j =1,..,N, O(N
2
) operations

Fj =
uk

xk # x j( )
+

j$%1 , k$%2

"
uk

xk # x j( )j, k else

" ,
uk

xk # x j( )
&

j$%1 , k$%2

"
vm

x # x j( )
m

m=1

M

" , M << N

From regularity at ', Puiseux series

Compare SVD



! 

A =U"V
#
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Singular Value Decomposition (SVD)

• Explores low rank interaction
• Reduces complexity in matrix-vector multiply



FMM continued: O(N3/2) flops

• Computation of the multipole expansion requires O(N1/2) flops in
each of the O(N1/2) clusters → O(N) flops

• Every point (N) interacts with a finite number of nearby clusters
of N1/2 points → O(N3/2) flops

• Every point also interacts with O(N1/2) far field clusters and the
interaction with each cluster requires O(1) flops → O(N3/2)  flops



FMM continued: O(N) flops

• O(N1.5) → O(N) by, near field approximation, hierarchical sub-
clustering and simplified translation operators
– Far field representation built hierarchically
– Uses near field Taylor expansion



FMM continued

• Successfully applied to a variety of N-particle problems and
potential formulations of elliptic equations.

• Requires low rank far field interaction (regularity at ∞), example
discrete Calderon-Zygmund operators
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Oscillatory kernel Gω(x,y)

• Standard FMM works well for smooth kernels, ex. Laplace
equation

• No far field low rank interaction for oscillatory kernels, ex
Helmholtz equation

• Compare gravity and light from moon



FMM for oscillatory kernels

• Standard fast multi-pole methods does not apply to oscillatory
kernels that are reasonably discretized.

• There are special purpose O(NlogN) methods [Rohklin], based
on far field approximation of G(x,y) and also FFT based
methods

• Now also oscillatory low rank O(NlogN) approximations
[E.,Ying,] for based on decomposition in distance and angle



• Original interaction matrix replace by a sum of  simpler matrix
products

• Analytical foundation (Theorem)
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Remarks

• Proof based on uniform approximation lemmas
• Constructive proof but not practical as algorithm
• Random selection of rows and columns coupled to sequence of

QR steps gives better practical results
• Instead of multipole: equivalent densities
• The O(NlogN) for nodes on co-dimension one manifold



Randomized construction of separated
representation

1. As from A, randomly selected rows and columns (10 times
over-sampling)

2. →

3. → Equivalent densities from

4.
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Equivalent densities
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Equivalent densities
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Algorithm
1. Construct octree (hierarchy of boxes)
2. Ascend in octree. Compute near field equivalent densities
3. Ascend in octree. Compute far field equivalent densities
4. Descend in octree. Compute far field effect on potentials
5. Descend in octree. Compute near field effect on potentials





Computational complexity

1. Construct octree (hierarchy of boxes)
→ O(N) (=O(ω2)) operations

Standard octree algorithm



Computational complexity

2. Ascend in octree. Compute near field equivalent densities
 → O(N)

At most O(N) low frequency boxes. Each requires finite number
of operations. From finite number of points per wave length for
given accuracy



Computational complexity

3. Ascend in octree. Compute far field equivalent densities
 → O(NlogN) high frequency, compare FMM

! 

• O(log") levels of boxes :w ="#1, 2"#1, 4"#1,..,"#1/ 2,

(w box side width)

• O(w#2) boxes at level w, from 2D#mainifold

• O(("w)2) wedges /box at level w

• finite number of operations per wedge

$ complexity :O(log") %O(w#2) %O(("w)2) =O(N logN)



Computational complexity

Analogous complexities when descending in octree



Numerical results and comments





Current research: coupling

Incoming plane
wave



Current research: coupling

Incoming plane
wave FMM

Asymptotic domain
[Taylor,..], [Bruno,..], [Chandler-Wilde],..
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3. Fast iterative solver for the full Helmholtz
equation, preconditioners (variable c(x))

• Well-known difficulties with iterative solvers for the non-positive
definite discrete Helmholtz equation

• High frequencies allows for highly
oscillatory solutions with sharp
signals over large domains

• Elliptic type techniques are
inefficient (i.e. multigrid)
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Disctretization

• For simplicity assume a regular grid with standard centered
differences (5-point stencil in 2D and 7-point in 3D)

• Outer loop: GMRES
• The domain should have part of boundary open with with far

field boundary conditions (ABC or PML)
• Example

ABC or PML

Dirichlet

ABC or PMLABC or PML variable c(x) 



Sweeping preconditioner

• Compare multi-frontal solver (Gaussian elimination)
• Efficient low rank representation of interaction in eliminating

edges (discrete half space Green’s function with PML or ABC)
• N by N unknowns (N = O(k))



Sweeping preconditioner

• Compare multi-frontal solver (Gaussian elimination)
• Efficient low rank representation of interaction in eliminating

edge (discrete half space Green’s function with PML or ABC)
• N by N unknowns (N = O(k))



LDLT factorization

• Factorization of original block tridiagonal matrix
• Submatrices stored in compressed approximate form
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LDLT factorization

• Without compression and with exact arithmetic we of course get
the “ideal” preconditioner but at the cost O(N6)

• Low rank compression gives the near optimal O(N4log(N))
• Low rank possible from following theorem:

For any ε > 0 there exists R = O(ε) s,t

For some fj,  gj, and any k > 0, G is the half space Green’s function
and a < x < s < y < b.
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Matrix representation and algebra

• H - matrix style representation with weak admissibility condition
for the sub blocks  (S and B), compare [Hackbusch]



Matrix representation and algebra

• H - matrix style representation with weak admissibility condition
for the sub blocks  (S and B)

• Not just matrix-vector multiply as in FMM



Matrix representation and algebra

• H - matrix style representation with weak admissibility condition
for the sub blocks  (S and B). Computed rank

• SVD in 2D, randomized SVD in 3D

Dirichlet bcConstant c Variable c



Computational results

• Variable coefficients - examples



Computational results

• Test 1 and 2: different source functions (random c)



3D: incomplete but promising

• Similar sweeping structure, face by face



3D: incomplete but promising

• Hierarchical matrix representation more complex
• Lack of compatible low rank theorem. The FMM low rank

theorem applies but does not give near optimal complexity
• Near optimal result with 8 points/wave, (4,000,000 unknowns)



Conclusions

• High frequency FMM fully based on approximate low rank
interaction
– Directional decomposition
– Rigorous foundation for approximate 

decomposition
– Efficient randomized algorithm

• Efficient sweeping preconditioning for iterative solutions of the
high frequency Helmholtz equation


