A Bayesian approach to an elliptic inverse problem

M. DASHTI, S. HARRIS, A. STUART

Mathematics Institute, University of Warwick

1. The problem

• Consider (Darcy's law + incompressibility condition):

 $\nabla \cdot \left(\exp(u) \nabla p \right) = 0, \quad x \in D \subset \mathbb{R}^d, \quad d=2,3$ (1) $p = \phi, \quad x \in \partial D$

• Find u, Given noisy observations of p at a set of points x_1,\ldots,x_K in D:

 $y_k = p(x_k) + \eta_k, \quad k = 1, \dots, K.$ (2)

2. Bayesian approach to inverse problems

- Unknown function $u \in X$ (X Banach space),
- Prior $\mu_0(du) = \mathbb{P}(du)$ on u with $\mu_0(X) = 1$
- y | u noisy observations $y \in Y$

 $y = \mathcal{G}(u) + \eta$

 \mathcal{G} : observational operator

 η : observational noise distributed according to $\mathcal{N}(0,\Gamma)$

• Posterior $\mu^y(du) = \mathbb{P}(du|y)$ on u:

(iv) There is an $\alpha_2 > 0$ and for every r > 0 a $C \in \mathbb{R}$ such that for all $y_1, y_2 \in \mathbb{R}$ with $\max\{||y_1||_Y, ||y_2||_Y\} < r$ and for every $u \in X$

 $|\Phi(u, y_1) - \Phi(u, y_2)| \le \exp(\alpha_2 ||u||_X^p + C) ||y_1 - y_2||.$

Assumption 2. The prior measure μ_0 is either

a Gaussian H^s measure with s large enough so that $H^t \subset X$ for some $t < s - \frac{d}{2}$, or a Besov (κ, B_{pp}^s) measure with s large enough so that $B_{pp}^t \subset X$ for some $t < s - \frac{d}{p}$.

Theorem 1. Let Assumption 1.(i)–(iii) and Assumption 2 with $\kappa > \alpha_1$ hold. Then μ^y given by (3) is a well-defined probability measure.

One can also show continuity of the posterior in the Hellinger metric with respect to the data y. The Hellinger metric is defined as follows:

$$d_{\text{Hell}}(\mu, \mu') = \sqrt{\frac{1}{2} \int \left(\sqrt{\frac{\mathrm{d}\mu}{\mathrm{d}\nu}} - \sqrt{\frac{\mathrm{d}\mu'}{\mathrm{d}\nu}}\right)^2} \,\mathrm{d}\nu.$$

where

$$y = (y_1, \cdots, y_K)^T;$$

$$\eta = (\eta_1, \dots, \eta_K)^T \sim \mathcal{N}(0, \gamma^2 I)$$

$$\mathcal{G}(u) = (p(x_1), \cdots, p(x_K))^T, \text{ the observation operator}$$

Estimates:

• If $u \in L^{\infty}(D)$ there exists $C = C(D, \|\phi\|_{L^{\infty}(\partial D)})$ such that

$$|\mathcal{G}(u)| \leq C e^{||u||_{L^{\infty}}}.$$

• If $u_1, u_2 \in C^t(D)$ for some t > 0 then there exists C = C(D, t) such that

 $|\mathcal{G}(u_1) - \mathcal{G}(u_2)|$ $\leq C \exp(\max\{\|u_1\|_{C^t}, \|u_2\|_{C^t}\}) \|u_1 - u_2\|_{L^{\infty}}.$

Therefore by Theorems 1 and 2, we have:

$$\frac{\mathrm{d}\mu^y}{\mathrm{d}\mu_0}(u) \propto \mathbb{P}(y|u) \propto \exp(-\Phi(u,y)),$$

 $\Phi: X \times Y \to \mathbb{R}.$

2.1. Prior measure

Let $\{\psi_l\}_{l=1}^{\infty}$ be a basis for $L^2(D)$. Define random function uas $\sum_{i=1}^{\infty} (s+1-1) (1,1)$ (4)

$$u(x) = \sum_{l=1}^{\infty} l^{-(\frac{3}{d} + \frac{1}{2} - \frac{1}{p})} \left(\frac{1}{\kappa}\right)^{\frac{1}{p}} \xi_l \,\psi_l(x).$$

with $1 \le p < \infty$, s > 0, and $\kappa > 0$ fixed and $\{\xi_l\}_{l=1}^{\infty}$ i.i.d real-valued random variables with probability distribution function

 $\pi_{\mathcal{E}}(x) = c_p \exp(-|x|^p)$

- When $\{\psi_l\}_{l=1}^{\infty}$ is a Fourier basis, p = 2 and $\kappa =$ $\frac{1}{2}$, u is distributed according to the Gaussian measure $\mathcal{N}(0, (-\Delta)^{-s})$ with Δ the Laplacian operator. In this case $||u||_{H^t} < \infty$ a.s. for t < s - d/2.
- Let $D = \mathbb{T}^d$. When $\{\psi_l\}_{l=1}^\infty$ in (4) is an r-regular wavelet basis for $L^2(\mathbb{T}^d)$, then u is distributed according to a Besov (κ, B_{pp}^s) measure (formally $\mu_0(du) \propto$ $\exp(-\kappa \|u\|_{B^{s}_{pp}}^{p})$). In this case $\|u\|_{B_{pp}^t} < \infty$ a.s. for t < s - d/p.

2.2. Wellposedness of the posterior measure

Assumption 1. Function $\Phi: X \times Y \to \mathbb{R}$ satisfies (i) There is an $\alpha_1 > 0$ and for every r > 0, an $M \in \mathbb{R}$, such

that for all $u \in X$ and for all $y \in Y$ such that $||y||_Y < r$

 $\Phi(u, y) \ge M - \alpha_1 ||u||_{\mathcal{X}}^p.$

(ii) For every r > 0 there exists K = K(r) > 0 such that for

Theorem 2. Let Assumption 1 and Assumption 2 with $\kappa >$ $2\alpha_2$ hold. Then

 $d_{\text{Hell}}(\mu^y, \mu^{y'}) \le C |y - y'|$

where C = C(r) with $\max\{|y|, |y'|\} \leq r$.

2.3. Approximation of the posterior

Let Φ^N be an approximation of Φ . Define $\mu^{y,N}$ by

$$\frac{\mathrm{d}\mu^{y,N}}{\mathrm{d}\mu_0}(u) = \frac{1}{Z^N(y)} \exp\left(-\Phi^N(u)\right)$$

where

(3)

$$Z^{N}(y) = \int_{X} \exp\left(-\Phi^{N}(u)\right) \mathrm{d}\mu_{0}(u).$$

Theorem 3. Suppose that Φ and Φ^N satisfy Assumption 1.(i)–(iii) uniformly in N. Let Assumption 2 hold. If

 $|\Phi(u) - \Phi^N(u)| \le C\psi(N)$

where $\psi(N) \to 0$ as $N \to \infty$, then there exists a constant independent of N such that

 $d_{Hell}(\mu^y, \mu^{y,N}) \le C\psi(N).$

3. Application to the elliptic inverse problem

- In (1) for any $u \in L^{\infty}(D)$ we assume that $\lambda(u) = \operatorname{ess\,inf}_{x \in D} e^{u(x)} > 0$ $\Lambda(u) = \operatorname{ess\,sup}_{x \in D} e^{u(x)} < \infty.$
- We do not assume that the upper and lower bounds on

Wellposedness: If μ_0 satisfies Assumption 2 with $\kappa > 2$ and s > 2d/p, then the posterior measure μ^y is absolutely continuous with Radon-Nikodym derivative

$$\frac{\mathrm{d}\mu^{y}}{\mathrm{d}\mu_{0}}(u) \propto \exp\left(-\frac{1}{2\gamma^{2}}|y-\mathcal{G}(u)|^{2}\right)$$

and

(5)

$$d_{Hell}(\mu^y, \mu^{y'}) \le C |y - y'|$$

for any $y, y' \in \mathbb{R}^{K}$.

Approximations:

Fourier basis:

Let $\{\psi_l\}_{l\in\mathbb{Z}}$ be the Fourier basis for $L^2(\mathbb{T}^d)$,

$$P^N u = u^N = \sum_{l=1}^N u_l \, \psi_l.$$

and
$$\mathcal{G}^N(\cdot) = \mathcal{G}(P^N \cdot).$$

Theorem 4. If the prior μ_0 is a Gaussian H^s measure with s > d + t, then

$$d_{\text{Hell}}(\mu^y, \mu^{y,N}) \le C N^{-t} (\log N)^d.$$

Wavelet basis:

Let $\{\psi_j\}_{j=1}^{\infty}$ be an *r*-regular wavelet basis for $L^2(\mathbb{T}^d)$ and define

$$P^N u = u^N(x) = \sum_{l=1}^N u_l \,\psi_l(x)$$

all $u \in B_{pp}^t$, $y \in Y$ with $\max\{||u||_X, ||y||_Y\} < r$

 $\Phi(u, y) \le K.$

(iii) For any r > 0 an L = L(r) > 0 exists such that $u_1, u_2 \in$ B_{pp}^t and $u \in Y$ with $\max\{||u_1||_X, ||u_2||_X, ||y||_Y\} < r$

 $|\Phi(u_1, y) - \Phi(u_2, y)| \le L||u_1 - u_2||_X.$

 λ/Λ hold uniformly across the probability space.

Observations: given as in (2), and we assume that:

the noise is Gaussian and $\{\eta_k\}$ is an i.i.d sequence with $\eta_1 \sim \mathcal{N}(0, \gamma^2 I)$.

Concatenating the data, we have

 $y = \mathcal{G}(u) + \eta$

and $\mathcal{G}^N(\cdot) = \mathcal{G}(P^N \cdot).$

Theorem 5. If the prior μ_0 is a Besov (κ, B_{pp}^s) measure with s > 2d/p + t and $\kappa > 2$, then

 $d_{\text{Hell}}(\mu^y, \mu^{y,N}) \le C N^{-t/d}.$