Liliana Borcea
Computational and Applied Mathematics
Rice University
borcea@caam.rice.edu

Collaborators:
Leila Issa, Computational and Applied Mathematics, Rice.
Chrysoula Tsogka, Mathematics, University of Crete.

Support: ONR: N00014-05-1-0699; N00014-09-1-0290 NSF: DMS-0604008; DMS-0934594, DMS-0907746.

Problem: Determine source Iocation $\vec{x}_{\star}=\left(x_{\star}, 0\right)$ (source crossrange x_{\star} and the range $z_{\mathcal{A}}$ to the array).

- This is the simplest imaging problem. Can be extended to imaging reflectors with active arrays of sources and receivers.

Difficulty: We consider waveguides with fluctuating sound speed. The fluctuations are typically small ($1 \%-3 \%$) but their cumulative long range effect is strong $\rightsquigarrow p\left(t, \vec{x}_{r}\right)$ Ioses coherence.

Goal of talk

- Using mathematical analysis based on modeling the wave speed fluctuations with random processes:

1. Understand how the pressure field received at the array loses coherence \rightsquigarrow how and why widely used imaging methods fail.
2. Show how imaging can still be done with incoherent data.

Mathematical setup. Planar waveguide.

$$
\begin{aligned}
& \frac{0}{\vec{x}_{\star}=\left(x_{\star}, z_{\star}=0\right) \quad z_{\mathcal{A}}} \\
&-\frac{1}{c^{2}(\vec{x})} \frac{\partial^{2} p(t, \vec{x})}{\partial t^{2}}+\Delta p(t, \vec{x})=f(t) \frac{\partial}{\partial z} \delta\left(\vec{x}-\vec{x}_{\star}\right), \\
& p(t, \vec{x}) \equiv 0, \quad t \leq 0 \\
& p(t, \vec{x})=0, \quad x \in(0, X), \quad z \in \mathbb{R} .
\end{aligned}
$$

- The sound speed model is*

$$
\frac{c_{o}^{2}}{c^{2}(\vec{x})}=1+\varepsilon \nu(\vec{x}), \quad \varepsilon \ll 1
$$

$\nu(\vec{x})$ is a bounded, mean zero random process, stationary and decorrelating fast enough in z.
${ }^{*}$ For simplicity $c_{o}=$ constant but $c_{o}(x)$ could be considered. Typical $\varepsilon=1-3 \%$

Step 1: Write the mathematical model of the data recorded at the array: $p\left(t, \vec{x}_{r}\right)$ for $\vec{x}_{r}=\left(r, z_{\mathcal{A}}\right)$ and $r \in \mathcal{A}$.

Unperturbed waveguides $(\varepsilon=0)$

- We have $p(t, \vec{x})=\int \frac{d \omega}{2 \pi} \hat{p}(\omega, \vec{x}) e^{-i \omega t}$ where

$$
\begin{aligned}
& \left(\frac{\omega^{2}}{c_{o}^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right) \widehat{p}(\omega, \vec{x})+\frac{\partial^{2} \widehat{p}(\omega, \vec{x})}{\partial z^{2}}=\widehat{f}(\omega) \delta\left(x-x_{\star}\right) \delta^{\prime}(z) \\
& \widehat{p}(\omega, \vec{x})=0 \text { for } x \in\{0, X\}, \quad \vec{x}=(x, z), \\
& \widehat{p}(\omega, \vec{x})=\text { bounded \& outgoing at } z \rightarrow \pm \infty .
\end{aligned}
$$

- Separation of variables \rightsquigarrow solution in terms of eigenfunctions*

$$
\begin{array}{ll}
\phi_{j}(x)=\sqrt{\frac{2}{X}} \sin \left(\frac{\pi j x}{X}\right) \text { for } \quad j=1,2, \ldots & \text { and eigenvalues } \\
\mu_{j}=\left(\frac{\omega}{c_{o}}\right)^{2}-\left(\frac{\pi j}{X}\right)^{2}=\left(\frac{2 \pi}{\lambda}\right)^{2}\left[1-\left(\frac{j \lambda}{2 X}\right)^{2}\right], & \frac{\omega}{c_{o}}=\frac{2 \pi}{\lambda} .
\end{array}
$$

Data model at receiver $\vec{x}_{r}=\left(r, z_{\mathcal{A}}\right)$ in unpert. waveguide

$$
\widehat{p}\left(\omega, \vec{x}_{r}\right)=\frac{\widehat{f}(\omega)}{2}[\sum_{j=1}^{N(\omega)} \phi_{j}\left(x_{\star}\right) \phi_{j}(r) e^{i \beta_{j}(\omega) z_{\mathcal{A}}}+\underbrace{\left.\sum_{j>N(\omega)} \phi_{j}\left(x_{\star}\right) \phi_{j}(r) e^{-\beta_{j}(\omega) z_{\mathcal{A}}}\right]}_{\text {evanescent }}
$$

with modal wavenumbers

$$
\beta_{j}(\omega)= \begin{cases}\frac{2 \pi}{\lambda} \sqrt{1-\left(\frac{j \lambda}{2 X}\right)^{2}}, & j=1, \ldots N(\omega)=\left\lfloor\frac{2 X}{\lambda}\right\rfloor \\ \frac{2 \pi}{\lambda} \sqrt{\left(\frac{j \lambda}{2 X}\right)^{2}-1}, & j>N(\omega) .\end{cases}
$$

Numerics*

*Setup: $c_{o}=1.5 \mathrm{~km}$, pulse bandwidth $1.5-4.5 \mathrm{kHz}\left(\lambda_{c}=0.5 \mathrm{~m}\right)$. The waveguide is $20 \lambda_{c}$ deep and $z_{\mathcal{A}}=494 \lambda_{c}$.

Model in random waveguides

$$
\left[\frac{\omega^{2}}{c_{o}^{2}}+\frac{\partial^{2}}{\partial x^{2}}+\varepsilon \nu(\vec{x}) \frac{\omega^{2}}{c_{O}^{2}}\right] \widehat{p}(\omega, \vec{x})+\frac{\partial^{2} \widehat{p}(\omega, \vec{x})}{\partial z^{2}}=\widehat{f}(\omega) \delta\left(x-x_{\star}\right) \delta^{\prime}(z)
$$

- For each z we can expand $\hat{p}(\omega, \vec{x})$ in orthonormal basis $\left\{\phi_{j}(x)\right\}_{j \geq 1}$

$$
\widehat{p}(\omega, \vec{x})=\sum_{j=1}^{N(\omega)} \phi_{j}(x)\left[a_{j}(\omega, z) e^{i \beta_{j}(\omega) z}+b_{j}(\omega, z) e^{-i \beta_{j}(\omega) z}\right]+\sum_{j>N(\omega)} \phi_{j}(x) \hat{P}_{j}^{e}(\omega, z)
$$

- Here a_{j}, b_{j} and \hat{P}_{j}^{e} satisfy a coupled system* of stochastic ODE's driven by stationary random processes

$$
C_{j, l}(z)=\int_{0}^{X} d x \nu(\vec{x}) \phi_{j}(x) \phi_{l}(x), \quad j, l=1,2, \ldots \quad \vec{x}=(x, z) .
$$

$$
\begin{gathered}
\left(\partial_{z}^{2}+\beta_{j}^{2}\right)\left(a_{j} e^{i \beta_{j} z}+b_{j} e^{-i \beta_{j} z}\right)+\varepsilon\left(\frac{\omega}{c_{o}}\right)^{2} \sum_{l=1}^{N} C_{j l}\left(a_{l} e^{i \beta_{l} z}+b_{l} e^{-i \beta_{l} z}\right) \\
+\varepsilon\left(\frac{\omega}{c_{o}}\right)^{2} \sum_{l>N} C_{j l} \widehat{P}_{l}^{\varepsilon}=0, \quad j=1, \ldots N \\
\left(\partial_{z}^{2}-\beta_{j}^{2}\right) \widehat{P}_{j}^{\varepsilon}+\varepsilon\left(\frac{\omega}{c_{o}}\right)^{2}\left[\sum_{l=1}^{N} C_{j l}\left(a_{l} e^{i \beta_{l} z}+b_{l} e^{-i \beta_{l} z}\right)+\sum_{l>N} C_{j l} \widehat{P}_{l}^{\varepsilon}\right]=0
\end{gathered}
$$

- Boundary cond: $a_{j}(\omega, z=0)$ and $\widehat{P}_{j}^{e}(\omega, z=0)$ given by source excitation. As $z \rightarrow \infty$, the field is outgoing and $\widehat{P}_{j}^{\varepsilon}(\omega, z) \rightarrow 0$.
- To get well posed problem ask*: $\left(\partial_{z} a_{j}\right) e^{i \beta_{j} z}+\left(\partial_{z} b_{j}\right) e^{-i \beta_{j} z}=0$.
- Eliminating the evanescent $\hat{P}_{j}^{e}(\omega, z) \rightsquigarrow$ closed first order system for $\left\{a_{j}(\omega, z), b_{j}(\omega, z)\right\}_{j=1, \ldots N(\omega)}$ driven by random $\left\{C_{j l}(z)\right\}$.

[^0]
Model in random waveguides

- The stochastic ODE system is studied with the asymptotic $(\varepsilon \rightarrow 0)$ limit tools of Khasminskii, Blakenship, Papanicolaou, Stroock, Varadhan.
- For ranges $\ll O\left(\varepsilon^{-2}\right)$ the fluctuations are negigible.
- The fluctuations play a role at ranges $\sim O\left(\varepsilon^{-2}\right)$
- As $\varepsilon \rightarrow 0$, negligible coupling between a_{j} and b_{j} for smooth z-autocorrelation of fluctuations \rightsquigarrow forward scattering approx*.
\rightsquigarrow Closed first order system of stochastic ODE's for $\left\{a_{j}\right\}_{j=1, \ldots N(\omega)}$

[^1]
The random transfer matrix (Green's function) $T_{j l}^{\varepsilon}(\omega, z)$

$$
a_{j}\left(\omega, z / \varepsilon^{2}\right) \approx \sum_{l=1}^{N(\omega)} T_{j l}^{\varepsilon}(\omega, z) a_{l}(\omega, 0), \quad a_{l}(\omega, 0)=\frac{\widehat{f}(\omega)}{2} \phi_{l}\left(x_{\star}\right)
$$

where

$$
\begin{aligned}
\frac{\partial}{\partial z} T^{\varepsilon}(\omega, z) & =\left[\frac{1}{\varepsilon} \mathbb{P}\left(\omega, \frac{z}{\varepsilon^{2}}\right)+\mathbb{E}\left(\omega, \frac{z}{\varepsilon^{2}}\right)+\ldots\right] T^{\varepsilon}(\omega, z), \quad z>0 \\
T^{\varepsilon}(\omega, 0) & =I
\end{aligned}
$$

- Leading coupling: $\mathbb{P}_{j l}(\omega, z)=\frac{i}{2}\left(\frac{\omega}{c_{o}}\right)^{2} \frac{C_{j l}(z)}{\beta_{j}(\omega)} e^{i\left[\beta_{l}(\omega)-\beta_{j}(\omega)\right] z}$
- The second order coupling is via the evanescent modes

$$
\mathbb{E}_{j l}(\omega, z)=\frac{i}{4}\left(\frac{\omega}{c_{o}}\right)^{4} \sum_{l^{\prime}>N} \int_{-\infty}^{\infty} d s \frac{C_{j l^{\prime}}(z) C_{l l^{\prime}}(z+s)}{\beta_{l^{\prime}}(\omega) \beta_{j}(\omega)} e^{i \beta_{l}(\omega)(z+s)-i \beta_{j}(\omega) z-\beta_{l^{\prime}}(\omega)|s|}
$$

$p\left(t, r, z_{\mathcal{A}}=Z / \varepsilon^{2}\right) \approx \int \frac{d \omega}{2 \pi} \frac{\widehat{f}(\omega)}{2} \sum_{j, l=1}^{N(\omega)} T_{j l}^{\varepsilon}(\omega, Z) \phi_{l}\left(x_{\star}\right) \phi_{j}(r) e^{i \beta_{j}(\omega) z_{\mathcal{A}}-i \omega t}$

$$
\varepsilon=0 \%
$$

$$
\varepsilon=1 \%
$$

$$
\varepsilon=3 \%
$$

${ }^{*}$ Speed fluctuates about $c_{o}=1.5 \mathrm{~km}$, with correlation length $=\lambda_{c}=0.5 \mathrm{~m}$. Pulse bandwidth $1.5-4.5 \mathrm{kHz}$. The waveguide is $20 \lambda_{c}$ deep and $z_{\mathcal{A}}=494 \lambda_{c}$.

Statistics of the array data

$p\left(t, r, z_{\mathcal{A}}=Z / \varepsilon^{2}\right) \approx \int \frac{d \omega}{2 \pi} \frac{\widehat{f}(\omega)}{2} \sum_{j, l=1}^{N(\omega)} T_{j l}^{\varepsilon}(\omega, Z) \phi_{l}\left(x_{\star}\right) \phi_{j}(r) e^{i \beta_{j}(\omega) z_{\mathcal{A}}-i \omega t}$

- As $\varepsilon \rightarrow 0, T^{\varepsilon}(\omega, z)$ converges in distribution* to a Markov diffusion process with generator computed explicitly in terms of correlation function of fluctuations.
- All statistical moments of $T^{\varepsilon}(\omega, z)$ can be computed approximately for $\varepsilon \ll 1$.

[^2]Step 2: Analyze coherent part of array data $E\left\{p\left(t, \vec{x}_{r}\right)\right\}$.

This is what imaging methods rely on.
$E\left\{p\left(t, r, z_{\mathcal{A}}\right)\right\} \approx \int \frac{d \omega}{2 \pi} \frac{\widehat{f}(\omega)}{2} \sum_{j, l=1}^{N(\omega)} E\left\{T_{j l}^{\varepsilon}(\omega, Z)\right\} \phi_{l}\left(x_{\star}\right) \phi_{j}(r) e^{i \beta_{j}(\omega) z_{\mathcal{A}}-i \omega t}$
where $z_{\mathcal{A}}=Z / \varepsilon^{2}$ and $\lim _{\varepsilon \rightarrow 0} E\left\{T_{j l}^{\varepsilon}(\omega, Z)\right\}=\delta_{j l} e^{-\mathcal{D}_{j}(\omega) Z+i \mathcal{O}_{j}(\omega) Z}$.

- $\mathcal{D}_{j}(\omega)>0$ (power spectral densities of fluctuations) is due entirely to direct coupling of propagating modes.
- $\mathcal{O}_{j}(\omega)$ is also caused by coupling via evanescent modes (they carry negligible energy but cause dispersion).
- The coherent field decays exponentially with range.

The mean intensity and frequency decorrelation

- To compute intensity $E\left\{p^{2}\left(t, r, z_{\mathcal{A}}=Z / \varepsilon^{2}\right)\right\}$ we need second moments $E\left\{T_{j l}^{\varepsilon}(\omega, Z) \overline{T_{j^{\prime} l^{\prime}}^{\varepsilon}}\left(\omega^{\prime}, Z\right)\right\}$.
- We have frequency decorrelation for $\left|\omega-\omega^{\prime}\right| \gg O\left(\varepsilon^{2}\right)$

$$
E\left\{T_{j l}^{\varepsilon}(\omega, Z) \overline{T_{j^{\prime} l^{\prime}}^{\varepsilon}}\left(\omega^{\prime}, Z\right)\right\} \approx E\left\{T_{j l}^{\varepsilon}(\omega, Z)\right\} E\left\{\overline{T_{j^{\prime} l^{\prime}}^{\varepsilon}}\left(\omega^{\prime}, Z\right)\right\} .
$$

- For nearby frequencies $\omega^{\prime}=\omega-\varepsilon^{2} h$,

$$
\begin{aligned}
\int \frac{d h}{2 \pi} E\{ & \left.T_{j l}^{\varepsilon}(\omega, Z) \overline{T_{j^{\prime \prime} l^{\prime}}^{\varepsilon}}\left(\omega-\varepsilon^{2} h, Z\right)\right\} e^{i\left[\beta_{j}(\omega)-\beta_{j^{\prime}}\left(\omega-\varepsilon^{2} h\right)\right] z_{\mathcal{A}}-i h t} \approx \\
& \delta_{j j^{\prime}} \delta_{l l^{\prime}} \mathcal{W}_{j}^{(l)}(\omega, t, Z)+\left(1-\delta_{j j^{\prime}}\right) \delta_{j l} \delta_{j^{\prime} l^{\prime}} \text { exp. decay in } Z .
\end{aligned}
$$

The loss of coherence

- The Wigner transform $\mathcal{W}_{j}^{(l)}(\omega, t, Z)$ dominates at long ranges and the intensity of the field recorded at $\vec{x}_{r}=\left(r, z_{\mathcal{A}}=Z / \varepsilon^{2}\right)$ is

$$
E\left\{p^{2}\left(t, r, z_{\mathcal{A}}\right)\right\} \approx \varepsilon^{2} \int \frac{d \omega}{2 \pi} \frac{|\widehat{f}(\omega)|^{2}}{4} \sum_{j, l=1}^{N(\omega)} \mathcal{W}_{j}^{(l)}(\omega, t, Z) \phi_{l}^{2}\left(x_{\star}\right) \phi_{j}^{2}(r)
$$

- In spite of the ε^{2} factor, $E\left\{p^{2}\right\} \gg|E\{p\}|^{2}$ at long ranges, because the latter decays exponentially.

The incoherent field $p-E\{p\}$ becomes dominant at long ranges.

Step 3: Analyze how typical imaging methods fail.

Source Iocalization using "time reversal"

- We evaluate the imaging function at points $\vec{x}^{s}=\left(x^{s}, z^{s}\right)$ in a search domain and estimate \vec{x}_{\star} as the peak of $\mathcal{I}^{\text {TR }}$.

Expected to focus at \vec{x}_{\star} by time reversibility of the wave equation, at least for large enough apertures and if \widehat{G}_{o} is a good enough approximation of the backpropagation in the real medium.

$$
\mathcal{I}^{\mathrm{MF}}\left(\vec{x}^{s}\right)=\int d \omega\left|\int_{\mathcal{A}} d r \overline{\hat{p}}\left(\omega, \vec{x}_{r}\right) \widehat{G}_{0}\left(\omega, \vec{x}_{r} ; \vec{x}^{s}\right)\right|^{2}
$$

- This is the conventional (Bartlett) MF function. It is known to be more robust than the previous method.
- Variants of MF that use additional data filtering techniques are widely used and have slightly better performance in practice.
- They deal well with additive noise, but rely on coherent data.
\rightsquigarrow sooner or later they will fail similarly at long ranges.

- The imaging functions are computed at 70% aperture and frequency band $2 \pm 0.375 \mathrm{kHz}$. The source is in the center.

Next: Let us see what happens when the fluctuations play a role.

Mean of $\mathcal{I}^{\text {TR }}\left(\vec{x}^{s}\right)$ focuses but method statistically unstable

$$
\left|E\left\{\mathcal{I}^{\mathrm{TR}}\left(\vec{x}_{\star}\right)\right\}\right| \leq C e^{-\mathcal{D}_{1}\left(\omega_{c}\right) Z} .
$$

The relative standard deviation* grows exponentially with range.

$$
\frac{\sqrt{E\left\{\left|\mathcal{I}^{\operatorname{TR}}\left(\vec{x}_{\star}\right)\right|^{2}\right\}-\left|E\left\{\mathcal{I}^{\operatorname{TR}}\left(\vec{x}_{\star}\right)\right\}\right|^{2}}}{\left|E\left\{\mathcal{I}^{\operatorname{TR}}\left(\vec{x}_{\star}\right)\right\}\right|} \geq \frac{\varepsilon \sqrt{\omega_{c} / B}}{\sqrt{N\left(\omega_{c}\right)}} e^{\mathcal{D}_{1}\left(\omega_{c}\right) Z} \underbrace{\mathcal{F}\left(\omega_{c}, Z, x_{\star}\right)}_{\text {algebraic } \mathrm{in} Z}
$$

[^3]
Numerical results

Full aperture. Left: $\varepsilon=2 \%$, bandwidth: $2 \pm 0.375 \mathrm{kHz}$. Middle: $\varepsilon=2 \%$ and full bandwidth. Right: $\varepsilon=3 \%$ and full bandwidth.

- Even though the statistical mean focuses in theory, we cannot observe it due to the statistical instability.

Matched Field

$$
E\left\{\mathcal{I}^{\mathrm{MF}}\left(\vec{x}^{s}\right)\right\}=\int d \omega E\left\{\left|\int_{\mathcal{A}} d r \overline{\hat{p}}\left(\omega, \vec{x}_{r}\right) \widehat{G}_{0}\left(\omega, \vec{x}_{r} ; \vec{x}^{s}\right)\right|^{2}\right\}
$$

- Using the data model and the second moment formula,

$$
E\left\{\overline{\widehat{p}\left(\omega, \vec{x}_{r}\right)} \hat{p}\left(\omega, \vec{x}_{r^{\prime}}\right\} \approx \frac{|\widehat{f}(\omega)|^{2}}{4} \sum_{j, l=1}^{N(\omega)} \phi_{l}^{2}\left(x_{\star}\right) \phi_{j}(r) \phi_{j}\left(r^{\prime}\right) \int d t \mathcal{W}_{j}^{(l)}(\omega, t, Z)\right.
$$

- It is difficult to estimate the source range $z_{\mathcal{A}}=Z / \varepsilon^{2}$ from $\int d t \mathcal{W}_{j}^{(l)}(\omega, t, Z) \rightsquigarrow$ MF will not focus.

$$
\int d t \mathcal{W}_{j}^{(l)}(\omega, t, Z) \approx \frac{\beta_{l}(\omega)}{\beta_{j}(\omega)}\left\{e^{\Gamma(\omega) Z}\right\}_{j l}
$$

- Here $\Gamma(\omega)=$ negative semidefinite matrix

$$
\Gamma_{j j}=-\sum_{j \neq l} \Gamma_{j l}, \quad \Gamma_{j l}=\frac{\omega^{4} / c_{o}^{4}}{4 \beta_{j} \beta_{l}} \int_{-\infty}^{\infty} \cos \left[\left(\beta_{j}-\beta_{l}\right) z\right] E\left\{C_{j l}(0) C_{j l}(z)\right\} d z
$$

- As Z grows columns of $e^{\Gamma(\omega) Z} \rightarrow \operatorname{span}\left\{(1, \ldots 1)^{T}\right\}=\operatorname{null}[\Gamma(\omega)]$

$$
\left|\left\{e^{\ulcorner(\omega) Z}\right\}_{j l}-\frac{1}{N(\omega)}\right| \leq O\left(e^{-Z / L_{e q}}\right), \quad-1 / L_{e q}=2 \text {-nd eigenval of } \Gamma .
$$

Step 4: Imaging at long ranges, where data is incoherent.

- Consider

$$
\mathcal{F}\left(\omega, t, r, r^{\prime}\right)=\int \frac{d h}{2 \pi} \widehat{p}\left(\omega, \vec{x}_{r}\right) \overline{\widehat{p}\left(\omega-\varepsilon^{2} h, \vec{x}_{r^{\prime}}\right)} e^{-i h t}, \quad r, r^{\prime} \in \mathcal{A}
$$

- Due to frequency decorrelation it self-averages over bandwidth

$$
\begin{aligned}
\int_{\left|\omega-\omega_{c}\right| \leq B} d \omega \mathcal{F}\left(\omega, t, r, r^{\prime}\right) & \approx \int d \omega \int \frac{d h}{2 \pi} E\left\{\widehat{p}\left(\omega, \vec{x}_{r}\right) \overline{\widehat{p}\left(\omega-\varepsilon^{2} h, \vec{x}_{r}^{\prime}\right)}\right\} e^{-i h t} \\
& \sim\|f\|^{2} \sum_{j, l=1}^{N\left(\omega_{c}\right)} \phi_{l}^{2}\left(x_{\star}\right) \phi_{j}(r) \phi_{j}\left(r^{\prime}\right) \mathcal{W}_{j}^{(l)}\left(\omega_{c}, t, Z\right)
\end{aligned}
$$

- Here we assumed a bandwidth $O\left(\varepsilon^{2}\right) \ll B \ll O(1)$.
- We have $\mathcal{W}_{j}^{(l)}(\omega, t, Z)=\frac{\beta_{l}(\omega)}{\beta_{j}(\omega)} W_{j}^{(l)}(\omega, t, Z)$ where

$$
\left[\partial_{Z}+\beta_{j}^{\prime}(\omega) \partial_{t}\right] W_{j}^{(l)}(\omega, t, Z)=\sum_{n \neq j} \Gamma_{j n}(\omega)\left[W_{n}^{(l)}(\omega, t, Z)-W_{j}^{(l)}(\omega, t, Z)\right]
$$

for $Z>0$ with initial condition

$$
W_{j}^{(l)}(\omega, t, Z=0)=\delta(t) \delta_{j l} .
$$

- The source range $z_{\mathcal{A}}=Z / \varepsilon^{2}$ is encoded in the t peak of $\mathcal{W}_{j}^{(l)}(\omega, t, Z)$, i.e. in the cross-correlations $\int d \omega \mathcal{F}\left(\omega, t, r, r^{\prime}\right)$.
- We must estimate the transport speed. It differs from $\beta_{j}^{\prime}(\omega)$.

Range estimation

- Given $p\left(t, \vec{x}_{r}\right)$ at the receivers, compute the cross-correlations

$$
\int_{\left|\omega-\omega_{c}\right| \leq B} d \omega \mathcal{F}\left(\omega, t, r, r^{\prime}\right)=\int_{\left|\omega-\omega_{c}\right| \leq B} d \omega \int \frac{d h}{2 \pi} \widehat{p}\left(\omega, \vec{x}_{r}\right) \overline{\hat{p}\left(\omega-\varepsilon^{2} h, \vec{x}_{r}^{\prime}\right)} e^{-i h t}
$$

- Now project on the modes and backpropagate approximately

$$
\mathcal{R}(\zeta, j)=\int_{\mathcal{A}} d r \phi_{j}(r) \int_{\mathcal{A}} d r^{\prime} \phi_{j}\left(r^{\prime}\right) \int_{\left|\omega-\omega_{c}\right| \leq B} d \omega \mathcal{F}\left(\omega, t=\beta_{j}^{\prime}\left(\omega_{c}\right) \zeta, r, r^{\prime}\right)
$$

- This peaks at $\zeta=\zeta_{j} \neq Z$!
- We estimate the range Z by comparing $\mathcal{R}(\zeta, j)$ with its theoretical model $\mathcal{R}^{M}\left(\zeta, j ; Z^{s}\right)$, at source search range Z^{s}.

Range estimation

- Estimate Z by minimizing over Z^{s}

$$
\mathbb{O}\left(Z^{s}\right)=\sum_{j \in \mathcal{S}} \int d \zeta\left|\frac{\mathcal{R}(\zeta, j)}{\max _{\zeta^{\prime}} \mathcal{R}\left(\zeta^{\prime}, j\right)}-\frac{\mathcal{R}^{M}\left(\zeta, j ; Z^{s}\right)}{\max _{\zeta^{\prime}} \mathcal{R}^{M}\left(\zeta^{\prime}, j ; Z^{s}\right)}\right|^{2}
$$

- Computing $\mathcal{R}^{M}\left(\zeta^{\prime}, j ; Z^{s}\right)$ requires correlation function of the fluctuations. If we don't know it \rightsquigarrow estimate it using a model
- We have used $E\left\{\nu(\vec{x}) \nu\left(\vec{x}^{\prime}\right)\right\}=\sigma^{s} \mathcal{R}\left(\frac{\vec{x}-\vec{x}^{\prime}}{\ell^{s}}\right)$.
- We found that the range estimation is surprisingly robust with respect to the uncertainty in the above model.

Explanation via numerical simulations

$\varepsilon=3 \%$, central frequency 2.09 kHz and bandwidth 0.375 kHz .
Top row: Left: $\mathcal{R}(\zeta, j)$. Right: $\mathcal{R}^{M}\left(\zeta, j ; Z^{\star}, \sigma^{\star}, \ell^{\star}\right)$.
Bottom row: $\mathcal{R}^{M}\left(\zeta, j ; Z^{s}, \sigma^{s}, \ell^{s}\right)$ for: Left: $\frac{Z^{s}-Z^{\star}}{\varepsilon^{2}}=-20 \lambda_{c}$. Middle: $\ell^{s}=\ell^{\star} / 2$. Right: $\sigma^{s}=1.34 \sigma^{\star}$.

Estimation results. Full aperture, $\varepsilon=2 \%$, central

 frequency 2.69 kHz and bandwidth 0.375 kHz

MF

Estimation results. Full aperture, $\varepsilon=3 \%$, central frequency 2.09 kHz and bandwidth 0.375 kHz

Estimation results. 40\% aperture, $\varepsilon=2 \%$, central frequency 2.09 kHz and bandwidth 0.375 kHz

Cross range estimation

- We compare

$$
\mathcal{X}(j)=\int \frac{d \omega}{2 \pi} \widehat{P}_{j}\left(\omega, z_{\mathcal{A}}\right) \widehat{\widehat{P}}_{j}\left(\omega, z_{\mathcal{A}}\right), \quad \widehat{P}_{j}\left(\omega, z_{\mathcal{A}}\right)=\int_{\mathcal{A}} d r \widehat{p}\left(\omega, r, z_{\mathcal{A}}\right) \phi_{j}(r)
$$

with its model

$$
\mathcal{X}^{M}\left(j ; x^{s}\right) \sim\left\|f_{B}\right\|^{2} \sum_{q, l=1}^{N\left(\omega_{c}\right)} \mathcal{M}_{j q}^{2} \frac{\beta_{l}\left(\omega_{c}\right)}{\beta_{q}\left(\omega_{c}\right)} \phi_{l}^{2}\left(x^{s}\right)\left\{e^{\Gamma^{(c)}\left(\omega_{c}\right) Z^{\star}}\right\}_{q l}
$$

for a source at $\left(x^{s}, Z^{\star}\right)$.

- We estimate the source cross-range by minimizing the misfit.

$$
\mathbb{O}\left(x^{s}\right)=\sum_{j \in \mathcal{S}}\left|\frac{\mathcal{X}(j)}{\langle\mathcal{X}(\cdot)>}-\frac{\mathcal{X}^{M}\left(j ; x^{s}\right)}{<\mathcal{X}^{M}\left(\cdot, x^{s}\right)>}\right|^{2}
$$

where

$$
<\mathcal{X}(\cdot)>=\frac{1}{|\mathcal{S}|} \sum_{j \in \mathcal{S}} \mathcal{X}(j), \quad<\mathcal{X}^{M}\left(\cdot ; x^{s}\right)>=\frac{1}{|\mathcal{S}|} \sum_{j \in \mathcal{S}} \mathcal{X}^{M}\left(j ; x^{s}\right)
$$

Explanation

$\mathcal{X}^{M}\left(j ; x^{s}\right)$ for $x^{s}=5 \lambda_{c}$ and $10 \lambda_{c}$, for $\varepsilon=2 \%, \omega_{c} /(2 \pi)=2.69 \mathrm{kHz}$ and 0.375 kHz bandwidth.

Explanation

$\mathcal{X}^{M}\left(j ; x^{s}\right)$ for $x^{s}=5 \lambda_{c}$ and full aperture.
Left: $\varepsilon=2 \%$, for $\omega_{c} /(2 \pi)=2.09 \mathrm{kHz}, 2.69 \mathrm{kHz}$ and 3.13 kHz , respectively.

Right: $\omega_{c} /(2 \pi)=2.69 \mathrm{kHz}$ and $\varepsilon=2 \%$ and 3%. The bandwidth is 0.375 kHz . At 3% there is no cross-range information.

Full aperture cross-range estimation results at $\epsilon=2 \%$, and bandwidth 0.375 kHz . Left: central frequency 2.69 kHz , middle: 2.99 kHz and right: 3.1 .3 kHz

Partial aperture effects

$\mathcal{X}^{M}\left(j ; x^{s}\right)$ for $x^{s}=5 \lambda_{c}$ and $10 \lambda_{c}$, for $\varepsilon=2 \%, \omega_{c} /(2 \pi)=2.69 \mathrm{kHz}$ and 0.375 kHz bandwidth. Top: full aperture $\mathcal{A}=\left[0,20 \lambda_{c}\right]$. Bottom: $\mathcal{A}=\left[0,12 \lambda_{c}\right]$ and $\mathcal{A}=\left[0,4 \lambda_{c}\right]$.

Cross-range estimation results. Partial aperture

$\varepsilon=2 \%, \omega_{c} /(2 \pi)=2.69 \mathrm{kHz}$ and bandwidth 0.375 KHz .
From left: full aperture $\mathcal{A}=\left[0,20 \lambda_{c}\right], \mathcal{A}=\left[0,12 \lambda_{c}\right], \mathcal{A}=$ $\left[0,8 \lambda_{c}\right], \mathcal{A}=\left[0,4 \lambda_{c}\right]$.

[^0]: *Kohler, Papanicolaou-1977; Garnier, Papanicolaou - 2007

[^1]: *Kohler, Papanicolaou-1977

[^2]: *Kohler, Papanicolaou - 1977.

[^3]: *The frequency band is $\left|\omega-\omega_{c}\right| \leq B$.

