Numerical Methods for High Frequency Scattering Simon Chandler-Wilde

University of Reading, UK www.reading.ac.uk/~sms03snc

With: Steve Langdon, Timo Betcke, Ivan Graham, Marko Lindner (Chemnitz), Peter Monk, Valery Smyshlyaev PhD Students: Charlotta Howarth, Tatiana Kim, Ashley Twigger Postdocs: Dave Hewett, Joel Philips, Euan Spence

Funding: • EPSRC project across Bath/Reading with BAE Systems, Institute of Cancer Research, Met Office, Schlumberger Cambridge Research as project partners.

- NERC/EPSRC Studentships at Bath \& Reading
- EPSRC Career Acceleration Fellowship for Timo

Durham, July 2010

Aim of Our High Frequency Wave Projects

Develop numerical methods which use oscillatory basis functions to represent solutions with hugely reduced numbers of degrees of freedom.

Domain-based formulations (Plane wave DG, UWVF. etc.). Timo Betcke, Joel Phillips, Ivan Graham, Steve Langdon, SNCW, Charlotta Howarth + PhD at Bath +3 PhDs at Reading + see talk by Peter Monk.

BEM-based methods. Timo Betcke, SNCW, Ivan Graham, Dave Hewett, Tatiana Kim, Steve Langdon, Euan Spence, Ashley Twigger + talks by Markus Melenk, Bjorn Engquist + Jon Trevelyan and colleagues at Durham

Aim of Our High Frequency Wave Projects

Develop numerical methods which use oscillatory basis functions to represent solutions with hugely reduced numbers of degrees of freedom.

Domain-based formulations (Plane wave DG, UWVF. etc.). Timo Betcke, Joel Phillips, Ivan Graham, Steve Langdon, SNCW, Charlotta Howarth + PhD at Bath +3 PhDs at Reading + see talk by Peter Monk.

BEM-based methods. Timo Betcke, SNCW, Ivan Graham, Dave Hewett, Tatiana Kim, Steve Langdon, Euan Spence, Ashley Twigger + talks by Markus Melenk, Bjorn Engquist + Jon Trevelyan and colleagues at Durham

A Simple Generic Time Harmonic Scattering Problem

$$
\Delta u+k^{2} u=0
$$

$$
u=0 \quad \Omega^{+}
$$

$k=\frac{2 \pi}{\lambda}>0$ is the wave number and λ the corresponding wavelength.

Why am I here at a multiscale conference??

Why am I here at a multiscale conference??

- At least one scatterer length scale - usually many, see e.g. Jill Ogilvy BAE Systems talk
- Wavelength $\lambda=2 \pi / k-k^{-1}$ scale
- Many other scales in the solution, $k^{-1 / 2}, k^{-1 / 3}$

Why am I here at a multiscale conference??

- At least one scatterer length scale - usually many, see e.g. Jill Ogilvy BAE Systems talk
- Wavelength $\lambda=2 \pi / k-k^{-1}$ scale
- Many other scales in the solution, $r(k r)^{-1 / 2}, R(k R)^{-1 / 3}$

A Simple Generic Time Harmonic Scattering Problem

$$
\Delta u+k^{2} u=0
$$

$$
u=0 \quad \Omega^{+}
$$

$k=\frac{2 \pi}{\lambda}>0$ is the wave number and λ the corresponding wavelength.

Background

When solving the Helmholtz equation

$$
\Delta u+k^{2} u=0
$$

the degrees of freedom in a conventional BEM of FEM needs to increase as the wave number $k=\frac{2 \pi}{\lambda}$ increases.

See e.g. the talks by Bjorn Engquist or Markus Melenk.

Today's Talk

When solving the Helmholtz equation

$$
\Delta u+k^{2} u=0
$$

the degrees of freedom in a conventional BEM or FEM needs to increase as the wave number $k=\frac{2 \pi}{\lambda}$ increases.

- In the BEM, can we avoid this by using clever basis functions, e.g. solutions of the Helmholtz equation or solutions of the Helmholtz equation multiplied by standard basis functions?
- By doing this, is a solver achievable with $O(1)$ cost in the limit as $k \rightarrow \infty$?

The Computational Challenge

In fact, can we achieve
'prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency'
to quote from the title of Bruno, Geuzaine, Monro, and Reitich, Phil Trans R Soc Lond A (2004)

The Computational Challenge

In fact, can we achieve
'prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency'
to quote from the title of Bruno, Geuzaine, Monro, and Reitich, Phil Trans R Soc Lond A (2004)

Answer:

1. YES for some classes of 2D and 3D problems.
2. For more general classes significant improvements possible and promising research area.

The Associated Mathematical Challenge ... PROVING EVERYTHING!

The Associated Mathematical Challenge ... PROVING EVERYTHING!

- Best approximation results using novel approximation spaces
- Stability
- Convergence
- Error estimates for fully discrete schemes

The Associated Mathematical Challenge ... PROVING EVERYTHING!

- Best approximation results using novel approximation spaces
- Stability
- Convergence
- Error estimates for fully discrete schemes

THE (HUGE) NOVELTY IS THAT WE NEED TO DO THIS IN THE LIMIT AS $k \rightarrow \infty$ with N fixed (not the classical $N \rightarrow \infty$ with k fixed).

I will only scrape the surface today. For more details:

- Talk to: Betcke, Ganesh, Graham, Hewett, Kim, Langdon, Melenk, Smyshlyaev, Spence, Trevelyan, Twigger

- Read survey article by C-W \& Graham (and related articles by Huybrechs \& Olver, Monk, Motamed \& Runborg) in Highly Oscillatory Problems, CUP, July 2009, £33.25 on amazon.co.uk.

The Scattering Problem

Green's representation theorem:

$$
u(x)=u^{i}(x)-\int_{\Gamma} G(x, y) \frac{\partial u}{\partial n}(y) d s(y), \quad x \in \Omega^{+}
$$

where

$$
G(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|)(2 \mathrm{D}), \quad:=\frac{1}{4 \pi} \frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{|x-y|} \text { (3D). }
$$

$$
\Delta u+k^{2} u=0
$$

u^{i}, incident wave

$$
u=0 \quad \Omega^{+}
$$

Taking a linear combination of Dirichlet and Neumann traces of the previous equation, we get the boundary integral equation

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial G(x, y)}{\partial n(x)}+\mathrm{i} \eta G(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma
$$

where

$$
f(x):=\frac{\partial u^{i}}{\partial n}(x)+\mathrm{i} \eta u^{i}(x)
$$

$$
\Delta u+k^{2} u=0
$$

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial G(x, y)}{\partial n(x)}+\mathrm{i} \eta G(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma .
$$

Theorem (Mitrea 1996, C-W \& Langdon 2007) If $\eta \in \mathbb{R}, \eta \neq 0$, then this integral equation is uniquely solvable in $L^{2}(\Gamma)$.

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial G(x, y)}{\partial n(x)}+\mathrm{i} \eta G(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma .
$$

in operator form

$$
A \frac{\partial u}{\partial n}=f
$$

Theorem If $\eta \in \mathbb{R}, \eta \neq 0$, then this integral equation is uniquely solvable in $L^{2}(\Gamma)$.

In fact (C-W \& Monk 2008, C-W, Graham, Langdon, Lindner 2009), if scatterer is starlike and $\eta=(1+k)$ then (in 3D)

$$
\left\|A^{-1}\right\| \leq C, \quad\|A\| \leq C k, \quad \text { cond } A \leq C k
$$

See Melenk lecture 3 for smoothing mapping properties of A and A^{-1} when Γ is analytic.

The Subtlety of Behaviour of $\|A\|$ and $\left\|A^{-1}\right\|$

$\sim k^{1 / 3}, \sim 1$

Ellipse

Square

Elliptic Cavity

Details: see C-W et al (2009), Betcke et al (preprint), Runborg in progress.

Mechanism for Exponential Growth:

Exponential Localization of Eigenmodes

$k_{1,0}=9.9771201566136298$

$k_{9,0}=60.218097688523919$

$k_{4,0}=28.807002784875433$

$k_{14,0}=91.632551202864647$

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial G(x, y)}{\partial n(x)}+\mathrm{i} \eta G(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma
$$

Conventional BEM: Approximate $\partial u / \partial n$ by a piecewise polynomial, i.e.

$$
\frac{\partial u}{\partial n}(x) \approx \sum_{j=1}^{N} a_{j} \mathbf{b}_{j}(x)
$$

where $\mathbf{b}_{1}(x), \ldots, \mathbf{b}_{N}(x)$ are the piecewise polynomial basis functions (precisely, if boundary curved, these functions are images of FEM basis functions under a mapping from reference element in \mathbb{R}^{d-1} to Γ).

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial G(x, y)}{\partial n(x)}+\mathrm{i} \eta G(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma
$$

Conventional BEM: Approximate $\partial u / \partial n$ by a piecewise polynomial, i.e.

$$
\frac{\partial u}{\partial n}(x) \approx \sum_{j=1}^{N} a_{j} \mathbf{b}_{j}(x)
$$

where $\mathbf{b}_{1}(x), \ldots, \mathbf{b}_{N}(x)$ are the piecewise polynomial basis functions.
Applying a Galerkin method or a collocation method we get a linear system to solve with N degrees of freedom, namely the unknown values of a_{1}, \ldots, a_{N}.

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial G(x, y)}{\partial n(x)}+\mathrm{i} \eta G(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma .
$$

Conventional BEM: Apply a Galerkin method, approximating $\partial u / \partial n$ by a piecewise polynomial of degree p, leading to a linear system to solve with N degrees of freedom.

Problem: N of order of k^{d-1} if 'pollution' avoided (Melenk, Lecture 3) and cost is ... close to $O(N)$ if a fast multipole method is used (e.g. talk by Engquist.

This is fantastic, but still infeasible as $k \rightarrow \infty$.

Alternative: Reduce N by using new oscillatory basis functions which can represent the solution well. Specifically, let's try

$$
\frac{\partial u}{\partial n}(x) \approx \sum_{i=1}^{M} \sum_{j=1}^{N_{i}} a_{i j} \exp \left(\mathrm{i} k g_{i}(x)\right) \mathbf{b}_{i j}(x)
$$

with $a_{i j} \in \mathbb{C}$ the unknown coefficients,
$g_{1}(x), \ldots, g_{M}(x)$ known phase functions,
$\mathbf{b}_{i j}(x)$ conventional BEM basis functions.

Alternative: Reduce N by using new oscillatory basis functions which can represent the solution well. Specifically, let's try

$$
\frac{\partial u}{\partial n}(x) \approx \sum_{i=1}^{M} \sum_{j=1}^{N_{i}} a_{i j} \exp \left(\mathrm{i} k g_{i}(x)\right) \mathbf{b}_{i j}(x)
$$

with $a_{i j} \in \mathbb{C}$ the unknown coefficients, $g_{1}(x), \ldots, g_{M}(x)$ known phase functions,
$\mathbf{b}_{i j}(x)$ conventional BEM basis functions.
Moreover, let's have \#dof $N=\sum_{i=1}^{M} N_{i}$ much less than conventional
BEM, ideally $N=O(1)$ as $k \rightarrow \infty$, the 'high frequency $O(1)$ algorithm' holy grail.

Alternative: Reduce N by using new oscillatory basis functions which can represent the solution well. Specifically, let's try

$$
\frac{\partial u}{\partial n}(x) \approx \sum_{i=1}^{M} \sum_{j=1}^{N_{i}} a_{i j} \exp \left(\mathrm{i} k x \cdot d_{i}\right) \mathbf{b}_{i j}(x)
$$

with $a_{i j} \in \mathbb{C}$ the unknown coefficients,
$d_{1}, \ldots d_{M}$ known plane wave directions,
$\mathbf{b}_{i j}(x)$ conventional BEM basis functions.
The Plan: let's have \#dof $N=\sum_{i=1}^{M} N_{i}$ which is $N=O(1)$ as $k \rightarrow \infty$, and then we will achieve the 'high frequency $O(1)$ CPU time algorithm' holy grail.

Alternative: Reduce N by using new oscillatory basis functions which can represent the solution well. Specifically, let's try

$$
\frac{\partial u}{\partial n}(x) \approx \sum_{i=1}^{M} \sum_{j=1}^{N_{i}} a_{i j} \exp \left(\mathrm{i} k x \cdot d_{i}\right) \mathbf{b}_{i j}(x)
$$

with $a_{i j} \in \mathbb{C}$ the unknown coefficients,
$d_{1}, \ldots d_{M}$ known plane wave directions,
$\mathbf{b}_{i j}(x)$ conventional BEM basis functions.
The Plan: let's have \#dof $N=\sum_{i=1}^{M} N_{i}$ which is $N=O(1)$ as $k \rightarrow \infty$, and then we will achieve the 'high frequency $O(1) \mathrm{CPU}$ time algorithm' holy grail.

No! Unfortunately, $N=O(1) \nRightarrow \mathrm{CPU}$ time $=O(1)$.

The Snag: our N^{2} matrix entries are highly oscillatory integrals When we use the Galerkin method, typical matrix entries in 3D are $\int_{\Gamma_{i j}} \int_{\Gamma_{m n}} \frac{1}{4 \pi|x-y|} \exp \left[\mathrm{i} k\left(|x-y|+y \cdot d_{i}-x \cdot d_{m}\right)\right] \mathbf{b}_{i j}(y) \mathbf{b}_{m n}(x) d s(y) d s(x)$.

Each entry is a 4-dimensional, increasingly oscillatory integral as $k \rightarrow \infty$.

The Snag: our N^{2} matrix entries are highly oscillatory integrals When we use the Galerkin method, typical matrix entries in 3D are $\int_{\Gamma_{i j}} \int_{\Gamma_{m n}} \frac{1}{4 \pi|x-y|} \exp \left[\mathrm{i} k\left(|x-y|+y \cdot d_{i}-x \cdot d_{m}\right] \mathbf{b}_{i j}(y) \mathbf{b}_{m n}(x) d s(y) d s(x)\right.$.

Each entry is a 4-dimensional, increasingly oscillatory integral as $k \rightarrow \infty$.
Recent research on evaluation of oscillatory integrals is developing new tools - Filon quadrature-type methods and numerical stationary phase and steepest descent methods. See Iserles et al. 2006, Levin 1997, Bruno et al. 2004,2007, Huybrechs et al. 2006, Ganesh, Langdon, Sloan 2007, talks/poster by Kim, Melenk and preprints of Melenk and of Dominguez, Graham, Smyshlyaev.

How are people choosing d_{i} and $\mathbf{b}_{i j}$??

$$
\frac{\partial u}{\partial n}(x) \approx \sum_{i=1}^{M} \sum_{j=1}^{N_{i}} a_{i j} \exp \left(\mathrm{i} k x \cdot d_{i}\right) \mathbf{b}_{i j}(x)
$$

with $a_{i j} \in \mathbb{C}$ the unknown coefficients,
d_{1}, \ldots, d_{N} distinct unit vectors,
$\mathbf{b}_{i j}(x)$ conventional BEM basis functions.
Approach 1. M large - see e.g. work by Trevelyan et al. and cf. talk by Monk

Approach 2. $M=1$.
Approach 3. M small, directions d_{i} carefully chosen to match high frequency solution behaviour.

How are people choosing d_{i} and $\mathbf{b}_{i j}$??

$$
\frac{\partial u}{\partial n}(x) \approx \exp (\mathrm{i} k x \cdot \hat{d}) \sum_{j=1}^{N^{*}} a_{j} \mathbf{b}_{j}(x)
$$

with $\mathbf{b}_{j}(x)$ conventional BEM basis functions.
Approach 2. $M=1$, with d the direction of the incident plane wave.

How are people choosing d_{i} and $\mathbf{b}_{i j}$??

$$
\frac{\partial u}{\partial n}(x) \approx \exp (\mathrm{i} k x \cdot d) \sum_{j=1}^{N^{*}} a_{j} \mathbf{b}_{j}(x)
$$

with $\mathbf{b}_{j}(x)$ conventional BEM basis functions.
Approach 2. $M=1$, with d the direction of the incident plane wave. In other words, we remove oscillation by factoring out the oscillation of the incident wave. A slight variant is to write

$$
\frac{\partial u}{\partial n}(y)=\frac{\partial u^{i}}{\partial n}(y) \times \mu(y)
$$

and then approximate μ by a conventional BEM.

Approach 2. Remove oscillation by factoring out the oscillation of the incident wave, i.e.

$$
\frac{\partial u}{\partial n}(y)=\frac{\partial u^{i}}{\partial n}(y) \times \mu(y) \quad(*)
$$

and then approximate μ by a conventional BEM.
For smooth convex obstacles this should work well: equation $(*)$ holds with $F(y) \approx 2$ on the illuminated side and $F(y) \approx 0$ in the shadow zone (this is the high frequency Kirchhoff or physical optics approximation).
(Fig. from Motamed \& Runborg (2007).)

Rigorous justification needs rigorous asymptotics (Melrose \& Taylor 1985) which predicts on Γ :

- Kirchhoff approximation works on illuminated side, i.e. $\frac{\partial u}{\partial n} \approx 2 \frac{\partial u^{i}}{\partial n}$ (for $u=0$).

- on the shadow side there are creeping rays, with

$$
\frac{\partial u^{\text {creep }}}{\partial n}(x)=A \exp \left(\mathrm{i}\left(k s-C_{0} F(s) k^{1 / 3} s\right)\right) \exp \left(-C_{1} F(s) k^{1 / 3} s\right)
$$

where C_{0} and C_{1} are known positive constants, s is arc-length, and $c_{1} s \leq F(s) \leq c_{2} s$

Approach 2. Remove oscillation by factoring out the oscillation of the incident wave, e.g.

$$
\frac{\partial u}{\partial n}(y)=\frac{\partial u^{i}}{\partial n}(y) \times \mu(y) \quad(*)
$$

and then approximate μ by a conventional BEM.
Dominguez, Graham Smyshlyaev 2007, ignore the deep shadow zone (where field is zero), use a spectral approximation on the illuminated side, + extra spectral approximations in the transition zones of width $k^{-1 / 3}$.

Numerics suggest $N=O(1)$ maintains accuracy as $k \rightarrow \infty$, and Dominguez et al. prove $N=O\left(k^{1 / 9+\epsilon}\right)$ works.

How are people choosing d_{i} and $\mathbf{b}_{i j}$??

$$
\frac{\partial u}{\partial n}(x) \approx \sum_{i=1}^{M} \sum_{j=1}^{N_{i}} a_{i j} \exp \left(\mathrm{i} k x \cdot d_{i}\right) \mathbf{b}_{i j}(x)
$$

with $a_{i j} \in \mathbb{C}$ the unknown coefficients,
d_{1}, \ldots, d_{N} distinct unit vectors,
$\mathbf{b}_{i j}(x)$ conventional BEM basis functions.
Approach 3 (2D so far). M small, directions d_{i} carefully chosen on the basis of the geometrical theory of diffraction to match high frequency solution behaviour.

Rigorous high frequency bounds (C-W \& Langdon 2007) ; where s is distance along γ,

$$
\frac{\partial u}{\partial n}(s)=2 \frac{\partial u^{i}}{\partial n}(s)+\mathrm{e}^{\mathrm{i} k s} v_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} v_{-}(s)
$$

where

$$
k^{-n}\left|v_{+}^{(n)}(s)\right| \leq \begin{cases}C_{n}(k s)^{-1 / 2-n}, & k s \geq 1 \\ C_{n}(k s)^{-\alpha-n}, & 0<k s \leq 1\end{cases}
$$

where $\alpha<1 / 2$ depends on the corner angle.

$$
\frac{\partial u}{\partial n}(s)=2 \frac{\partial u^{i}}{\partial n}(s)+\mathrm{e}^{\mathrm{i} k s} v_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} v_{-}(s)
$$

where

$$
k^{-n}\left|v_{+}^{(n)}(s)\right| \leq \begin{cases}C_{n}(k s)^{-1 / 2-n}, & k s \geq 1 \\ C_{n}(k s)^{-\alpha-n}, & 0<k s \leq 1\end{cases}
$$

where $\alpha<1 / 2$ depends on the corner angle.
Thus approximate

$$
\frac{\partial u}{\partial n}(s) \approx 2 \frac{\partial u^{i}}{\partial n}(s)+\mathrm{e}^{\mathrm{i} k s} V_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} V_{-}(s)
$$

where V_{+}and V_{-}are piecewise polynomials on graded meshes, i.e. linear combinations of standard boundary element basis functions.

$$
k^{-n}\left|v_{+}^{(n)}(s)\right| \leq \begin{cases}C_{n}(k s)^{-1 / 2-n}, & k s \geq 1 \\ C_{n}(k s)^{-\alpha-n}, & 0<k s \leq 1\end{cases}
$$

Thus approximate

$$
\frac{\partial u}{\partial n}(s) \approx 2 \frac{\partial u^{i}}{\partial n}(s)+\mathrm{e}^{\mathrm{i} k s} V_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} V_{-}(s)
$$

where V_{+}and V_{-}are piecewise polynomials on graded meshes.

$$
s=\underset{++t_{m}^{0}=\left(\frac{m}{N}\right)^{q} \lambda+{ }_{+}^{+}+{ }_{+}^{+}+}{+t_{m}=c r^{m}}
$$

Thus approximate

$$
\frac{\partial u}{\partial n}(s) \approx K . O \cdot+\mathrm{e}^{\mathrm{i} k s} V_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} V_{-}(s)
$$

where V_{+}and V_{-}are piecewise polynomials on graded meshes.
Theorem Where $\phi=\frac{\partial u}{\partial n}, \phi_{N}$ is the best L_{2} approximation to ϕ from the approximation space, n is the number of sides, N the degrees of freedom, p the polynomial degree, and L the total arc-length,

$$
k^{-1 / 2}\left\|\phi-\phi_{N}\right\|_{2} \leq C \sup _{x \in D}|u(x)| \frac{[n(1+\log (k L / n))]^{p+3 / 2}}{N^{p+1}}
$$

where C depends (only) on the corner angles and p.

Thus approximate

$$
\frac{\partial u}{\partial n}(s) \approx K . O \cdot+\mathrm{e}^{\mathrm{i} k s} V_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} V_{-}(s)
$$

where V_{+}and V_{-}are piecewise polynomials on graded meshes.
Theorem Where $\phi=\frac{\partial u}{\partial n}, \phi_{N}$ is the best L_{2} approximation to ϕ from the approximation space, n is the number of sides, N the degrees of freedom, p the polynomial degree, and L the total arc-length,

$$
k^{-1 / 2}\left\|\phi-\phi_{N}\right\|_{2} \leq C \sup _{x \in D}|u(x)| \frac{[n(1+\log (k L / n))]^{p+3 / 2}}{N^{p+1}}
$$

where C depends (only) on the corner angles and p.
Use this approximation in a Galerkin method for

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial G(x, y)}{\partial n(x)}+\mathrm{i} \eta G(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma .
$$

Table 1: Relative errors, $k=10$

k	$N(\#$ dof $)$	$\left\\|\phi-\phi_{N}\right\\|_{2} /\\|\phi\\|_{2}$	EOC
10	24	$1.12 \times 10^{+0}$	1.5
	48	4.05×10^{-1}	0.7
	88	2.55×10^{-1}	0.9
	176	1.40×10^{-1}	1.3
	360	5.52×10^{-2}	0.9
	712	3.04×10^{-2}	

Table 2: Relative errors, $k=160$

k	$N($ \#dof $)$	$\left\\|\phi-\phi_{N}\right\\|_{2} /\\|\phi\\|_{2}$	EOC
160	32	$1.04 \times 10^{+0}$	1.3
	56	4.24×10^{-1}	0.5
	120	3.04×10^{-1}	0.6
	240	2.05×10^{-1}	1.5
	472	7.38×10^{-2}	1.0
	944	3.70×10^{-2}	

Fully discrete $h p$-scheme of Langdon \& Melenk with $N=192$

k	Relative L^{2} error in $\frac{\partial u}{\partial n}$	Time (s)
10	1.46×10^{-2}	461
40	1.50×10^{-2}	615
160	1.55×10^{-2}	615
640	1.58×10^{-2}	732
2560	1.73×10^{-2}	844
10240	1.74×10^{-2}	940

Extension to Non-Convex Polygon (with Hewett, Langdon,

 Twigger)D

Can we understand the solution behaviour on the 'non-convex' side Γ_{2} and design an approximation space for $\frac{\partial u}{\partial n}$ on Γ_{2} which needs $O(1)$ degrees of freedom as $k \rightarrow \infty$?

Solution Behaviour: Incident Field

Solution Behaviour: Scattered Field

Solution Behaviour: Total Field

Solution Behaviour on Γ_{2} ?

D

Preliminary Results: $h p$-BEM Based on this Ansastz

k	dof	dof per λ	L^{2} error	Relative L^{2} error
5	320	10.7	$2.09 \mathrm{e}-2$	$1.51 \mathrm{e}-2$
10	320	5.3	$1.07 \mathrm{e}-2$	$1.11 \mathrm{e}-2$
20	320	2.7	$4.60 \mathrm{e}-3$	$6.91 \mathrm{e}-3$
40	320	1.3	$3.13 \mathrm{e}-3$	$6.83 \mathrm{e}-3$

Extension to Transmission Problems - Motivated by Baran Talk

 (Betcke, Hewett, Langdon)

Extension to 3D - Square Plate (C-W, Hewett, Langdon)

$\operatorname{Re}\left[[d u / d n]_{B E M}{ }^{\left.-[d u / d n]_{K A}\right]}, \lambda=0.2, \mathrm{~d}=(3,1,1)\right.$

Summary/Conclusions

We've reviewed recent work on BEM high frequency scattering that:

- Reduces the \# D.O.F. by using oscillatory basis functions, e.g. plane waves \times polynomials
- In many cases uses high frequency asymptotics, at least to deduce the phases/oscillation of components of the field
- Requires novel methods (e.g. numerical stationary phase) to evaluate the oscillatory integrals that arise
- Needs knowledge of rigorous high frequency asymptotics of solution and e.g. norms of integral operators and their inverses to prove complete numerical analysis results

