Results on anisotropic inverse boundary value problems

Suppose that $\tilde{M} \subset \mathbb{R} \times M$ and $\tilde{g}=a(t, x)\left(\pm d t^{2}+g(x)\right)$ where the conformal factor a is strictly positive. Consider the Cauchy data

$$
\mathcal{C}:=\left\{\left(\left.u\right|_{\partial \tilde{M}},\left.\partial_{\nu} u\right|_{\partial \tilde{M}}\right) ; \Delta_{\tilde{g}} u=0 \text { in } \tilde{M}\right\} .
$$

1. If $a=1$ and $\tilde{M}=\mathbb{R} \times M$, then \mathcal{C} determines (M, g) uniquely.

- Hyperbolic case [Belishev-Kurylev'92].
- Elliptic case [Dos Santos Ferreira-Kurylev-Lassas-Salo'16] via a reduction to the hyperbolic case.
- Time-domain Maxwell [Kurylev-Lassas’06].

2. If (M, g) is simple, then \mathcal{C} and (M, g) determine a uniquely.

- Elliptic case [Dos Santos Ferreira-Kenig-Salo-Uhlmann'09].
- Hyperbolic case [Kian-Oksanen'16].

Outside the above framework: hyperbolic case with analytic t dependence [Eskin'07,'16].

