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Healthy Material - Everything Known

ui

us

-

+Ω
μ+,n+

Γ

Ω
μ -,n --

Γ1

extΩ
μ=1,n=1

Ω := Ω− ∪ Ω+ ⊂ Rm, m = 2,3

∆uext + k2uext = 0 in Ωext

∇ ·
(

1
µ+

∇u+

)
+ k2n+u+ = 0 in Ω+

∇ ·
(

1
µ−

∇u−
)
+ k2n−u− = 0 in Ω−

with continuity of fields and conormal derivatives across interfaces

uext = us + ui we take ui := eikx ·d , d unit vector

lim
r→∞

|x |
m−1

2

(
∂us

∂|x |
− ikus

)
= 0, uniformly in x̂ = x/|x |

k is the wave number in Ωext (k = ω
√
εextµext ).
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Material with Defect at the Interface
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∆uext + k2uext = 0 in Ωext

∇ ·
(

1
µ+

∇u+

)
+ k2n+u+ = 0 in Ω+

∇ ·
(

1
µ−

∇u−
)
+ k2n−u− = 0 in Ω−

∇ ·
(

1
µ0

∇U
)
+ k2n0U = 0 in Ω0.

uext = u+ and ∇uext · ν = 1/µ+∇u+ · ν on Γ1

u+ = u− and 1/µ+∇u+ · ν = 1/µ−∇u− · ν on Γ\Γ0

U = u+ and 1/µ0∇U · ν = 1/µ+∇u+ · ν on Γ+

U = u− and 1/µ0∇U · ν = 1/µ−∇u− · ν on Γ−.
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The Inverse Problem

Denote the unit sphere by Sm−1 := {x ∈ Rm, |x | = 1}

us(x ,d) = γm
eik |x |

|x |(m−1)/2 u∞(x̂ ,d) + O
(

1
|x |

)
where γm = eiπ/4

√
8πk

, if m = 2 and γm = 1
4π if m = 3.

Data

u∞(x̂ ,d) for incident directions d and observation directions x̂ , both
on a nonzero measure subset of Sm−1

The Inverse Problem

Determine the damaged part Γ0 of the known interface Γ from the
above (measured) data without knowing µ0 and n0
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Asymptotic Model

f+δ (s)

χ 
Γ
(s)

-f- (s)Γ0

Γ+

Γ-
δ (s)ν

(s)ν

χ 
Γ
(s)

-

+
χ 

Γ
(s)

Small parameter: the thickness of the open-
ing is much smaller than interrogating wave-
length λ := 2π/k and the thickness of the lay-
ers.

Introduces essential computational difficulty in the numerical
solution of the forward problem.

We use the linear sampling method to solve the inverse problem
and want to probe along the known boundary Γ for the defective
part Γ0.

Replace the opening Ω0 by appropriate jump conditions on u+ and
u− across the exact part of the boundary Γ0
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Asymptotic Model

We use asymptotic method.

B. ASLANYÜREK, H. HADDAR, AND H. SAHINTÜRK,
Generalized impedance boundary conditions for thin
dielectric coatings with variable thickness, Wave Motion,
48, 681700, 2011.

B. DELOURME, H. HADDAR, AND P. JOLY, Approximate
models for wave propagation across thin periodic
interfaces, J. Math. Pures Appl., 98:2871, 2012.

B. DELOURME Modeles et asymptotiques des interfaces
fines et periodiques en electromagnetisme, PhD thesis,
Universite Pierre et Marie Curie - Paris VI, 2010.



Asymptotic Model

f+δ (s)

χ 
Γ
(s)

-f- (s)Γ0

Γ+

Γ-
δ (s)ν

(s)ν

χ 
Γ
(s)

-

+
χ 

Γ
(s)

Γ0 := {χΓ(s), s ∈ [0,L]}

Neighborhood of Γ0: x = χΓ(s)+ην(s), ξ =
η

δ

Γ± =
{
χΓ(s) + δf±(s)ν(s), s ∈ [0,L]

}

U(s, ξ) =
∞∑
j=0

δjUj(s, ξ), u±(s, η) =
∞∑
j=0

δju±
j (s, η) (∗)

We expand each of the terms u±
j (s, η) in a power series with respect

to the normal direction coordinate η around zero, i.e.

u±
j (s, η) = u±

j (s,0) + η
∂

∂η
u±

j (s,0) +
η2

2
∂2

∂η2 u±
j (s,0) + ...

and after plugging in (∗) we obtain

u±(s, η) =
∞∑
j=0

∞∑
k=0

δj η
k

k !
∂k

∂ηk u±
j (s,0).



Asymptotic Model

Dirichlet part of the transmission condition can be directly
computed by equating terms with the same powers of δ.

Neuman part of the transmission needs the computation of
co-normal derivatives in curvilinear coordinates and then equate
the same powers of δ.

Equation for Uj is also written in curvilinear coordinates, where
the ansatz is substituted the same powers of δ are equated.

Remark

If we assume that f±(0) = f±(L) = 0 the next asymptotic model can
be rigorously justified following the approach of Delourme’s thesis for
periodic interfaces.
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Asymptotic Model
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+Ω
μ+,n+

Γ

Ω
μ -,n --

Γ1

extΩ
μ=1,n=1

0
Γ

In Ωext , Ω+ and Ω− we have the same equa-
tions and on Γ1 and Γ \ Γ0 the same transmis-
sion conditions as for the healthy material.

Recalling the notation

[w ] = w+ − w− and 〈w〉 = (w+ + w−)/2

on Γ0 we have that

[u] = α

〈
1
µ

∂u
∂ν

〉
and

[
1
µ

∂u
∂ν

]
= (−∇Γ · 〈βf 〉∇Γ + γ) 〈u〉

where

α = 2δ 〈f (µ0 − µ)〉 , β± = 2δ
(

1
µ0

− 1
µ±

)
, γ = 2δk2 〈f (n − n0)〉



Well-posedness of Asymptotic Model

Introduce H :=
{

u ∈ H1(BR\Γ0) such that
√

f± ∇Γ 〈u〉 ∈ L2(Γ0)
}

‖u‖2
H = ‖u‖2

H1(BR\Γ0)
+
∥∥∥√f+ ∇Γ 〈u〉

∥∥∥2

L2(Γ0)
+
∥∥∥√f− ∇Γ 〈u〉

∥∥∥2

L2(Γ0)
.

Assume that <
(

1
µ±

)
≥ ε1 > 0, and <

(
1
µ0

− 1
µ±

)
≥ ε2 > 0

0 ≤ =(n±) ≤ =(n0) and 0 ≤ =(µ±) ≤ =(µ0)

f± go to zero at the boundary of Γ0 in Γ such that
1/ 〈f (µ0 − µ)〉 ∈ Lt(Γ0) for t = 1 + ε in R2 and t = 7/4 + ε in R3

for arbitrary small ε > 0.

Theorem
Under the above assumptions the direct approximate model has a
unique solution u ∈ H which depends continuously on the incident
wave ui with respect to the H-norm.



Well-posedness of Asymptotic Model

Introduce H :=
{

u ∈ H1(BR\Γ0) such that
√

f± ∇Γ 〈u〉 ∈ L2(Γ0)
}

‖u‖2
H = ‖u‖2

H1(BR\Γ0)
+
∥∥∥√f+ ∇Γ 〈u〉

∥∥∥2

L2(Γ0)
+
∥∥∥√f− ∇Γ 〈u〉

∥∥∥2

L2(Γ0)
.

Assume that <
(

1
µ±

)
≥ ε1 > 0, and <

(
1
µ0

− 1
µ±

)
≥ ε2 > 0

0 ≤ =(n±) ≤ =(n0) and 0 ≤ =(µ±) ≤ =(µ0)

f± go to zero at the boundary of Γ0 in Γ such that
1/ 〈f (µ0 − µ)〉 ∈ Lt(Γ0) for t = 1 + ε in R2 and t = 7/4 + ε in R3

for arbitrary small ε > 0.

Theorem
Under the above assumptions the direct approximate model has a
unique solution u ∈ H which depends continuously on the incident
wave ui with respect to the H-norm.



Well-posedness of Asymptotic Model

Introduce H :=
{

u ∈ H1(BR\Γ0) such that
√

f± ∇Γ 〈u〉 ∈ L2(Γ0)
}

‖u‖2
H = ‖u‖2

H1(BR\Γ0)
+
∥∥∥√f+ ∇Γ 〈u〉

∥∥∥2

L2(Γ0)
+
∥∥∥√f− ∇Γ 〈u〉

∥∥∥2

L2(Γ0)
.

Assume that <
(

1
µ±

)
≥ ε1 > 0, and <

(
1
µ0

− 1
µ±

)
≥ ε2 > 0

0 ≤ =(n±) ≤ =(n0) and 0 ≤ =(µ±) ≤ =(µ0)

f± go to zero at the boundary of Γ0 in Γ such that
1/ 〈f (µ0 − µ)〉 ∈ Lt(Γ0) for t = 1 + ε in R2 and t = 7/4 + ε in R3

for arbitrary small ε > 0.

Theorem
Under the above assumptions the direct approximate model has a
unique solution u ∈ H which depends continuously on the incident
wave ui with respect to the H-norm.



Well-posedness of Asymptotic Model

Introduce H :=
{

u ∈ H1(BR\Γ0) such that
√

f± ∇Γ 〈u〉 ∈ L2(Γ0)
}

‖u‖2
H = ‖u‖2

H1(BR\Γ0)
+
∥∥∥√f+ ∇Γ 〈u〉

∥∥∥2

L2(Γ0)
+
∥∥∥√f− ∇Γ 〈u〉

∥∥∥2

L2(Γ0)
.

Assume that <
(

1
µ±

)
≥ ε1 > 0, and <

(
1
µ0

− 1
µ±

)
≥ ε2 > 0

0 ≤ =(n±) ≤ =(n0) and 0 ≤ =(µ±) ≤ =(µ0)

f± go to zero at the boundary of Γ0 in Γ such that
1/ 〈f (µ0 − µ)〉 ∈ Lt(Γ0) for t = 1 + ε in R2 and t = 7/4 + ε in R3

for arbitrary small ε > 0.

Theorem
Under the above assumptions the direct approximate model has a
unique solution u ∈ H which depends continuously on the incident
wave ui with respect to the H-norm.



Well-posedness of Asymptotic Model

Introduce H :=
{

u ∈ H1(BR\Γ0) such that
√

f± ∇Γ 〈u〉 ∈ L2(Γ0)
}

‖u‖2
H = ‖u‖2

H1(BR\Γ0)
+
∥∥∥√f+ ∇Γ 〈u〉

∥∥∥2

L2(Γ0)
+
∥∥∥√f− ∇Γ 〈u〉

∥∥∥2

L2(Γ0)
.

Assume that <
(

1
µ±

)
≥ ε1 > 0, and <

(
1
µ0

− 1
µ±

)
≥ ε2 > 0

0 ≤ =(n±) ≤ =(n0) and 0 ≤ =(µ±) ≤ =(µ0)

f± go to zero at the boundary of Γ0 in Γ such that
1/ 〈f (µ0 − µ)〉 ∈ Lt(Γ0) for t = 1 + ε in R2 and t = 7/4 + ε in R3

for arbitrary small ε > 0.

Theorem
Under the above assumptions the direct approximate model has a
unique solution u ∈ H which depends continuously on the incident
wave ui with respect to the H-norm.



Numerical Validation
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extΩ
μ=1,n=1

Ω
μ -,n -

e(δ,d) :=
‖uext

δ − uext‖H1(BR\Ω)

‖uext‖H1(BR\Ω)

e∞(δ,d) :=
‖u∞

δ − u∞‖L2(S1)

‖u∞‖L2(S1)

f−(s) = 0, f+(s) := −l−2(s + l)(s − l) for s ∈ (−l , l), with l = 0.2π,

on the interface r = 1. The material properties are chosen to be
n− = 1, µ− = 1 in Ω−, n+ = 1, µ+ = 1 in Ω+, n0 = 0.2, µ0 = 0.9 in Ω0,
and the wave number k = 3.



Numerical Validation

0 2 4 6
θ

0.008

0.01

0.012

0.014

10 -3 10 -2 10 -1 10 0

δ

10 -6

10 -4

10 -2

10 0

e(d, δ)
line O( δ)

line O( δ
2 )

(a) (b)

Panel (a) shows the H1 relative error of total fields resulting from
different incident direction. The maximum error is obtained for
d = (1,0). Panel (b) the H1 relative error for different values of δ and
d = (1,0). The approximated rate of convergence is O(δ1.7).



Numerical Validation
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Panel (a) shows the plot of the absolute value of the far field for both
models for δ = 0.05. Panel (b) shows the far field L2 relative error
e∞(δ,d), for different values of δ and d = (1,0). The approximated
rate of convergence is O(δ1).



The Inverse Problem

us the scattered field due to the layered media and the flaw on
the interface.

us(x ,d) = γm
eik |x |

|x |(m−1)/2 u∞(x̂ ,d) + O
(

1
|x |

)
, m = 2,3

Data

u∞(x̂ ,d) for incident directions d and observation directions x̂ in a
nonzero measure subset of Sm−1

The Inverse Problem

Determine the damaged part Γ0 of the known interface Γ from the
above (measured) data without knowing µ0 and n0



The Inverse Problem

Data defines the far field operator F : L2(Sm−1) → L2(Sm−1)

(Fg) (x̂) =
∫
Sm−1

u∞(x̂ ,d)g(d)dsd

By linearity Fg = Fbg + Fdg with

(Fbg) (x̂) =
∫
Sm−1

u∞
b (x̂ ,d)g(d)dsd

where u∞
b (x̂ ,d) is the far field pattern of the scattered field us

b(x ,d)
due to healthy material, i.e the unique solution
ub = us

b + eikx·d ∈ H1
loc(Rm) of

∇ ·
(

1
µ
∇ub

)
+ k2nub = 0 in Rm

and us
b satisfies Sommerfeld radiation condition.



The Inverse Problem

Consider the far field equation

(Fdg) (x̂) = φ∞
L , L ⊂ Γ

where for some (αL, βL) ∈ L2(L)× H̃1(L)

φ∞
L (x) = γ−1

m

∫
L

{
αL(y)G∞

b (x , y) + βL(y)
1
µ

∂G∞
b (x , y)
∂ν(y)

}
ds(y)

with G∞
b (x , y) the far field of the radiating solution Gb(·, z) to

∇ ·
(

1
µ
∇Gb(·, z)

)
+ k2nGb(·, z) = −δ(· − z), in Rm \ {z}



The Inverse Problem

Lemma (Mixed reciprocity)

G∞
b (x̂ , z) = γmub(z,−x̂) for all z ∈ Rm and x̂ ∈ Sm−1

Fdg = GHg
G : H−1/2(Γ0)×H−1(Γ0) → L2(Sm−1) is the solution operator
associated with the forward problem mapping boundary data to
the far field of the corresponding radiating solution, and

Hg := (−∇Γ · 〈βf 〉∇Γ + γ)ub,g , ub,g(x) :=
∫
Sm−1

ub(x ,d)g(d)dsd

F : L2(Sm−1) → L2(Sm−1) is injective and has dense range.

H : L2(Sm−1 → H−1/2(Γ0)×H−1(Γ0) has dense range

For L ⊂ Γ
L ⊂ Γ0 ⇐⇒ φ∞

L ∈ Range(G)
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The Inverse Problem

Theorem (Linear Sampling Method)

1 For an arbitrary arc L ⊂ Γ0 and ε > 0, there exists a function
gε

L ∈ L2(Sm−1) such that

‖FDgε
L − φL

∞‖L2(Sm−1) < ε

and, as ε → 0, the corresponding solution ub,gε
L

to the
background problem converges in H.

2 For L 6⊂ Γ0 and ε > 0, every function gε
L ∈ L2(Sm−1) such that

‖FDgε
L − φL

∞‖L2(Sm−1) < ε

is such that the corresponding solution ub,gε
L

to the background
problem satisfies

lim
ε→0

‖ub,gε
L
‖H = ∞ and lim

ε→0
‖gε

L‖L2(Sm−1) = ∞.



Example of Reconstruction
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Example of Reconstruction
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Example of Reconstruction
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Remarks

F. CAKONI, I. DE TERESA TRUEBA, H. HADDAR, AND P.
MONK, Nondestructive testing of the delaminated interface
between two materials, SIAM J. Appl. Math. (accepted).

We are working on Maxwell’s equation model for this problem.


