Fast algorithms for high frequency wave propagation

Bjorn Engquist
University of Texas at Austin and KTH, Stockholm

In collaboration with Lexing Ying

Numerical Analysis of Multiscale Problems, Durham 7/5-15, 2010

Outline

1. Numerical challenges of high frequency wave propagation
2. Fast multi-pole methods (FMM)
3. Fast iterative solver for the full Helmholtz equation preconditioners (variable $c(x)$)
"New efficient solution techniques based on low rank matrix compressions"

1. High frequency wave propagation and boundary integral techniques

- Applications: electro-magnetic, acoustic scattering and elastic wave propagation and scattering

$$
\left\{\begin{array}{l}
\mu \frac{\partial H}{\partial t}+\nabla \times E=0, \\
\varepsilon \frac{\partial E}{\partial t}-\nabla \times H=0
\end{array}\right.
$$

$$
\frac{\partial^{2} p}{\partial t^{2}}=c(x)^{2} \Delta p
$$

High frequency wave propagation

- Computational challenge: Shannon sampling theorem - at least 2 unknowns/wavelenth $\rightarrow \geq \mathrm{O}\left(\lambda^{-3}\right)$ unknowns and $\mathrm{O}\left(\lambda^{-4}\right)$ flops
- Alternatives to FDM, FEM direct wave field approximation
- Asymptotic techniques: geometrical optics, GTD, Gaussian beams
- Dimensional reduction, frequency domain $\left(O\left(\lambda^{-4}\right) \rightarrow O\left(\lambda^{-3}\right)\right.$) and boundary integral formulation for constant coeff. $\left(\rightarrow O\left(\lambda^{-2}\right)\right)$

Boundary integral techniques

- Applications: time harmonic wave propagation in piecewise homogeneous media

$$
\left\{\begin{array}{c}
\mu \frac{\partial H}{\partial t}+\nabla \times E=0, \\
\varepsilon \frac{\partial E}{\partial t}-\nabla \times H=0 \\
\downarrow
\end{array} \quad n \times E=0, x \in \partial \Omega\right.
$$

$$
\begin{gathered}
\lambda J(x)+\int_{\partial \Omega} G(x, y) J(y) d y=s(x) \\
\downarrow \\
(\lambda I+G) J=S
\end{gathered}
$$

Discretisation (Galerkin, Nystrom) generates dense matrix problem

Boundary integral techniques, continued

- The choice of integral formulation and discretization technique are important but will not be discussed now
- Number of unknowns for given accuracy $\mathrm{O}\left(\lambda^{-2}\right)=\mathrm{O}\left(\omega^{2}\right)=\mathrm{O}(\mathrm{N})$
- Iterative method often enough - example GMRES or just

$$
(\lambda I+G) J=S \rightarrow J^{n+1}=\lambda^{-1}\left(S-G J^{n}\right)
$$

- The challenge: large $\left(\mathrm{O}\left(\omega^{2}\right) \times \mathrm{O}\left(\omega^{2}\right)\right)$, dense matrices
- For efficiency we need fast matrix vector multiplication algorithms

Fast matrix vector multiplications

- Exact decomposition

$$
A x=\left(\sum_{j} \prod_{k} A_{j, k}\right) x, \quad A_{j, k} \text { sparse }
$$

- Examples FFT (matrix-vector), Strassen (matrix-matrix)
- Approximate decomposition based on approximate low rank interaction

$$
A x \approx\left(\sum_{j} \prod_{k} A_{j, k}\right) x, \quad A_{j, k} \text { sparse }
$$

- Examples: FMM [Rokhlin, Greengard], H-matrix methods [Hackbusch], wavelet based compression [Beylkin]

2. Fast Multipole methods (FMM)

- Standard point to point charge interaction or equivalently matrixvector multiply requires $O\left(N^{2}\right)$ operations
- For one level FMM: decompose domain or interaction matrix
- Example: compress interaction of domains that are far apart

Example (Coulomb potential, Laplace eq.) :

$$
F_{j}=\sum_{k=1}^{N} a_{j, k} u_{k}=\sum_{k=1}^{N} \frac{u_{k}}{\left(x_{k}-x_{j}\right)}, \quad j=1, . ., N, \quad O\left(N^{2}\right) \text { operations }
$$

Classical fast multipole methods (FMM)

- For one level FMM: decompose domain or interaction matrix
- Example, compress interaction of domains that are far apart

$$
\begin{aligned}
& F_{j}=\sum_{k=1}^{N} a_{j, k} u_{k}=\sum_{k=1}^{N} \frac{u_{k}}{\left(x_{k}-x_{j}\right)}, \quad j=1, \ldots, N, \quad O\left(N^{2}\right) \text { operations } \\
& F_{j}=\sum_{k \in \Omega_{2}} \frac{u_{k}}{\left(x_{k}-x_{j}\right)}+\sum_{k e l s e} \frac{u_{k}}{\left(x_{k}-x_{j}\right)}, \quad \sum_{k \in \Omega_{2}} \frac{u_{k}}{\left(x_{k}-x_{j}\right)} \approx \sum_{m=1}^{M} \frac{v_{m}}{\left(\bar{x}-x_{j}\right)^{m}}, \quad M \ll N, \quad j \in \Omega_{j}
\end{aligned}
$$

From regularity at ∞, Puiseux series

Classical fast multipole methods (FMM)

- For one level FMM: decompose domain or interaction matrix
- Example, compress interaction of domains that are far apart

$F_{j}=\sum_{k=1}^{N} a_{i, j} u_{k}=\sum_{k=1}^{N} \frac{u_{k}}{\left(x_{k}-x_{j}\right)}, \quad j=1, \ldots, N, \quad O\left(N^{2}\right)$ operations
$F_{j}=\sum_{\left(j \in \Omega_{1}\right), k \in \Omega_{2}} \frac{u_{k}}{\left(x_{k}-x_{j}\right)}+\sum_{j, k e s s e} \frac{u_{k}}{\left(x_{k}-x_{j}\right)}, \quad \sum_{\left(j \in \Omega_{1}\right), k \in \Omega_{2}} \frac{u_{k}}{\left(x_{k}-x_{j}\right)} \approx \sum_{m=1}^{M} \frac{v_{m}}{\left(\bar{x}-x_{j}\right)^{m}}, \quad M \ll N$
From regularity at ∞, Puiseux series

Classical fast multipole methods (FMM)

- For one level FMM: decompose domain or interaction matrix
- Example, compress interaction of domains that are far apart

$F_{j}=\sum_{k=1}^{N} a_{i, j} u_{k}=\sum_{k=1}^{N} \frac{u_{k}}{\left(x_{k}-x_{j}\right)}, \quad j=1, . ., N, \quad O\left(N^{2}\right)$ operations
$F_{j}=\sum_{j \in \Omega_{1}, k \in \Omega_{2}} \frac{u_{k}}{\left(x_{k}-x_{j}\right)}+\sum_{j, k e l s e} \frac{u_{k}}{\left(x_{k}-x_{j}\right)}, \quad \sum_{j \in \Omega_{1}, k \in \Omega_{2}} \frac{u_{k}}{\left(x_{k}-x_{j}\right)} \approx \sum_{m=1}^{M} \frac{v_{m}}{\left(\bar{x}-x_{j}\right)^{m}}, \quad M \ll N$
From regularity at ∞, Puiseux series

Singular Value Decomposition (SVD)

- Explores low rank interaction
- Reduces complexity in matrix-vector multiply
$A=U \Sigma V^{*}, \quad U, V$ unitary, $\quad \Sigma$ diagonal non negative

FMM continued: $\mathrm{O}\left(\mathrm{N}^{3 / 2}\right)$ flops

- Computation of the multipole expansion requires $\mathrm{O}\left(\mathrm{N}^{1 / 2}\right)$ flops in each of the $\mathrm{O}\left(\mathrm{N}^{1 / 2}\right)$ clusters $\rightarrow \mathrm{O}(\mathrm{N})$ flops
- Every point (N) interacts with a finite number of nearby clusters of $\mathrm{N}^{1 / 2}$ points $\rightarrow \mathrm{O}\left(\mathrm{N}^{3 / 2}\right)$ flops
- Every point also interacts with $\mathrm{O}\left(\mathrm{N}^{1 / 2}\right)$ far field clusters and the interaction with each cluster requires $\mathrm{O}(1)$ flops $\rightarrow \mathrm{O}\left(\mathrm{N}^{3 / 2}\right)$ flops

FMM continued: O(N) flops

- $\mathrm{O}\left(\mathrm{N}^{1.5}\right) \rightarrow \mathrm{O}(\mathrm{N})$ by, near field approximation, hierarchical subclustering and simplified translation operators
- Far field representation built hierarchically
- Uses near field Taylor expansion

FMM continued

- Successfully applied to a variety of N -particle problems and potential formulations of elliptic equations.
- Requires low rank far field interaction (regularity at ∞), example discrete Calderon-Zygmund operators

$$
A: " a_{j, k} \approx G\left(x_{j}, x_{k}\right) "
$$

Oscillatory kernel $\mathrm{G}_{\omega}(\mathrm{x}, \mathrm{y})$

- Standard FMM works well for smooth kernels, ex. Laplace equation
- No far field low rank interaction for oscillatory kernels, ex Helmholtz equation
- Compare gravity and light from moon

FMM for oscillatory kernels

- Standard fast multi-pole methods does not apply to oscillatory kernels that are reasonably discretized.
- There are special purpose O(NlogN) methods [Rohklin], based on far field approximation of $\mathrm{G}(\mathrm{x}, \mathrm{y})$ and also FFT based methods
- Now also oscillatory low rank $\mathrm{O}(\mathrm{NlogN})$ approximations [E.,Ying,] for based on decomposition in distance and angle

- Original interaction matrix replace by a sum of simpler matrix products

$$
G\left(x_{j}, x_{k}\right) \rightarrow \square=\sum \square \square \begin{gathered}
\text { columns }: f_{\alpha}\left(x_{j}\right) \\
\operatorname{rows}: g_{\beta}\left(x_{k}\right)
\end{gathered}
$$

- Analytical foundation (Theorem)

$$
\begin{gathered}
G(x, y)-\sum_{j=1}^{M(\varepsilon)} f_{j}(x) g_{j}(y) \mid \leq \varepsilon, \quad \forall \omega, x \in X, y \in Y \\
G(x, y)=\exp (\omega i|x-y|) /|x-y|
\end{gathered}
$$

- Original interaction matrix replace by a sum of simpler matrix products

$$
G\left(x_{j}, x_{k}\right) \rightarrow \square=\sum \square \square \quad \underset{\text { rows }: g_{\beta}\left(x_{k}\right)}{\leftarrow}
$$

- Analytical foundation (Theorem)

$$
\begin{gathered}
G(x, y)-\sum_{j=1}^{M(\varepsilon)} f_{j}(x) g_{j}(y) \mid \leq \varepsilon, \quad \forall \omega, x \in X, y \in Y \\
G(x, y)=\exp (\omega i|x-y|) /|x-y|
\end{gathered}
$$

Remarks

- Proof based on uniform approximation lemmas
- Constructive proof but not practical as algorithm
- Random selection of rows and columns coupled to sequence of QR steps gives better practical results
- Instead of multipole: equivalent densities
- The $\mathrm{O}(\mathrm{NlogN})$ for nodes on co-dimension one manifold

Randomized construction of separated representation

1. A_{s} from A, randomly selected rows and columns (10 times over-sampling)
2. $\rightarrow \quad "\left|A_{s}-\tilde{Q}_{c} M \tilde{Q}_{r}^{*}\right|=O(\varepsilon) ", \quad M=\left(\tilde{Q}_{c}\right)^{+} A\left(\tilde{Q}_{r}^{*}\right)^{+}$
3. \rightarrow Equivalent densities from $D=\left(R_{c}\right)^{+} M, Q_{c} R_{c}=A_{c}$

Equivalent densities

$$
"\left|\frac{e^{2 \pi i\left|x_{i}-x_{j}\right|}}{\left|x_{i}-x_{j}\right|}-\sum_{p, q} \frac{e^{2 \pi i\left|x_{i}-x_{p}^{c}\right|}}{\left|x_{i}-x_{p}^{c}\right|} d_{p, q} \frac{e^{2 \pi i \mid x_{q}^{c}-x_{j}} \mid}{\left|x_{q}^{c}-x_{j}\right|}\right|=O(\varepsilon)^{\prime \prime}
$$

Equivalent densities

$$
"\left|\frac{e^{2 \pi i\left|x_{i}-x_{j}\right|}}{\left|x_{i}-x_{j}\right|}-\sum_{p, q} \frac{e^{2 \pi i\left|x_{i}-x_{p}^{c}\right|}}{\left|x_{i}-x_{p}^{c}\right|} d_{p, q} \frac{e^{2 \pi i \mid x_{q}^{c}-x_{j}} \mid}{\left|x_{q}^{c}-x_{j}\right|}\right|=O(\varepsilon) "
$$

Alternative to
Multipole
$[$ Anderson], [Ying]

Algorithm

1. Construct octree (hierarchy of boxes)
2. Ascend in octree. Compute near field equivalent densities
3. Ascend in octree. Compute far field equivalent densities
4. Descend in octree. Compute far field effect on potentials
5. Descend in octree. Compute near field effect on potentials

High frequency regime

Low frequency regime

Computational complexity

1. Construct octree (hierarchy of boxes)
$\rightarrow \mathrm{O}(\mathrm{N})\left(=\mathrm{O}\left(\omega^{2}\right)\right.$) operations

Standard octree algorithm

Computational complexity

2. Ascend in octree. Compute near field equivalent densities $\rightarrow \mathrm{O}(\mathrm{N})$

At most $\mathrm{O}(\mathrm{N})$ low frequency boxes. Each requires finite number of operations. From finite number of points per wave length for given accuracy

Computational complexity

3. Ascend in octree. Compute far field equivalent densities $\rightarrow \mathrm{O}(\mathrm{NlogN})$ high frequency, compare FMM

- $O(\log \omega)$ levels of boxes : $w=\omega^{-1}, 2 \omega^{-1}, 4 \omega^{-1}, . ., \omega^{-1 / 2}$, (w box side width)
- $O\left(w^{-2}\right)$ boxes at level w, from $2 D$ - mainifold
- $O\left((\omega w)^{2}\right)$ wedges/box at level w
- finite number of operations per wedge
\rightarrow complexity: $O(\log \omega) \cdot O\left(w^{-2}\right) \cdot O\left((\omega w)^{2}\right)=O(N \log N)$

Computational complexity

Analogous complexities when descending in octree

Numerical results and comments

Current research: coupling

Current research: coupling

3. Fast iterative solver for the full Helmholtz equation, preconditioners (variable $c(x)$)

$$
\Delta u+k(x)^{2} u=f(x), \quad k(x)=\frac{\omega}{\mathrm{c}(\mathrm{x})}
$$

- Well-known difficulties with iterative solvers for the non-positive definite discrete Helmholtz equation
- High frequencies allows for highly oscillatory solutions with sharp signals over large domains
- Elliptic type techniques are inefficient (i.e. multigrid)

3. Fast iterative solver for the full Helmholtz equation, preconditioners (variable $c(x)$)

$$
\Delta u+k(x)^{2} u=f(x), \quad k(x)=\frac{\mathrm{w}}{\mathrm{c}(\mathrm{x})}
$$

- Well-known difficulties with iterative solvers for the non-positive definite discrete Helmholtz equation
- High frequencies allows for highly oscillatory solutions with sharp signals over large domains
- Elliptic type techniques are inefficient (i.e. multigrid)

Disctretization

- For simplicity assume a regular grid with standard centered differences (5-point stencil in 2D and 7-point in 3D)
- Outer loop: GMRES
- The domain should have part of boundary open with with far field boundary conditions (ABC or PML)
- Example

ABC or PML

Sweeping preconditioner

- Compare multi-frontal solver (Gaussian elimination)
- Efficient low rank representation of interaction in eliminating edges (discrete half space Green's function with PML or ABC)
- N by N unknowns ($\mathrm{N}=\mathrm{O}(\mathrm{k})$)

Sweeping preconditioner

- Compare multi-frontal solver (Gaussian elimination)
- Efficient low rank representation of interaction in eliminating edge (discrete half space Green's function with PML or ABC)
- $\quad \mathrm{N}$ by N unknowns ($\mathrm{N}=\mathrm{O}(\mathrm{k})$)

$L D L^{\top}$ factorization

- Factorization of original block tridiagonal matrix
- Submatrices stored in compressed approximate form

$$
\begin{aligned}
& A U=F \rightarrow\left(\begin{array}{ccccc}
A_{1} & B_{1}^{T} & 0 & \ldots & \\
B_{1} & A_{2} & \ldots & & \\
0 & \ldots & \ldots & & \\
\ldots & & & \ldots & B_{N-1}^{T} \\
& & & B_{N-1} & A_{N}
\end{array}\right)\binom{u_{1}}{u_{N}}=\left(\begin{array}{c}
f_{1} \\
\\
f_{N}
\end{array}\right),\left(\begin{array}{l}
\text { i is } \left.N^{2} \times N^{2}\right)
\end{array}\right. \\
& A=L_{1}\left(\begin{array}{cccc}
S_{1} & 0 & \ldots & \\
0 & S_{2} & B_{2}^{T} & \\
& B_{2} & \ldots & \ldots \\
& & \ldots &
\end{array}\right) L_{1}^{T} \rightarrow U=L_{1}^{-T} \ldots L_{N-1}^{-T}\left(\begin{array}{llll}
S_{N}^{-1} & & & \\
& S_{N}^{-1} & & \\
& & \ldots & \\
& & & \\
& & & \\
& & & S_{N}^{-1}
\end{array}\right) L_{N-1}^{-1} \ldots L_{1}^{-1} F \\
& S_{1}=A_{1}, \quad S_{2}=A_{1}-B_{1} S_{1}^{-1} B_{1}^{T} \ldots
\end{aligned}
$$

$L D L^{\top}$ factorization

- Without compression and with exact arithmetic we of course get the "ideal" preconditioner but at the cost $\mathrm{O}\left(\mathrm{N}^{6}\right)$
- Low rank compression gives the near optimal $\mathrm{O}\left(N^{4} \log (N)\right)$
- Low rank possible from following theorem:

For any $\varepsilon>0$ there exists $R=O(\varepsilon) s, t$

$$
\left|G(x, y)-\sum_{j=1}^{R} f_{j}(x) g_{j}(y)\right| \leq \varepsilon,
$$

For some f_{j}, g_{j}, and any $k>0, G$ is the half space Green's function and $a<x<s<y<b$.

Matrix representation and algebra

- H-matrix style representation with weak admissibility condition for the sub blocks (S and B), compare [Hackbusch]

Matrix representation and algebra

- H-matrix style representation with weak admissibility condition for the sub blocks (S and B)

- Not just matrix-vector multiply as in FMM

Matrix representation and algebra

- H - matrix style representation with weak admissibility condition for the sub blocks (S and B). Computed rank
- SVD in 2D, randomized SVD in 3D

Constant C

Variable c

Dirichlet bc

Computational results

- Variable coefficients - examples

Computational results

- Test 1 and 2: different source functions (random c)

3D: incomplete but promising

- Similar sweeping structure, face by face

3D: incomplete but promising

- Hierarchical matrix representation more complex
- Lack of compatible low rank theorem. The FMM low rank theorem applies but does not give near optimal complexity
- Near optimal result with 8 points/wave, (4,000,000 unknowns)

				Test 1		Test 2	
$\omega /(2 \pi)$	N	R	$T_{\text {setup }}$	$N_{\text {iter }}$	$T_{\text {solve }}$	$N_{\text {iter }}$	$T_{\text {iter }}$
5	40	2	$4.07 \mathrm{e}+01$	3	$5.40 \mathrm{e}-01$	4	$6.60 \mathrm{e}-01$
10	80	3	$9.70 \mathrm{e}+02$	9	$1.59 \mathrm{e}+01$	7	$1.27 \mathrm{e}+01$
20	160	4	$1.83 \mathrm{e}+04$	6	$1.14 \mathrm{e}+02$	6	$1.13 \mathrm{e}+02$

Conclusions

- High frequency FMM fully based on approximate low rank interaction
- Directional decomposition
- Rigorous foundation for approximate decomposition
- Efficient randomized algorithm

- Efficient sweeping preconditioning for iterative solutions of the high frequency Helmholtz equation

