An Electromagnetic Technique to Detect Defects at Interfaces

Fioralba Cakoni

Rutgers University
www.math.rutgers.edu/~fc292/

joint work with

Irene De Teresa and Houssem Haddar and Peter Monk

Research supported by grants from AFOSR and NSF

Research Trend

Asymptotic methods in connection with qualitative methods

Research Trend

Asymptotic methods in connection with qualitative methods
Perturbation of transmission eigenvalues in presence of thin layer or small volume penetrable inclusions in a known inhomogeneous medium.
圊 Cakoni-Chaulet-Haddar (2014) - IMA J. Appl. Math.
嗇 Cakoni-Moskow-Rome (2014) - Inverse Problems and Imaging

Research Trend

Asymptotic methods in connection with qualitative methods

Perturbation of transmission eigenvalues in presence of thin layer or small volume penetrable inclusions in a known inhomogeneous medium．
国 Cakoni－Chaulet－Haddar（2014）－IMA J．Appl．Math．
国 Cakoni－Moskow－Rome（2014）－Inverse Problems and Imaging
Scattering by periodic media－homogenization and transmission eigenvalues．
速 Cakoni－Haddar－Harris（2015）－Inverse Problems and Imaging
回 Cakonı－Guzina－Moskow（2016）－SIAM J．Math．Anal．

Healthy Material - Everything Known

$$
\begin{aligned}
& \overbrace{}^{4} \\
& \Omega:=\Omega_{-} \cup \Omega_{+} \subset \mathbb{R}^{m}, \quad m=2,3 \\
& \Delta u^{e x t}+k^{2} u^{e x t}=0 \quad \text { in } \quad \Omega_{\mathrm{ext}} \\
& \nabla \cdot\left(\frac{1}{\mu_{+}} \nabla u^{+}\right)+k^{2} n_{+} u^{+}=0 \quad \text { in } \quad \Omega_{+} \\
& \nabla \cdot\left(\frac{1}{\mu_{-}} \nabla u^{-}\right)+k^{2} n_{-} u^{-}=0 \quad \text { in } \quad \Omega_{-}
\end{aligned}
$$

Healthy Material - Everything Known

$$
\begin{aligned}
& \Omega:=\Omega_{-} \cup \Omega_{+} \subset \mathbb{R}^{m}, \quad m=2,3 \\
\Delta u^{e x t}+k^{2} u^{e x t}=0 & \text { in } \Omega_{\mathrm{ext}} \\
\nabla \cdot\left(\frac{1}{\mu_{+}} \nabla u^{+}\right)+k^{2} n_{+} u^{+}=0 & \text { in } \Omega_{+} \\
\nabla \cdot\left(\frac{1}{\mu_{-}} \nabla u^{-}\right)+k^{2} n_{-} u^{-}=0 & \text { in } \Omega_{-}
\end{aligned}
$$

with continuity of fields and conormal derivatives across interfaces

Healthy Material - Everything Known

$$
\begin{aligned}
& \Omega:=\Omega_{-} \cup \Omega_{+} \subset \mathbb{R}^{m}, \quad m=2,3 \\
& \Delta u^{e x t}+k^{2} u^{e x t}=0 \text { in } \Omega_{\mathrm{ext}} \\
& \nabla \cdot\left(\frac{1}{\mu_{+}} \nabla u^{+}\right)+k^{2} n_{+} u^{+}=0 \text { in } \Omega_{+} \\
& \nabla \cdot\left(\frac{1}{\mu_{-}} \nabla u^{-}\right)+k^{2} n_{-} u^{-}=0 \text { in } \Omega_{-}
\end{aligned}
$$

with continuity of fields and conormal derivatives across interfaces

$$
u^{e x t}=u^{s}+u^{i} \quad \text { we take } u^{i}:=e^{i k x \cdot d}, d \text { unit vector }
$$

Healthy Material - Everything Known

$$
\begin{aligned}
& \Omega:=\Omega_{-} \cup \Omega_{+} \subset \mathbb{R}^{m}, \quad m=2,3 \\
& \Delta u^{e x t}+k^{2} u^{e x t}=0 \text { in } \Omega_{\mathrm{ext}} \\
& \nabla \cdot\left(\frac{1}{\mu_{+}} \nabla u^{+}\right)+k^{2} n_{+} u^{+}=0 \text { in } \Omega_{+} \\
& \nabla \cdot\left(\frac{1}{\mu_{-}} \nabla u^{-}\right)+k^{2} n_{-} u^{-}=0 \text { in } \Omega_{-}
\end{aligned}
$$

with continuity of fields and conormal derivatives across interfaces

$$
u^{e x t}=u^{s}+u^{i} \quad \text { we take } u^{i}:=e^{i k x \cdot d}, d \text { unit vector }
$$

$$
\lim _{r \rightarrow \infty}|x|^{\frac{m-1}{2}}\left(\frac{\partial u^{s}}{\partial|x|}-i k u^{s}\right)=0, \quad \text { uniformly in } \hat{x}=x /|x|
$$

Healthy Material - Everything Known

with continuity of fields and conormal derivatives across interfaces

$$
u^{e x t}=u^{s}+u^{i} \quad \text { we take } u^{i}:=e^{i k x \cdot d}, d \text { unit vector }
$$

$$
\lim _{r \rightarrow \infty}|x|^{\frac{m-1}{2}}\left(\frac{\partial u^{s}}{\partial|x|}-i k u^{s}\right)=0, \quad \text { uniformly in } \hat{x}=x /|x|
$$

k is the wave number in $\Omega_{\mathrm{ext}}\left(k=\omega \sqrt{\epsilon_{\text {ext }} \mu_{\text {ext }}}\right)$.

Material with Defect at the Interface

$\mathbb{y}^{u^{\text {a }}}$| $\Delta u^{\text {ext }}+k^{2} u^{\text {ext }}=0$ | in $\Omega_{\text {ext }}$ |
| ---: | :--- |
| $\nabla \cdot\left(\frac{1}{\mu_{+}} \nabla u^{+}\right)+k^{2} n_{+} u^{+}=0$ | in Ω_{+} |
| $\nabla \cdot\left(\frac{1}{\mu_{-}} \nabla u^{-}\right)+k^{2} n_{-} u^{-}=0$ | in Ω_{-} |
| $\nabla \cdot\left(\frac{1}{\mu_{0}} \nabla U\right)+k^{2} n_{0} U=0$ | in Ω_{0}. |

Material with Defect at the Interface

$$
\begin{aligned}
& \not \psi^{u s} \\
& \Delta u^{e x t}+k^{2} u^{e x t}=0 \quad \text { in } \quad \Omega_{\mathrm{ext}} \\
& \nabla \cdot\left(\frac{1}{\mu_{+}} \nabla u^{+}\right)+k^{2} n_{+} u^{+}=0 \quad \text { in } \quad \Omega_{+} \\
& \nabla \cdot\left(\frac{1}{\mu_{-}} \nabla u^{-}\right)+k^{2} n_{-} u^{-}=0 \quad \text { in } \quad \Omega_{-} \\
& \nabla \cdot\left(\frac{1}{\mu_{0}} \nabla U\right)+k^{2} n_{0} U=0 \quad \text { in } \quad \Omega_{0} . \\
& \begin{array}{rlrlrl}
u^{e x t} & =u^{+} & & \text {and } & \nabla u^{e x t} \cdot \nu=1 / \mu_{+} \nabla u^{+} \cdot \nu & \\
u^{+} & =u^{-} & & \text {and } & \Gamma_{1} \\
U & =u^{+} & & \text {and } & 1 / \mu_{+} \nabla u^{+} \cdot \nu=1 / \mu_{-} \nabla u^{-} \cdot \nu & \\
\text { on } & \Gamma \backslash \bar{\Gamma}_{0} \\
U & =u^{-} & & \text {and } & 1 / \mu_{0} \nabla U \cdot \nu=1 / \mu_{+} \nabla u^{+} \cdot \nu & \\
\text { on } & \Gamma_{+} \\
& & & \mu_{-} \nabla u^{-} \cdot \nu & & \text { on } \\
\Gamma_{-} .
\end{array}
\end{aligned}
$$

The Inverse Problem

Denote the unit sphere by $\mathbb{S}^{m-1}:=\left\{x \in \mathbb{R}^{m}, \quad|x|=1\right\}$

$$
u^{s}(x, d)=\gamma_{m} \frac{e^{i k|x|}}{|x|^{(m-1) / 2}} u_{\infty}(\hat{x}, d)+O\left(\frac{1}{|x|}\right)
$$

where $\gamma_{m}=\frac{e^{i \pi / 4}}{\sqrt{8 \pi k}}$, if $m=2$ and $\gamma_{m}=\frac{1}{4 \pi}$ if $m=3$.

The Inverse Problem

Denote the unit sphere by $\mathbb{S}^{m-1}:=\left\{x \in \mathbb{R}^{m}, \quad|x|=1\right\}$

$$
u^{s}(x, d)=\gamma_{m} \frac{e^{i k|x|}}{|x|^{(m-1) / 2}} u_{\infty}(\hat{x}, d)+O\left(\frac{1}{|x|}\right)
$$

where $\gamma_{m}=\frac{e^{i \pi / 4}}{\sqrt{8 \pi k}}$, if $m=2$ and $\gamma_{m}=\frac{1}{4 \pi}$ if $m=3$.

Data

$u_{\infty}(\hat{x}, d)$ for incident directions d and observation directions \hat{x}, both on a nonzero measure subset of \mathbb{S}^{m-1}

The Inverse Problem

Denote the unit sphere by $\mathbb{S}^{m-1}:=\left\{x \in \mathbb{R}^{m}, \quad|x|=1\right\}$

$$
u^{s}(x, d)=\gamma_{m} \frac{e^{i k|x|}}{|x|^{(m-1) / 2}} u_{\infty}(\hat{x}, d)+O\left(\frac{1}{|x|}\right)
$$

where $\gamma_{m}=\frac{e^{i \pi / 4}}{\sqrt{8 \pi k}}$, if $m=2$ and $\gamma_{m}=\frac{1}{4 \pi}$ if $m=3$.

Data

$u_{\infty}(\hat{x}, d)$ for incident directions d and observation directions \hat{x}, both on a nonzero measure subset of \mathbb{S}^{m-1}

The Inverse Problem
Determine the damaged part Γ_{0} of the known interface Γ from the above (measured) data without knowing μ_{0} and n_{0}

Asymptotic Model

Small parameter: the thickness of the opening is much smaller than interrogating wavelength $\lambda:=2 \pi / k$ and the thickness of the layers.

■ Introduces essential computational difficulty in the numerical solution of the forward problem.

■ We use the linear sampling method to solve the inverse problem and want to probe along the known boundary Γ for the defective part Γ_{0}.

Asymptotic Model

Small parameter: the thickness of the opening is much smaller than interrogating wavelength $\lambda:=2 \pi / k$ and the thickness of the layers.

■ Introduces essential computational difficulty in the numerical solution of the forward problem.
■ We use the linear sampling method to solve the inverse problem and want to probe along the known boundary Γ for the defective part Γ_{0}.

Replace the opening Ω_{0} by appropriate jump conditions on u^{+}and u^{-}across the exact part of the boundary Γ_{0}

Asymptotic Model

We use asymptotic method．

围 B．Aslanyürek，H．Haddar，and H．Sahintürk， Generalized impedance boundary conditions for thin dielectric coatings with variable thickness，Wave Motion， 48，681700， 2011.

围 B．Delourme，H．Haddar，and P．Joly，Approximate models for wave propagation across thin periodic interfaces，J．Math．Pures Appl．，98：2871， 2012.

围 B．Delourme Modeles et asymptotiques des interfaces fines et periodiques en electromagnetisme，PhD thesis， Universite Pierre et Marie Curie－Paris VI， 2010.

Asymptotic Model

$$
\Gamma_{0}:=\left\{\chi_{\Gamma}(s), s \in[0, L]\right\}
$$

Neighborhood of $\Gamma_{0}: x=\chi_{\Gamma}(s)+\eta \nu(s), \xi=\frac{\eta}{\delta}$

$$
\begin{aligned}
\Gamma_{ \pm} & =\left\{\chi_{\Gamma}(s)+\delta f^{ \pm}(s) \nu(s), \quad s \in[0, L]\right\} \\
U(s, \xi) & =\sum_{j=0}^{\infty} \delta^{j} U_{j}(s, \xi), u^{ \pm}(s, \eta)=\sum_{j=0}^{\infty} \delta^{j} u_{j}^{ \pm}(s, \eta)(*)
\end{aligned}
$$

We expand each of the terms $u_{j}^{ \pm}(s, \eta)$ in a power series with respect to the normal direction coordinate η around zero, i.e.

$$
u_{j}^{ \pm}(s, \eta)=u_{j}^{ \pm}(s, 0)+\eta \frac{\partial}{\partial \eta} u_{j}^{ \pm}(s, 0)+\frac{\eta^{2}}{2} \frac{\partial^{2}}{\partial \eta^{2}} u_{j}^{ \pm}(s, 0)+\ldots
$$

and after plugging in (*) we obtain

$$
u^{ \pm}(s, \eta)=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \delta^{j} \frac{\eta^{k}}{k!} \frac{\partial^{k}}{\partial \eta^{k}} u_{j}^{ \pm}(s, 0)
$$

Asymptotic Model

■ Dirichlet part of the transmission condition can be directly computed by equating terms with the same powers of δ.

Asymptotic Model

■ Dirichlet part of the transmission condition can be directly computed by equating terms with the same powers of δ.

■ Neuman part of the transmission needs the computation of co-normal derivatives in curvilinear coordinates and then equate the same powers of δ.

Asymptotic Model

■ Dirichlet part of the transmission condition can be directly computed by equating terms with the same powers of δ.

■ Neuman part of the transmission needs the computation of co-normal derivatives in curvilinear coordinates and then equate the same powers of δ.

- Equation for U_{j} is also written in curvilinear coordinates, where the ansatz is substituted the same powers of δ are equated.

Asymptotic Model

■ Dirichlet part of the transmission condition can be directly computed by equating terms with the same powers of δ.
■ Neuman part of the transmission needs the computation of co-normal derivatives in curvilinear coordinates and then equate the same powers of δ.

- Equation for U_{j} is also written in curvilinear coordinates, where the ansatz is substituted the same powers of δ are equated.

Remark

If we assume that $f^{ \pm}(0)=f^{ \pm}(L)=0$ the next asymptotic model can be rigorously justified following the approach of Delourme's thesis for periodic interfaces.

Asymptotic Model

$\Omega_{\mu=1, n=}$

In $\Omega_{\text {ext }}, \Omega_{+}$and Ω_{-}we have the same equations and on Γ_{1} and $\Gamma \backslash \Gamma_{0}$ the same transmission conditions as for the healthy material.

Recalling the notation

$$
[w]=w^{+}-w^{-} \text {and }\langle w\rangle=\left(w^{+}+w^{-}\right) / 2
$$

on Γ_{0} we have that

$$
[u]=\alpha\left\langle\frac{1}{\mu} \frac{\partial u}{\partial \nu}\right\rangle \quad \text { and } \quad\left[\frac{1}{\mu} \frac{\partial u}{\partial \nu}\right]=\left(-\nabla_{\Gamma} \cdot\langle\beta f\rangle \nabla_{\Gamma}+\gamma\right)\langle u\rangle
$$

where

$$
\alpha=2 \delta\left\langle f\left(\mu_{0}-\mu\right)\right\rangle, \quad \beta^{ \pm}=2 \delta\left(\frac{1}{\mu_{0}}-\frac{1}{\mu^{ \pm}}\right), \quad \gamma=2 \delta k^{2}\left\langle f\left(n-n_{0}\right)\right\rangle
$$

Well-posedness of Asymptotic Model

■ Introduce $\mathcal{H}:=\left\{u \in H^{1}\left(B_{R} \backslash \overline{\Gamma_{0}}\right)\right.$ such that $\left.\sqrt{f^{ \pm}} \nabla_{\Gamma}\langle u\rangle \in L^{2}\left(\Gamma_{0}\right)\right\}$

$$
\|u\|_{\mathcal{H}}^{2}=\|u\|_{H^{1}\left(B_{R} \backslash \overline{\Gamma_{0}}\right)}^{2}+\left\|\sqrt{f^{+}} \nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2}+\left\|\sqrt{f^{-}} \nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2} .
$$

Well-posedness of Asymptotic Model

■ Introduce $\mathcal{H}:=\left\{u \in H^{1}\left(B_{R} \backslash \overline{\Gamma_{0}}\right)\right.$ such that $\left.\sqrt{f^{ \pm}} \nabla_{\Gamma}\langle u\rangle \in L^{2}\left(\Gamma_{0}\right)\right\}$

$$
\|u\|_{\mathcal{H}}^{2}=\|u\|_{H^{1}\left(B_{R} \backslash \overline{\Gamma_{0}}\right)}^{2}+\left\|\sqrt{f^{+}} \nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2}+\left\|\sqrt{f^{-}} \nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2} .
$$

- Assume that $\Re\left(\frac{1}{\mu^{ \pm}}\right) \geq \epsilon_{1}>0$, and $\Re\left(\frac{1}{\mu_{0}}-\frac{1}{\mu^{ \pm}}\right) \geq \epsilon_{2}>0$

Well-posedness of Asymptotic Model

■ Introduce $\mathcal{H}:=\left\{u \in H^{1}\left(B_{R} \backslash \overline{\Gamma_{0}}\right)\right.$ such that $\left.\sqrt{f^{ \pm}} \nabla_{\Gamma}\langle u\rangle \in L^{2}\left(\Gamma_{0}\right)\right\}$

$$
\|u\|_{\mathcal{H}}^{2}=\|u\|_{H^{1}\left(B_{R} \backslash \overline{\Gamma_{0}}\right)}^{2}+\left\|\sqrt{f^{+}} \nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2}+\left\|\sqrt{f^{-}} \nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2} .
$$

- Assume that $\Re\left(\frac{1}{\mu^{ \pm}}\right) \geq \epsilon_{1}>0$, and $\Re\left(\frac{1}{\mu_{0}}-\frac{1}{\mu^{ \pm}}\right) \geq \epsilon_{2}>0$

■ $0 \leq \Im\left(n^{ \pm}\right) \leq \Im\left(n_{0}\right)$ and $0 \leq \Im\left(\mu^{ \pm}\right) \leq \Im\left(\mu_{0}\right)$

Well-posedness of Asymptotic Model

■ Introduce $\mathcal{H}:=\left\{u \in H^{1}\left(B_{R} \backslash \overline{\Gamma_{0}}\right)\right.$ such that $\left.\sqrt{f^{ \pm}} \nabla_{\Gamma}\langle u\rangle \in L^{2}\left(\Gamma_{0}\right)\right\}$

$$
\|u\|_{\mathcal{H}}^{2}=\|u\|_{H^{1}\left(B_{R} \backslash \overline{\Gamma_{0}}\right)}^{2}+\left\|\sqrt{f^{+}} \nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2}+\left\|\sqrt{f^{-}} \nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2} .
$$

- Assume that $\Re\left(\frac{1}{\mu^{ \pm}}\right) \geq \epsilon_{1}>0$, and $\Re\left(\frac{1}{\mu_{0}}-\frac{1}{\mu^{ \pm}}\right) \geq \epsilon_{2}>0$
- $0 \leq \Im\left(n^{ \pm}\right) \leq \Im\left(n_{0}\right)$ and $0 \leq \Im\left(\mu^{ \pm}\right) \leq \Im\left(\mu_{0}\right)$

■ $f^{ \pm}$go to zero at the boundary of Γ_{0} in Γ such that $1 /\left\langle f\left(\mu_{0}-\mu\right)\right\rangle \in L^{t}\left(\Gamma_{0}\right)$ for $t=1+\epsilon$ in \mathbb{R}^{2} and $t=7 / 4+\epsilon$ in \mathbb{R}^{3} for arbitrary small $\epsilon>0$.

Well-posedness of Asymptotic Model

■ Introduce $\mathcal{H}:=\left\{u \in H^{1}\left(B_{R} \backslash \overline{\Gamma_{0}}\right)\right.$ such that $\left.\sqrt{f^{ \pm}} \nabla_{\Gamma}\langle u\rangle \in L^{2}\left(\Gamma_{0}\right)\right\}$

$$
\|u\|_{\mathcal{H}}^{2}=\|u\|_{H^{1}\left(B_{R} \backslash \overline{\Gamma_{0}}\right)}^{2}+\left\|\sqrt{f^{+}} \nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2}+\left\|\sqrt{f^{-}} \nabla_{\Gamma}\langle u\rangle\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2} .
$$

- Assume that $\Re\left(\frac{1}{\mu^{ \pm}}\right) \geq \epsilon_{1}>0$, and $\Re\left(\frac{1}{\mu_{0}}-\frac{1}{\mu^{ \pm}}\right) \geq \epsilon_{2}>0$

■ $0 \leq \Im\left(n^{ \pm}\right) \leq \Im\left(n_{0}\right)$ and $0 \leq \Im\left(\mu^{ \pm}\right) \leq \Im\left(\mu_{0}\right)$
■ $f^{ \pm}$go to zero at the boundary of Γ_{0} in Γ such that
$1 /\left\langle f\left(\mu_{0}-\mu\right)\right\rangle \in L^{t}\left(\Gamma_{0}\right)$ for $t=1+\epsilon$ in \mathbb{R}^{2} and $t=7 / 4+\epsilon$ in \mathbb{R}^{3} for arbitrary small $\epsilon>0$.

Theorem

Under the above assumptions the direct approximate model has a unique solution $u \in \mathcal{H}$ which depends continuously on the incident wave u^{i} with respect to the \mathcal{H}-norm.

Numerical Validation

$$
\begin{aligned}
& e(\delta, d):=\frac{\left\|u_{\delta}^{e x t}-u^{e x t}\right\|_{H^{1}\left(B_{B} \backslash \bar{\Omega}\right)}}{\left\|u^{e x t}\right\|_{H^{1}\left(B_{\overparen{R}} \backslash \bar{\Omega}\right)}} \\
& e^{\infty}(\delta, d):=\frac{\left\|u_{\delta}^{\infty}-u^{\infty}\right\|_{L^{2}\left(\mathbb{S}^{1}\right)}}{\left\|u^{\infty}\right\|_{L^{2}\left(\mathbb{S}^{1}\right)}}
\end{aligned}
$$

$$
f^{-}(s)=0, f^{+}(s):=-I^{-2}(s+I)(s-I) \text { for } s \in(-I, I), \text { with } I=0.2 \pi
$$

on the interface $r=1$. The material properties are chosen to be $n_{-}=1, \mu_{-}=1$ in $\Omega_{-}, n_{+}=1, \mu^{+}=1$ in $\Omega_{+}, n_{0}=0.2, \mu_{0}=0.9$ in Ω_{0}, and the wave number $k=3$.

Numerical Validation

(a)

(b)

Panel (a) shows the H^{1} relative error of total fields resulting from different incident direction. The maximum error is obtained for $d=(1,0)$. Panel (b) the H^{1} relative error for different values of δ and $d=(1,0)$. The approximated rate of convergence is $O\left(\delta^{1.7}\right)$.

Numerical Validation

(a)

(b)

Panel (a) shows the plot of the absolute value of the far field for both models for $\delta=0.05$. Panel (b) shows the far field L^{2} relative error $e^{\infty}(\delta, d)$, for different values of δ and $d=(1,0)$. The approximated rate of convergence is $O\left(\delta^{1}\right)$.

The Inverse Problem

u^{s} the scattered field due to the layered media and the flaw on the interface.

$$
u^{s}(x, d)=\gamma_{m} \frac{e^{i k|x|}}{|x|^{(m-1) / 2}} u_{\infty}(\hat{x}, d)+O\left(\frac{1}{|x|}\right), \quad m=2,3
$$

Data

$u_{\infty}(\hat{x}, d)$ for incident directions d and observation directions \hat{x} in a nonzero measure subset of \mathbb{S}^{m-1}

The Inverse Problem
Determine the damaged part Γ_{0} of the known interface Γ from the above (measured) data without knowing μ_{0} and n_{0}

The Inverse Problem

Data defines the far field operator $F: L^{2}\left(\mathbb{S}^{m-1}\right) \rightarrow L^{2}\left(\mathbb{S}^{m-1}\right)$

$$
(F g)(\hat{x})=\int_{\mathbb{S}^{m-1}} u^{\infty}(\hat{x}, d) g(d) d s_{d}
$$

By linearity $F g=F_{b} g+F_{d} g$ with

$$
\left(F_{b} g\right)(\hat{x})=\int_{\mathbb{S}^{m-1}} u_{b}^{\infty}(\hat{x}, d) g(d) d s_{d}
$$

where $u_{b}^{\infty}(\hat{x}, d)$ is the far field pattern of the scattered field $u_{b}^{s}(x, d)$ due to healthy material, i.e the unique solution

$$
\begin{aligned}
u_{b}=u_{b}^{s}+e^{i k x \cdot d} & \in H_{l o c}^{1}\left(\mathbb{R}^{m}\right) \text { of } \\
& \nabla \cdot\left(\frac{1}{\mu} \nabla u_{b}\right)+k^{2} n u_{b}=0 \text { in } \mathbb{R}^{m}
\end{aligned}
$$

and u_{b}^{s} satisfies Sommerfeld radiation condition.

The Inverse Problem

Consider the far field equation

$$
\left(F_{d} g\right)(\hat{x})=\phi_{L}^{\infty}, \quad L \subset \Gamma
$$

where for some $\left(\alpha_{L}, \beta_{L}\right) \in L^{2}(L) \times \tilde{H}^{1}(L)$

$$
\phi_{L}^{\infty}(x)=\gamma_{m}^{-1} \int_{L}\left\{\alpha_{L}(y) G_{b}^{\infty}(x, y)+\beta_{L}(y) \frac{1}{\mu} \frac{\partial G_{b}^{\infty}(x, y)}{\partial \nu(y)}\right\} d s(y)
$$

with $G_{b}^{\infty}(x, y)$ the far field of the radiating solution $G_{b}(\cdot, z)$ to

$$
\nabla \cdot\left(\frac{1}{\mu} \nabla G_{b}(\cdot, z)\right)+k^{2} n G_{b}(\cdot, z)=-\delta(\cdot-z), \quad \text { in } \mathbb{R}^{m} \backslash\{z\}
$$

The Inverse Problem

Lemma (Mixed reciprocity)
$G_{b}^{\infty}(\hat{x}, z)=\gamma_{m} u_{b}(z,-\hat{x})$ for all $z \in \mathbb{R}^{m}$ and $\hat{x} \in \mathbb{S}^{m-1}$

The Inverse Problem

Lemma (Mixed reciprocity)

$$
G_{b}^{\infty}(\hat{x}, z)=\gamma_{m} u_{b}(z,-\hat{x}) \text { for all } z \in \mathbb{R}^{m} \text { and } \hat{x} \in \mathbb{S}^{m-1}
$$

- $F_{d} g=G H g$
$G: H^{-1 / 2}\left(\Gamma_{0}\right) \times \mathcal{H}^{-1}\left(\Gamma_{0}\right) \rightarrow L^{2}\left(\mathbb{S}^{m-1}\right)$ is the solution operator associated with the forward problem mapping boundary data to the far field of the corresponding radiating solution, and

$$
H g:=\left(-\nabla_{\Gamma} \cdot\langle\beta f\rangle \nabla_{\Gamma}+\gamma\right) u_{b, g}, u_{b, g}(x):=\int_{\mathbb{S}^{m-1}} u_{b}(x, d) g(d) d s_{d}
$$

The Inverse Problem

Lemma (Mixed reciprocity)

$$
G_{b}^{\infty}(\hat{x}, z)=\gamma_{m} u_{b}(z,-\hat{x}) \text { for all } z \in \mathbb{R}^{m} \text { and } \hat{x} \in \mathbb{S}^{m-1}
$$

- $F_{d} g=G H g$
$G: H^{-1 / 2}\left(\Gamma_{0}\right) \times \mathcal{H}^{-1}\left(\Gamma_{0}\right) \rightarrow L^{2}\left(\mathbb{S}^{m-1}\right)$ is the solution operator associated with the forward problem mapping boundary data to the far field of the corresponding radiating solution, and

$$
H g:=\left(-\nabla_{\Gamma} \cdot\langle\beta f\rangle \nabla_{\Gamma}+\gamma\right) u_{b, g}, u_{b, g}(x):=\int_{\mathbb{S}^{m-1}} u_{b}(x, d) g(d) d s_{d}
$$

■ $F: L^{2}\left(\mathbb{S}^{m-1}\right) \rightarrow L^{2}\left(\mathbb{S}^{m-1}\right)$ is injective and has dense range.

The Inverse Problem

Lemma (Mixed reciprocity)

$$
G_{b}^{\infty}(\hat{x}, z)=\gamma_{m} u_{b}(z,-\hat{x}) \text { for all } z \in \mathbb{R}^{m} \text { and } \hat{x} \in \mathbb{S}^{m-1}
$$

- $F_{d} g=G H g$
$G: H^{-1 / 2}\left(\Gamma_{0}\right) \times \mathcal{H}^{-1}\left(\Gamma_{0}\right) \rightarrow L^{2}\left(\mathbb{S}^{m-1}\right)$ is the solution operator associated with the forward problem mapping boundary data to the far field of the corresponding radiating solution, and

$$
H g:=\left(-\nabla_{\Gamma} \cdot\langle\beta f\rangle \nabla_{\Gamma}+\gamma\right) u_{b, g}, u_{b, g}(x):=\int_{\mathbb{S}^{m-1}} u_{b}(x, d) g(d) d s_{d}
$$

$\square F: L^{2}\left(\mathbb{S}^{m-1}\right) \rightarrow L^{2}\left(\mathbb{S}^{m-1}\right)$ is injective and has dense range.
■ $H: L^{2}\left(\mathbb{S}^{m-1} \rightarrow H^{-1 / 2}\left(\Gamma_{0}\right) \times \mathcal{H}^{-1}\left(\Gamma_{0}\right)\right.$ has dense range

The Inverse Problem

Lemma (Mixed reciprocity)

$$
G_{b}^{\infty}(\hat{x}, z)=\gamma_{m} u_{b}(z,-\hat{x}) \text { for all } z \in \mathbb{R}^{m} \text { and } \hat{x} \in \mathbb{S}^{m-1}
$$

- $F_{d} g=G H g$
$G: H^{-1 / 2}\left(\Gamma_{0}\right) \times \mathcal{H}^{-1}\left(\Gamma_{0}\right) \rightarrow L^{2}\left(\mathbb{S}^{m-1}\right)$ is the solution operator associated with the forward problem mapping boundary data to the far field of the corresponding radiating solution, and

$$
H g:=\left(-\nabla_{\Gamma} \cdot\langle\beta f\rangle \nabla_{\Gamma}+\gamma\right) u_{b, g}, u_{b, g}(x):=\int_{\mathbb{S}^{m-1}} u_{b}(x, d) g(d) d s_{d}
$$

$\square F: L^{2}\left(\mathbb{S}^{m-1}\right) \rightarrow L^{2}\left(\mathbb{S}^{m-1}\right)$ is injective and has dense range.
■ $H: L^{2}\left(\mathbb{S}^{m-1} \rightarrow H^{-1 / 2}\left(\Gamma_{0}\right) \times \mathcal{H}^{-1}\left(\Gamma_{0}\right)\right.$ has dense range

- For $L \subset$ 「

$$
L \subset \Gamma_{0} \Longleftrightarrow \phi_{L}^{\infty} \in \operatorname{Range}(G)
$$

The Inverse Problem

Theorem (Linear Sampling Method)

1 For an arbitrary $\operatorname{arc} L \subset \Gamma_{0}$ and $\epsilon>0$, there exists a function $g_{L}^{\epsilon} \in L^{2}\left(\mathbb{S}^{m-1}\right)$ such that

$$
\left\|F_{D} g_{L}^{\epsilon}-\phi_{\infty}^{L}\right\|_{L^{2}\left(\mathbb{S}^{m-1}\right)}<\epsilon
$$

and, as $\epsilon \rightarrow 0$, the corresponding solution $u_{b, g_{L}}$ to the background problem converges in \mathcal{H}.
2 For $L \not \subset \Gamma_{0}$ and $\epsilon>0$, every function $g_{L}^{\epsilon} \in L^{2}\left(\mathbb{S}^{m-1}\right)$ such that

$$
\left\|F_{D} g_{L}^{\epsilon}-\phi_{\infty}^{L}\right\|_{L^{2}\left(\mathbb{S}^{m-1}\right)}<\epsilon
$$

is such that the corresponding solution $u_{b, g_{L}}$ to the background problem satisfies

$$
\lim _{\epsilon \rightarrow 0}\left\|u_{b, g_{L}}\right\|_{\mathcal{H}}=\infty \quad \text { and } \quad \lim _{\epsilon \rightarrow 0}\left\|g_{L}^{\epsilon}\right\|_{L^{2}\left(\mathbb{S}^{m-1}\right)}=\infty
$$

Example of Reconstruction

Example of Reconstruction

Example of Reconstruction

Remarks

F. Cakoni, I. De Teresa Trueba, H. Haddar, and P. MoNK, Nondestructive testing of the delaminated interface between two materials, SIAM J. Appl. Math. (accepted).

We are working on Maxwell's equation model for this problem.

