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Abstract
We consider the problem of reconstructing a function (defined on some bounded do-

main) to high accuracy from a finite number of its coefficients with respect to some

orthogonal basis. Straightforward expansion in this basis may converge slowly. Yet

it is always possible to reconstruct the function in another basis. Such reconstruction

technique is stable, and the resultant approximation near-optimal.

A simple example of this approach is the accurate reconstruction of an analytic,

nonperiodic function from its Fourier coefficients, with numerous applications including

image and signal processing. The Fourier series of such a function converges slowly.

Nonetheless, by reconstructing in a polynomial basis, we obtain exponential conver-

gence in terms of n (the polynomial degree), or root exponential convergence in m

(the number of Fourier coefficients). The procedure can be implemented in O (mn)

operations.

A general reconstruction theorem
Let {ψj}

∞
j=1 be an orthonormal basis for the Hilbert space H(Ω) of real-

valued functions (the sampling basis). Suppose further that the first m

coefficients of a function f ∈ H(Ω) with respect to this basis are known:

f̂j = 〈f, ψj〉 , j = 1, . . . ,m.

Direct approximation of f via the orthogonal projection Pm : H(Ω) →

Sm = span{ψ1, . . . , ψm} may converge slowly. Instead, we seek to recover

f in the reconstruction basis {φj}
∞
j=1.

Let Tn = span{φ1, . . . , φn} and Qn : H(Ω) → Tn be the orthogonal

projection. Our approximation fn ∈ Tn to f is defined by the equations

am(fn, g) = am(f, g), ∀g ∈ Tn,

where am : Tn × Tn → R is the bilinear form

am(g, h) = 〈Pmg,Pmh〉 , ∀g, h ∈ H(Ω).

The main result is as follows:

Theorem 1.For every n ∈ N there exists an M such that the approxi-

mation fn exists and is unique for all m ≥ M , and satisfies the stability

estimate ‖fn‖ ≤ (1 − C2
n,m)−1‖f‖. Furthermore,

‖f − fn‖ ≤ Kn,m‖f −Qnf‖, Kn,m =

√

1 +
C2
n,m

(1 − C2
n,m)2

,

where, for fixed n, the constant Cn,m → 0 as m → ∞, and is given ex-

plicitly by Cn,m = ‖(I − Pm)|Tn
‖. In particular, the parameter M is the

least value of m such that Cn,m < 1.

We conclude:

•Reconstruction is always possible, regardless of the two bases.

•For sufficiently large m, fn is quasi-optimal: the error ‖f − fn‖ is

bounded by a constant multiple of infg∈Tn
‖f − g‖.

•As m → ∞, fn → Qnf = argming∈Tn

‖f − g‖. Hence, fn is asymptoti-

cally optimal.

Computing fn

The equations for fn can be interpreted as the normal equations of a

least squares problem. If fn =
∑n

j=1αjφj, α = (α1, . . . , αn)
⊤ ∈ R

n and

f̂ = (f̂1, . . . , f̂m)⊤, then U⊤Uα = f̂ , where U is the m × n matrix with

(j, k)th entry 〈φk, ψj〉.

These equations are well conditioned:

Lemma 1. For n ∈ N and m ≥ M the condition number κ(U ∗U) ≤

(1 − C2
n,m)−1. In particular, for fixed n, κ(U ∗U) → 1 as m→ ∞.

As a direct consequence, fn can be computed in only O (mn) operations

using, for example, conjugate gradients.

Guaranteed recovery

Naturally, to implement this method, we require conditions for guaran-

teed recovery. In other words, we must estimate the quantity:

Φ(n; θ) = min {m ∈ N : Cn,m ≤ θ} , θ ∈ (0, 1).

By definition, Φ(n; θ) is the least m such that ‖f−fn‖ ≤ c(θ) infg∈Tn
‖f−

g‖, where c(θ) =
√

1 + θ(1 − θ)−2. In other words, this is the least m

required for quasi-optimal recovery with constant c(θ).

The function Φ(n; θ) depends only on the sampling and reconstruc-

tion bases. Estimates (analytical and numerical) are determined on a

case-by-case basis.

Reconstruction from Fourier coefficients
Suppose that f : [−1, 1] → R is analytic and nonperiodic. In many

applications we may only know the first m Fourier coefficients of f

f̂j =

∫ 1

−1

f(x)e−ijπx dx, j = −
m

2
, . . . ,

m

2
.

We wish to recover f to high accuracy. The truncated Fourier sum con-

verges slowly (in the L2 norm), and suffers from the well-known Gibbs

phenomenon. We now seek to reconstruct f in the Legendre polynomial

basis φj(x) =
√

j + 1
2Pj(x), j = 0, . . . , n− 1.

By Theorem 1, the approximation fn converges exponentially fast in

n, provided m ≥ Φ(n; θ). It is therefore vital to estimate Φ(n; θ).

Estimates for Φ(n; θ)

For these bases, we have the following analytical bounds for Φ(n; θ):

Theorem 2.The function Φ(n; θ) satisfies

Φ(n; θ) ≤ 1 +
4(π − 2)

π2θ
n2, ∀n ∈ N.

In addition,

n−2Φ(n; θ) ≤
4

π2θ
+ O

(

n−2
)

, n→ ∞.

We conclude that m = O
(

n2
)

for quasi-optimal recovery. Hence, root

exponential convergence of fn in terms of m.

In fact, the bounds in this theorem are reasonably accurate:
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Numerical examples

As a result, we typically use m = 0.4n2 in computations:
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Error in approximating f(x) = e−x cos 4x by fn(x). Left: log error log
10
‖f − fn‖∞

(black) and log10 ‖f − fn‖ (blue) against n. Right: log error against m = 0.4n2.

Using only n = 20 and m = 200, we obtain 14 significant digits for this

function.

Naturally, this technique can also be extended to piecewise analytic

functions by reconstructing in a piecewise polynomial basis:
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Error in approximating f (left) by fn. Right: pointwise error log10 |f(x) − fn(x)| for

−1 ≤ x ≤ 1 and n = 8, 16, 24, 32.

Here, despite the sharp peak at x = −1
2, the parameters n = 32, m = 410

give 14 digits of accuracy.

Open problems
•Chebyshev polynomials: these are more convenient than Legendre

polynomials. However, since they are not orthogonal on L2(−1, 1), a

different implementation is needed.

•Higher dimensions: Theorem 1 holds for any two bases and any do-

main Ω. An obvious, and simple, extension is to the cube [−1, 1]d, but

there are many other possibilities.


