An Electromagnetic Technique to Detect Defects at Interfaces

Fioralba Cakoni

Rutgers University www.math.rutgers.edu/~fc292/

joint work with

Irene De Teresa and Houssem Haddar and Peter Monk

Research supported by grants from AFOSR and NSF

Research Trend

Asymptotic methods in connection with qualitative methods

Asymptotic methods in connection with qualitative methods

Perturbation of transmission eigenvalues in presence of thin layer or small volume penetrable inclusions in a known inhomogeneous medium.

- Cakoni-Chaulet-Haddar (2014) IMA J. Appl. Math.
- CAKONI-MOSKOW-ROME (2014) Inverse Problems and Imaging

Asymptotic methods in connection with qualitative methods

Perturbation of transmission eigenvalues in presence of thin layer or small volume penetrable inclusions in a known inhomogeneous medium.

- CAKONI-CHAULET-HADDAR (2014) IMA J. Appl. Math.
- CAKONI-MOSKOW-ROME (2014) Inverse Problems and Imaging

Scattering by periodic media – homogenization and transmission eigenvalues.

- CAKONI-HADDAR-HARRIS (2015) *Inverse Problems and Imaging*
- CAKONI-GUZINA-MOSKOW (2016) SIAM J. Math. Anal.

$$\Omega := \Omega_{-} \cup \Omega_{+} \subset \mathbb{R}^{m}, \quad m = 2, 3$$

$$\Delta u^{ext} + k^2 u^{ext} = 0$$
 in Ω_{ext}

$$abla \cdot \left(\frac{1}{\mu_+} \nabla u^+ \right) + k^2 \frac{n_+}{n_+} u^+ = 0 \qquad \text{in} \quad \Omega_+$$

$$\nabla \cdot \left(\frac{1}{\mu_{-}} \nabla u^{-}\right) + k^2 n_{-} u^{-} = 0 \qquad \text{in} \quad \Omega_{-}$$

$$u^{ext} = u^s + u^i$$
 we take $u^i := e^{ikx \cdot d}$, *d* unit vector

$$u^{ext} = u^s + u^i$$
 we take $u^i := e^{ikx \cdot d}$, *d* unit vector

$$\lim_{r \to \infty} |x|^{\frac{m-1}{2}} \left(\frac{\partial u^s}{\partial |x|} - iku^s \right) = 0, \quad \text{uniformly in } \hat{x} = x/|x|$$

$$u^{ext} = u^s + u^i$$
 we take $u^i := e^{ikx \cdot d}$, *d* unit vector

$$\lim_{r \to \infty} |x|^{\frac{m-1}{2}} \left(\frac{\partial u^s}{\partial |x|} - iku^s \right) = 0, \quad \text{uniformly in } \hat{x} = x/|x|$$

k is the wave number in Ω_{ext} ($k = \omega \sqrt{\epsilon_{\text{ext}} \mu_{\text{ext}}}$).

Material with Defect at the Interface

Material with Defect at the Interface

$u^{ext} = u^+$	and	$ abla u^{ext} \cdot u = 1/\mu_+ abla u^+ \cdot u$	on	Г1
$u^+ = u^-$	and	$1/\mu_+ \nabla u^+ \cdot u = 1/\mu \nabla u^- \cdot u$	on	$\Gamma \backslash \overline{\Gamma}_0$
$U = u^+$	and	$1/\mu_0 abla U \cdot u = 1/\mu_+ abla u^+ \cdot u$	on	Γ_+
$U = u^{-}$	and	$1/\mu_0 abla U \cdot u = 1/\mu abla u^- \cdot u$	on	Γ

Denote the unit sphere by $\mathbb{S}^{m-1} := \{x \in \mathbb{R}^m, |x| = 1\}$

$$u^{s}(x,d) = \gamma_{m} rac{e^{ik|x|}}{|x|^{(m-1)/2}} u_{\infty}(\hat{x},d) + O\left(rac{1}{|x|}
ight)$$

where $\gamma_m = \frac{e^{i\pi/4}}{\sqrt{8\pi k}}$, if m = 2 and $\gamma_m = \frac{1}{4\pi}$ if m = 3.

Denote the unit sphere by $\mathbb{S}^{m-1} := \{x \in \mathbb{R}^m, |x| = 1\}$

$$u^{s}(x,d) = \gamma_{m} \frac{e^{ik|x|}}{|x|^{(m-1)/2}} u_{\infty}(\hat{x},d) + O\left(\frac{1}{|x|}\right)$$

where
$$\gamma_m = \frac{e^{i\pi/4}}{\sqrt{8\pi k}}$$
, if $m = 2$ and $\gamma_m = \frac{1}{4\pi}$ if $m = 3$.

Data

 $u_{\infty}(\hat{x}, d)$ for incident directions d and observation directions \hat{x} , both on a nonzero measure subset of \mathbb{S}^{m-1}

Denote the unit sphere by $\mathbb{S}^{m-1} := \{x \in \mathbb{R}^m, |x| = 1\}$

$$u^{s}(x,d) = \gamma_{m} \frac{e^{ik|x|}}{|x|^{(m-1)/2}} u_{\infty}(\hat{x},d) + O\left(\frac{1}{|x|}\right)$$

where
$$\gamma_m = \frac{e^{i\pi/4}}{\sqrt{8\pi k}}$$
, if $m = 2$ and $\gamma_m = \frac{1}{4\pi}$ if $m = 3$.

Data

 $u_{\infty}(\hat{x}, d)$ for incident directions d and observation directions \hat{x} , both on a nonzero measure subset of \mathbb{S}^{m-1}

The Inverse Problem

Determine the damaged part Γ_0 of the known interface Γ from the above (measured) data without knowing μ_0 and n_0

Asymptotic Model

Small parameter: the thickness of the opening is much smaller than interrogating wavelength $\lambda := 2\pi/k$ and the thickness of the layers.

- Introduces essential computational difficulty in the numerical solution of the forward problem.
- We use the linear sampling method to solve the inverse problem and want to probe along the known boundary Γ for the defective part Γ₀.

Asymptotic Model

Small parameter: the thickness of the opening is much smaller than interrogating wavelength $\lambda := 2\pi/k$ and the thickness of the layers.

- Introduces essential computational difficulty in the numerical solution of the forward problem.
- We use the linear sampling method to solve the inverse problem and want to probe along the known boundary Γ for the defective part Γ₀.

Replace the opening Ω_0 by appropriate jump conditions on u^+ and u^- across the exact part of the boundary Γ_0

We use asymptotic method.

- B. ASLANYÜREK, H. HADDAR, AND H. SAHINTÜRK, Generalized impedance boundary conditions for thin dielectric coatings with variable thickness, *Wave Motion*, 48, 681700, 2011.
- B. DELOURME, H. HADDAR, AND P. JOLY, Approximate models for wave propagation across thin periodic interfaces, *J. Math. Pures Appl.*, 98:2871, 2012.
- B. DELOURME Modeles et asymptotiques des interfaces fines et periodiques en electromagnetisme, *PhD thesis, Universite Pierre et Marie Curie - Paris VI*, 2010.

Asymptotic Model

δf(s)**V**(s)

χ(s)

χ(s)

We expand each of the terms $u_i^{\pm}(s, \eta)$ in a power series with respect to the normal direction coordinate η around zero, i.e.

$$u_j^{\pm}(\boldsymbol{s},\eta) = u_j^{\pm}(\boldsymbol{s},0) + \eta \frac{\partial}{\partial \eta} u_j^{\pm}(\boldsymbol{s},0) + \frac{\eta^2}{2} \frac{\partial^2}{\partial \eta^2} u_j^{\pm}(\boldsymbol{s},0) + \dots$$

and after plugging in (*) we obtain

$$u^{\pm}(s,\eta) = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \delta^j \frac{\eta^k}{k!} \frac{\partial^k}{\partial \eta^k} u_j^{\pm}(s,0).$$

Dirichlet part of the transmission condition can be directly computed by equating terms with the same powers of δ.

- Dirichlet part of the transmission condition can be directly computed by equating terms with the same powers of δ.
- Neuman part of the transmission needs the computation of co-normal derivatives in curvilinear coordinates and then equate the same powers of δ.

- Dirichlet part of the transmission condition can be directly computed by equating terms with the same powers of δ.
- Neuman part of the transmission needs the computation of co-normal derivatives in curvilinear coordinates and then equate the same powers of δ.
- Equation for U_j is also written in curvilinear coordinates, where the ansatz is substituted the same powers of δ are equated.

- Dirichlet part of the transmission condition can be directly computed by equating terms with the same powers of δ.
- Neuman part of the transmission needs the computation of co-normal derivatives in curvilinear coordinates and then equate the same powers of δ.
- Equation for U_j is also written in curvilinear coordinates, where the ansatz is substituted the same powers of δ are equated.

Remark

If we assume that $f^{\pm}(0) = f^{\pm}(L) = 0$ the next asymptotic model can be rigorously justified following the approach of Delourme's thesis for periodic interfaces.

Asymptotic Model

In Ω_{ext} , Ω_+ and Ω_- we have the same equations and on Γ_1 and $\Gamma \setminus \Gamma_0$ the same transmission conditions as for the healthy material.

Recalling the notation

$$[w] = w^+ - w^-$$
 and $\langle w \rangle = (w^+ + w^-)/2$

on Γ_0 we have that

$$[u] = \alpha \left\langle \frac{1}{\mu} \frac{\partial u}{\partial \nu} \right\rangle \quad \text{and} \quad \left[\frac{1}{\mu} \frac{\partial u}{\partial \nu} \right] = \left(-\nabla_{\Gamma} \cdot \left\langle \beta f \right\rangle \nabla_{\Gamma} + \gamma \right) \left\langle u \right\rangle$$

where

$$\alpha = 2\delta \left\langle f(\mu_0 - \mu) \right\rangle, \quad \beta^{\pm} = 2\delta \left(\frac{1}{\mu_0} - \frac{1}{\mu^{\pm}} \right), \quad \gamma = 2\delta k^2 \left\langle f(n - n_0) \right\rangle$$

Introduce
$$\mathcal{H} := \left\{ u \in H^1(B_R \setminus \overline{\Gamma_0}) \text{ such that } \sqrt{f^{\pm}} \, \nabla_{\Gamma} \left\langle u \right\rangle \in L^2(\Gamma_0) \right\}$$

$$\|u\|_{\mathcal{H}}^{2} = \|u\|_{\mathcal{H}^{1}(B_{R}\setminus\overline{\Gamma_{0}})}^{2} + \left\|\sqrt{f^{+}}\nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}(\Gamma_{0})}^{2} + \left\|\sqrt{f^{-}}\nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}(\Gamma_{0})}^{2}.$$

Introduce
$$\mathcal{H} := \left\{ u \in H^1(B_R \setminus \overline{\Gamma_0}) \text{ such that } \sqrt{f^{\pm}} \nabla_{\Gamma} \langle u \rangle \in L^2(\Gamma_0) \right\}$$

$$\|u\|_{\mathcal{H}}^{2} = \|u\|_{H^{1}(B_{R}\setminus\overline{\Gamma_{0}})}^{2} + \left\|\sqrt{f^{+}}\nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}(\Gamma_{0})}^{2} + \left\|\sqrt{f^{-}}\nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}(\Gamma_{0})}^{2}.$$

• Assume that
$$\Re\left(\frac{1}{\mu^{\pm}}\right) \ge \epsilon_1 > 0$$
, and $\Re\left(\frac{1}{\mu_0} - \frac{1}{\mu^{\pm}}\right) \ge \epsilon_2 > 0$

Introduce $\mathcal{H} := \left\{ u \in H^1(B_R \setminus \overline{\Gamma_0}) \text{ such that } \sqrt{f^{\pm}} \nabla_{\Gamma} \langle u \rangle \in L^2(\Gamma_0) \right\}$

$$\|u\|_{\mathcal{H}}^{2} = \|u\|_{H^{1}(B_{R}\setminus\overline{\Gamma_{0}})}^{2} + \left\|\sqrt{f^{+}}\nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}(\Gamma_{0})}^{2} + \left\|\sqrt{f^{-}}\nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}(\Gamma_{0})}^{2}.$$

Assume that
$$\Re\left(\frac{1}{\mu^{\pm}}\right) \ge \epsilon_1 > 0$$
, and $\Re\left(\frac{1}{\mu_0} - \frac{1}{\mu^{\pm}}\right) \ge \epsilon_2 > 0$
 $0 \le \Im(n^{\pm}) \le \Im(n_0)$ and $0 \le \Im(\mu^{\pm}) \le \Im(\mu_0)$

Introduce $\mathcal{H} := \left\{ u \in H^1(B_R \setminus \overline{\Gamma_0}) \text{ such that } \sqrt{f^{\pm}} \nabla_{\Gamma} \langle u \rangle \in L^2(\Gamma_0) \right\}$

$$\|u\|_{\mathcal{H}}^{2} = \|u\|_{H^{1}(B_{R}\setminus\overline{\Gamma_{0}})}^{2} + \left\|\sqrt{f^{+}}\nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}(\Gamma_{0})}^{2} + \left\|\sqrt{f^{-}}\nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}(\Gamma_{0})}^{2}.$$

• Assume that
$$\Re\left(\frac{1}{\mu^{\pm}}\right) \ge \epsilon_1 > 0$$
, and $\Re\left(\frac{1}{\mu_0} - \frac{1}{\mu^{\pm}}\right) \ge \epsilon_2 > 0$

•
$$0 \leq \Im(n^{\pm}) \leq \Im(n_0)$$
 and $0 \leq \Im(\mu^{\pm}) \leq \Im(\mu_0)$

• f^{\pm} go to zero at the boundary of Γ_0 in Γ such that $1/\langle f(\mu_0 - \mu) \rangle \in L^t(\Gamma_0)$ for $t = 1 + \epsilon$ in \mathbb{R}^2 and $t = 7/4 + \epsilon$ in \mathbb{R}^3 for arbitrary small $\epsilon > 0$.

Introduce $\mathcal{H} := \left\{ u \in H^1(B_R \setminus \overline{\Gamma_0}) \text{ such that } \sqrt{f^{\pm}} \nabla_{\Gamma} \langle u \rangle \in L^2(\Gamma_0) \right\}$

$$\|u\|_{\mathcal{H}}^{2} = \|u\|_{H^{1}(B_{R}\setminus\overline{\Gamma_{0}})}^{2} + \left\|\sqrt{f^{+}}\nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}(\Gamma_{0})}^{2} + \left\|\sqrt{f^{-}}\nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}(\Gamma_{0})}^{2}.$$

• Assume that
$$\Re\left(\frac{1}{\mu^{\pm}}\right) \ge \epsilon_1 > 0$$
, and $\Re\left(\frac{1}{\mu_0} - \frac{1}{\mu^{\pm}}\right) \ge \epsilon_2 > 0$

- $0 \leq \Im(n^{\pm}) \leq \Im(n_0)$ and $0 \leq \Im(\mu^{\pm}) \leq \Im(\mu_0)$
- f^{\pm} go to zero at the boundary of Γ_0 in Γ such that $1/\langle f(\mu_0 \mu) \rangle \in L^t(\Gamma_0)$ for $t = 1 + \epsilon$ in \mathbb{R}^2 and $t = 7/4 + \epsilon$ in \mathbb{R}^3 for arbitrary small $\epsilon > 0$.

Theorem

Under the above assumptions the direct approximate model has a unique solution $u \in \mathcal{H}$ which depends continuously on the incident wave u^i with respect to the \mathcal{H} -norm.

Numerical Validation

$$f^{-}(s) = 0, \ f^{+}(s) := -l^{-2}(s+l)(s-l) \text{ for } s \in (-l,l), \text{ with } l = 0.2\pi,$$

on the interface r = 1. The material properties are chosen to be $n_{-} = 1, \mu_{-} = 1$ in $\Omega_{-}, n_{+} = 1, \mu^{+} = 1$ in $\Omega_{+}, n_{0} = 0.2, \mu_{0} = 0.9$ in Ω_{0} , and the wave number k = 3.

Numerical Validation

Panel (a) shows the H^1 relative error of total fields resulting from different incident direction. The maximum error is obtained for d = (1, 0). Panel (b) the H^1 relative error for different values of δ and d = (1, 0). The approximated rate of convergence is $O(\delta^{1.7})$.

Numerical Validation

Panel (a) shows the plot of the absolute value of the far field for both models for $\delta = 0.05$. Panel (b) shows the far field L^2 relative error $e^{\infty}(\delta, d)$, for different values of δ and d = (1, 0). The approximated rate of convergence is $O(\delta^1)$.

 u^s the scattered field due to the layered media and the flaw on the interface.

$$u^{s}(x,d) = \gamma_{m} \frac{e^{ik|x|}}{|x|^{(m-1)/2}} u_{\infty}(\hat{x},d) + O\left(\frac{1}{|x|}\right), \qquad m = 2,3$$

Data

 $u_{\infty}(\hat{x}, d)$ for incident directions d and observation directions \hat{x} in a nonzero measure subset of \mathbb{S}^{m-1}

The Inverse Problem

Determine the damaged part Γ_0 of the known interface Γ from the above (measured) data without knowing μ_0 and n_0

Data defines the far field operator $F : L^2(\mathbb{S}^{m-1}) \to L^2(\mathbb{S}^{m-1})$

$$(Fg)(\hat{x}) = \int_{\mathbb{S}^{m-1}} u^{\infty}(\hat{x}, d)g(d)ds_d$$

By linearity $Fg = F_bg + F_dg$ with

$$(F_bg)(\hat{x}) = \int_{\mathbb{S}^{m-1}} u_b^\infty(\hat{x}, d) g(d) ds_d$$

where $u_b^{\infty}(\hat{x}, d)$ is the far field pattern of the scattered field $u_b^s(x, d)$ due to healthy material, i.e the unique solution $u_b = u_b^s + e^{ikx \cdot d} \in H^1_{loc}(\mathbb{R}^m)$ of

$$\nabla \cdot \left(\frac{1}{\mu} \nabla u_b\right) + k^2 n u_b = 0 \quad \text{in } \mathbb{R}^m$$

and u_b^s satisfies Sommerfeld radiation condition.

Consider the far field equation

$$(F_d g)(\hat{x}) = \phi_L^{\infty}, \qquad \quad L \subset \Gamma$$

where for some $(\alpha_L, \beta_L) \in L^2(L) \times \tilde{H}^1(L)$

$$\phi_L^{\infty}(\mathbf{x}) = \gamma_m^{-1} \int_L \left\{ \alpha_L(\mathbf{y}) G_b^{\infty}(\mathbf{x}, \mathbf{y}) + \beta_L(\mathbf{y}) \frac{1}{\mu} \frac{\partial G_b^{\infty}(\mathbf{x}, \mathbf{y})}{\partial \nu(\mathbf{y})} \right\} \, d\mathbf{s}(\mathbf{y})$$

with $G_b^{\infty}(x, y)$ the far field of the radiating solution $G_b(\cdot, z)$ to

$$\nabla \cdot \left(\frac{1}{\mu} \nabla G_b(\cdot, z)\right) + k^2 n G_b(\cdot, z) = -\delta(\cdot - z), \quad \text{in } \mathbb{R}^m \setminus \{z\}$$

Lemma (Mixed reciprocity)

$$G^\infty_b(\hat{x},z) = \gamma_m u_b(z,-\hat{x})$$
 for all $z \in \mathbb{R}^m$ and $\hat{x} \in \mathbb{S}^{m-1}$

 $G_b^{\infty}(\hat{x}, z) = \gamma_m u_b(z, -\hat{x})$ for all $z \in \mathbb{R}^m$ and $\hat{x} \in \mathbb{S}^{m-1}$

• $F_dg = GHg$

 $G: H^{-1/2}(\Gamma_0) \times \mathcal{H}^{-1}(\Gamma_0) \to L^2(\mathbb{S}^{m-1})$ is the solution operator associated with the forward problem mapping boundary data to the far field of the corresponding radiating solution, and

$$Hg := (-
abla_{\Gamma} \cdot \langle eta f
angle
abla_{\Gamma} + oldsymbol{\gamma}) \, u_{b,g}, \, \, u_{b,g}(x) := \int_{\mathbb{S}^{m-1}} u_b(x,d) g(d) \, ds_d$$

 $G_b^{\infty}(\hat{x}, z) = \gamma_m u_b(z, -\hat{x})$ for all $z \in \mathbb{R}^m$ and $\hat{x} \in \mathbb{S}^{m-1}$

•
$$F_d g = GHg$$

 $G: H^{-1/2}(\Gamma_0) \times \mathcal{H}^{-1}(\Gamma_0) \to L^2(\mathbb{S}^{m-1})$ is the solution operator associated with the forward problem mapping boundary data to the far field of the corresponding radiating solution, and

$$Hg := (-
abla_{\Gamma} \cdot \langle eta f
angle
abla_{\Gamma} + oldsymbol{\gamma}) \, u_{b,g}, \, \, u_{b,g}(x) := \int_{\mathbb{S}^{m-1}} u_b(x,d) g(d) \, ds_d$$

• $F: L^2(\mathbb{S}^{m-1}) \to L^2(\mathbb{S}^{m-1})$ is injective and has dense range.

 $G_b^{\infty}(\hat{x}, z) = \gamma_m u_b(z, -\hat{x})$ for all $z \in \mathbb{R}^m$ and $\hat{x} \in \mathbb{S}^{m-1}$

$$\bullet F_dg = GHg$$

 $G: H^{-1/2}(\Gamma_0) \times \mathcal{H}^{-1}(\Gamma_0) \to L^2(\mathbb{S}^{m-1})$ is the solution operator associated with the forward problem mapping boundary data to the far field of the corresponding radiating solution, and

$$Hg := (-
abla_{\Gamma} \cdot \langle eta f
angle
abla_{\Gamma} + \gamma) u_{b,g}, \ u_{b,g}(x) := \int_{\mathbb{S}^{m-1}} u_b(x,d) g(d) \, ds_d$$

• $F: L^2(\mathbb{S}^{m-1}) \to L^2(\mathbb{S}^{m-1})$ is injective and has dense range.

• $H: L^2(\mathbb{S}^{m-1} \to H^{-1/2}(\Gamma_0) \times \mathcal{H}^{-1}(\Gamma_0)$ has dense range

 $G_b^{\infty}(\hat{x},z) = \gamma_m u_b(z,-\hat{x})$ for all $z \in \mathbb{R}^m$ and $\hat{x} \in \mathbb{S}^{m-1}$

•
$$F_d g = GHg$$

 $G: H^{-1/2}(\Gamma_0) \times \mathcal{H}^{-1}(\Gamma_0) \to L^2(\mathbb{S}^{m-1})$ is the solution operator associated with the forward problem mapping boundary data to the far field of the corresponding radiating solution, and

$$Hg := (-
abla_{\Gamma} \cdot \langle eta f
angle
abla_{\Gamma} + \gamma) u_{b,g}, \ u_{b,g}(x) := \int_{\mathbb{S}^{m-1}} u_b(x,d) g(d) \, ds_d$$

• $F: L^2(\mathbb{S}^{m-1}) \to L^2(\mathbb{S}^{m-1})$ is injective and has dense range.

- $H: L^2(\mathbb{S}^{m-1} \to H^{-1/2}(\Gamma_0) \times \mathcal{H}^{-1}(\Gamma_0)$ has dense range
- For *L* ⊂ Γ

 $L \subset \Gamma_0 \iff \phi_L^\infty \in \operatorname{Range}(G)$

Theorem (Linear Sampling Method)

 For an arbitrary arc L ⊂ Γ₀ and ε > 0, there exists a function g^ε_L ∈ L²(S^{m-1}) such that

$$\|F_D g_L^{\epsilon} - \phi_{\infty}^L\|_{L^2(\mathbb{S}^{m-1})} < \epsilon$$

and, as $\epsilon \to 0$, the corresponding solution $u_{b,g_{L}^{\epsilon}}$ to the background problem converges in \mathcal{H} .

2 For $L \not\subset \Gamma_0$ and $\epsilon > 0$, every function $g_L^{\epsilon} \in L^2(\mathbb{S}^{m-1})$ such that

$$\|F_D g_L^{\epsilon} - \phi_{\infty}^L\|_{L^2(\mathbb{S}^{m-1})} < \epsilon$$

is such that the corresponding solution $u_{b,g_{L}^{e}}$ to the background problem satisfies

$$\lim_{\epsilon \to 0} \|u_{b,g_L^\epsilon}\|_{\mathcal{H}} = \infty \quad \text{and} \quad \lim_{\epsilon \to 0} \|g_L^\epsilon\|_{L^2(\mathbb{S}^{m-1})} = \infty.$$

Example of Reconstruction

Example of Reconstruction

Example of Reconstruction

F. CAKONI, I. DE TERESA TRUEBA, H. HADDAR, AND P. MONK, Nondestructive testing of the delaminated interface between two materials, *SIAM J. Appl. Math.* (accepted).

We are working on Maxwell's equation model for this problem.