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Introduction
Optics in BioPhysics

Light propagation
through tissue used
for mammographic
investigations (Cutler
1929)

Jösis 1977, used
optical radiation in
the near-infrared
band as a method for
studying cerebral
haemodynamics on
the exposed cortex
of a cat.
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Introduction
Near InfraRed Spectroscopy

In Near Infrared Spectroscopy (NIRS), tissue is illuminated with
selected wavelengths, and light that has travelled through the
tissue between source and detector optodes is measured.

The change in chromophore concentration is assumed to be
spread over the volume being measured. This leads to a
partial-volume effect, and underestimation of the magnitude of
localized changes.
From the attenuation of the light changes in the concentrations of
chromophores such as oxygenated (HbO2) and deoxygenated
heamoglobin (HbR), and cytochrome oxidase can be calculated.
NIRS is widely used to refer to monitoring of haemodynamic
processes in tissues such as muscle and breast, and the brain of
both adults and infants.
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Introduction
functional Near Infra Red Spectroscopy

Functional Near Infrared Spectroscopy (fNIRS) refers to the application
of NIRS to the haemodynamic response to an external stimulus; this is
a direct analogy to the term Functional Magnetic Resonance Imaging
(fMRI) as distinguished from strutural or “static” MRI. Thus fNIRS is a
dynamic modality (compare fMRI).
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Introduction
Comparison of Modalities

OT is faster than fNIRS
OT gives a spectral
contrast

figure taken from
S. Lloyd-Fox, Neuroscience
and BioBehavioral Reviews
2009
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Optical Tomography
Neonatal imaging
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Optical Tomography
Neonatal imaging
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Modelling in Optical Tomography
Physical Models of Light Propagation

The Radiative Transfer Equation (RTE) is a natural description of
light considered as photons. It represents a balance equation where
photons in a constant refractive index medium, in the absence of
scattering, are propagated along rays l := r0 + l ŝ

ŝ · ∇φ+ µaφ = 0 ≡ Tµaφ = 0 (1)

whose solution

φ = φ0 exp
[
−
∫

l
µa(r0 + l ŝ)dl

]
(2)

is the basis for the definition of the Ray Transform

gŝ(p) := − ln
[
φ

φ0

]
=

∫ ∞
−∞

µa(pŝ⊥ + l ŝ)dl ≡ gŝ = Rŝµa (3)
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Modelling in Optical Tomography
The Radiative Transfer Equation

In the presence of scattering, and with source terms q, eq.(1) becomes

(ŝ · ∇+ µa(r) + µs(r))φ(r , ŝ) = µs

∫
Sn−1

Θ(ŝ, ŝ′)φ(r , ŝ′)d ŝ′ + q(r , ŝ)

≡ [Tµtr − µsS]︸ ︷︷ ︸
L

φ = q (4)

µtr = µs + µa is the attenuation coefficent
S is the scattering operator, (local, non propagating).
Method of successive approximation (Sobolev 1963) :

φ =

[
T −1
µtr

+ T −1
µtr

µsST −1
µtr

+ . . .
(
T −1
µtr

µsS
)k
T −1
µtr

. . .

]
q (5)

The first term may be found from the Ray Transform, giving an
alternative equation for the collided flux

[Tµtr − µsS]φcollided = µsS T −1
µtr

q︸ ︷︷ ︸
uncollided

(6)
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Modelling in Optical Tomography
RTE solutions
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Modelling in Optical Tomography
Diffusion Approximation

In the Diffusion pproximation (DA), the radiance is approximated by
first order spherical harmonics only (ŝ ≡ [Y1,−1,Y1,0,Y1,1]), giving

φ(r , ŝ) ≈ 1
4π

Φ(r) +
3

4π
ŝ · J(r) (7)

where Φ(r) and J(r) are the photon density and current defined as

Φ(r) =
∫

Sn−1 φ(r , ŝ)dŝ (8)
J(r) =

∫
Sn−1 ŝφ(r , ŝ)dŝ. (9)

Inserting the approximation (7) into equation (4) results in a second
order PDE in the photon density

−∇ · κ∇Φ(r) + µaΦ(r) = q0(r) ≡ DΦ = q0 , (10)

with κ = 1
µa+(1−g)µs)

. Equation(10) and its associated frequency and
time domain versions, including the Telegraph Equation, are the most
commonly used in DOI.
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The Inverse Problems in Optical Tomography
Parameter Identification

Non-linear reconstruction
x ≡ {µa, κ} or x ≡ {µa, µ

′
s} and

A′i

(
µδa
κδ

)
= −

∫
Ω

(
U∗i Ui

∇U∗i · ∇Ui

)
·
(
µδa
κδ

)

S.Arridge (University College London) DOT and PAT Durham 18th July 2016 15 / 47



Outline

1 Introduction

2 Modelling in Optical Tomography

3 PhotoAcoustics

4 Coupled Physics Imaging : Quantitative PhotoAcoustic Tomography

5 Summary

6 Acknowledgements

S.Arridge (University College London) DOT and PAT Durham 18th July 2016 16 / 47



PhotoAcoustic Tomography
The Early Years
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PhotoAcoustic Tomography
Motivation

Optical Imaging : Pros
High intrinsic contrast based upon optical absorption and scattering
Spectroscopic specificity – chemical information
Functional imaging of physiological parameters – blood oxygenation

Optical Imaging : Cons
Imaging depth/spatial resolution limited by strong optical scattering

Ultrasound Imaging : Pros
Images of soft tissue anatomy
High spatial resolution: scalable with depth 100’s µm −− ∼ mm
Large penetration depth: ∼ 10cm
Physiological information via measurement of blood flow

Ultrasound Imaging : Cons
Weak contrast provided by certain important targets – e.g. the
microvasculature
Limited specificity: weak sensitivity to chemical differences
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PhotoAcoustic Tomography
PhotoAcoustic Signal Generation
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PhotoAcoustic Tomography
PhotoAcoustic Spherical BackProjection
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PhotoAcoustic Tomography
Some PAT systems
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Mathematical Models
Point Detectors and the wave equation model

Initial value Problem(
c2(r)∇2 − ∂2

∂t2

)
p(r , t) = 0 t ≥ 0, r ∈ R3

p(r ,0) = Γ(r)µa(r)Φ(r)

∂p(r , t)
∂t

∣∣∣∣
t=0

= 0

Data pobs(rs, t) measured on ∂Ω, but model assumes propagation
beyond this, i.e. ∂Ω is not a boundary condition
forward model

A : p0(r) 7→ pobs(rs, t) t ≥ 0, rs ∈ ∂Ω
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Mathematical Models
Acoustically Homogeneous Media and Spherical Means

In the constant speed case c(r) = c, the signal detected at an
observation point at time t is the sum of waves arriving from a distance
r = ct .
This leads to the Spherical Mean Transform (SMT). In 3D this is stated

Mf (r , t) :=
1

4π

∫
S2

f (r + ct ŝ)d2ŝ

In analogy to the Radon Transform which integrates functions over
planes, the SMT can be used as a basis for analytical inversions. In
particular the adjoint ofM can be used as the basis for back
Projection and Filtered Back Projection formulae.
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PhotoAcoustic Reconstruction Methods
Filtered backprojection

Filtered Back projection formulae for SMT (Finch, Patch, Rakesh,
2006), constant speed case. Complete data on sphere radius R.
‘Universal’ Backprojection, valid for spheres, cylinders and planes (Xu
and Wang, 2005)

1

p0(r) =
1

8π2∇ ·
∫
∂Ω

n̂(r ′)
(

1
ρ

∂

∂ρ

pobs(r ′, ρ)

ρ

)∣∣∣∣
ρ=|r ′−r |

d2r ′

2

p0(r) = − 1
8π2

∫
∂Ω

∂

∂n

(
1
ρ

∂

∂ρ

pobs(r ′, ρ)

ρ

)∣∣∣∣
ρ=|r ′−r |

d2r ′

where n̂(r ′) is the outward normal vector to ∂Ω. Differentiation in
space is the filtering step, and integration over spheres is the
backprojection step.
Extensions to arbitrary n ≥ 2 in (Kunyansky 2007). More details
(Kuchment 2014).
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PhotoAcoustic Reconstruction Methods
Time Reversal

Initial value Problem(
c2∇2 − ∂2

∂t2

)
p = 0

p|t=0 = ΓµaΦ

∂p
∂t

∣∣∣∣
t=0

= 0

Boundary value Problem (t
running backwards from T to 0)(

c2∇2 − ∂2

∂t2

)
p = 0

p(r , t)|t=T = 0
p(r , t)|∂Ω = pobs(rs, t)
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Coupled Physics Imaging
Quantitiative PhotoAcoustic Tomography

Naturally occuring contrast agents
(chromphores) give rise to optical
absorption in the medium.

The absorption and scattering
coefficients µa and µ′

s determine the
fluence distribution Φ,

µaΦ 7→ H (deposited energy).

ΓH 7→ p0 (pressure distribution) via
thermalisation,

p0 propagates as an acoustic pulse
(elasticity of tissue).

Sensor detects PA time series p(t).

Cox, A. Laufer, Beard, 2012.
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Quantitative PhotoAcoustic Tomography
Optimisation Approaches

Strategy used here : fit a model of light transport to the reconstructed
data

{µ̂a, µ̂s} = arg min
µa,µs

[
E :=

1
2
||Hobs − F (µa, µs)||2 + R(µa, µs)

]
where F (µa, µ

′
s) = µaΦ(µa, µ

′
s) is the forward model of optical energy

absorption, and R is a regularisation term.

Forward model F can be based on RTE or diffusion.
Principle regularisation term used : Total Variation.
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Quantitative PhotoAcoustic Tomography
Error functionals

Rearranging we get

DE
(
µδa
µδs

)
= −

〈
Φ(Hobs − F (µa, µs)), µδa

〉
L2(Ω)

+
〈
φφ∗, µδa

〉
L2(Ω×Sn−1)

+
〈
φφ∗, µδs

〉
L2(Ω×Sn−1)

−
〈
φSφ∗, µδs

〉
L2(Ω×Sn−1)

so that

∂E
∂µa

= −Φ(Hobs − F (µa, µs)) +

∫
Sn−1

φ(ŝ)φ∗(ŝ)dŝ

∂E
∂µs

=

∫
Sn−1

φ(ŝ)φ∗(ŝ)dŝ −
∫

Sn−1

∫
Sn−1

φ(ŝ)Θ(ŝ, ŝ′)φ∗(ŝ′)dŝdŝ′
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Quantitative PhotoAcoustic Tomography
Matrix Free method

Explicit construction of Jacobians is too expensive⇒ use matrix free
method based on adjoint fields
Limited memory BFGS optimisation

Using 4 images from 4 illumination directions, Tikhonov regularisation
(Saratoon, Tarvainen, Cox, A., 2013)
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Forward Models
Optical Model

Diffusion Approximation (DA) is solved with Finite Element Method
(FEM). Discretisation :

µa(r) ≈ µh
a (r) =

Na∑
j=1

µa,juj(r) , µ̂a = (µa,1, . . . , µa,Na)

µ′s(r) ≈ µ‘h
s (r) =

Ns∑
j=1

µ′s,juj(r) , µ̂′s = (µ′s,1, . . . , µ
′
s,Ns

)

Φ(r) ≈ Φh(r) =

NF∑
j=1

Φjuj(r) , Φ̂ = (Φ1, . . . ,ΦNF)

FEM solution obtained by solving

K (x)Φ̂(x ; q) = b(q)⇔ Φ̂(x ,q) = K−1(x)b(q)

where K is the FEM matrix, b arises from the light source s, and
x = (µ̂a, µ̂

′
s) is a vector of optical parameters.
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Forward Models
Acoustic Model

The acoustic model is approximated with

1
c2

∂

∂t2 p(r , t)−∇2p(r , t) =
1
c2 p0(r)

∂

∂t
gτ (r , t) , r ∈ Rn, t ∈ R (11)

where gτ is a Gaussian function approximating instantaneous heating
(or delta function). Equation (11) has an analytical solution, that can be
expressed as convolution

p(r , t) =

∫
Ω

1
c2 p0(r ′)F−1{iωĝτ (ω)Ĝ(||r − r ′||, ω)}(t)dr ′

where F−1{}(t) is the temporal inverse Fourier transform,
ĝτ (ω) = F {gτ (t)} (ω) , and

Ĝ(||r − r ′||, ω)} =

{
i1
4H(1)

0

(w
c ||r − r ′||

)
, n = 2

1
4π||r−r ′|| exp

(
iw

c ||r − r ′||
)

n = 3

is the Green’s function defined by ∇2Ĝ + ω2

c2 Ĝ = −δ(r).
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Forward Models
Acoustic Mode - continued l

Approximating p0 with base functions vm as

p0(r) ≈ ph
0(r) =

M∑
m=1

p0,mvm(r) p̂0 = (p0,1, . . . ,p0,M)

the photoacoustic time series at detector located at dk (k = 1 . . . nK ) is

p(dk , t) =
M∑

m=1

p0,mwm(dk , t)

where
wm(r , t) =

∫
Ω

1
c2 vm(r ′)F−1

{
iωĝτ (ω)Ĝ(||r − r ′||, ω)

}
(t)dr ′ (12)

p̂t = Wp̂0

with W being formed by e.g. Gaussian quadrature integration of (12).
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Forward Models
PhotoAcoustic Model

By writing
p0,q = γµa,qΦq

and assuming γ being known, the combined photoacoustic model
describing acoustic time series corresponding to optical parameters
x = (µ̂a, µ̂

′
s) and illumination q is then

p̂t = Wdiag {µ̂a}K−1(x)b(q).

Given nQ illuminations q1 . . . qnQ , and corresponding photoacoustic
time series p̂t ;1, . . . , p̂t ,nQ , the forward model can be written as

z = f (x),

with z =
(
p̂t ;1, . . . , p̂t ,nQ

)
∈ RnK×nT×nQ

and f (x) : RNa+Ns → RnK×nT×nQ given by

f (x) =
(

Wdiag {µ̂a}K−1(x)b(q1), . . . ,Wdiag {µ̂a}K−1(x)b(qnQ )
)
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Inverse Problem
Bayesian Approach

Taking Bayesian approach to the photoacoustic inverse problem, and
assuming additive noise model

y = f (x) + e

where y is z = f (x) polluted by noise e,

the posterior distribution,
corresponding to additive noise model, is

π(x |y) ∝ πx (x)πe(y − f (x)),

where πe and πx are the probability densities of the noise and the prior.
Assuming Gaussian distribution for the noise e and the prior of x

e ∼ N (ηe, Γe), x ∼ N (ηx , Γx )

the maximum a posteriori (MAP) estimate can be obtained as
xMAP = arg minx

[
||Le(y − f (x)− ηe)||2 + ||Lx (x − ηx )||2

]
,

where LeLT
e = Γ−1

e and LxLT
x = Γ−1

x are Cholesky decompositions of
the covariance matrices.
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Inverse Problem
Bayesian Approach - continued

In addition to point estimates, such as MAP, Bayesian approach
enables approximation of the error of the estimate. One such
approximation is the credibility interval.

Given MAP estimate xMAP, it is possible to linearize the forward model
f (x) using Taylor series as

f (x) ≈ f (xMAP) + Jf (xMAP)(x − xMAP);

where Jf (xMAP) is the Jacobian of f evaluated at xMAP. Substituting the
linearization into the observation model

y = f (xMAP) + Jf (xMAP)(x − xMAP) + e,

one finds posterior distribution being approximated as Gaussian, s.t.
x |y ∝ N (η, Γ),

where η = xMAP, and Γ =
(

JT
f Γ−1

e Jf + Γ−1
x

)−1

is the approximative covariance matrix of the posterior distribution of
the original inverse problem.
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Inverse Problem
Bayesian Approach - continued

The approximative credibility interval is then

Cα = [xMAP − ασ, xMAP + ασ];

where σ is vector of square roots of the diagonals of Γ, and α is 1, 2, or
3 for 68.3%, 95.5%, and 99.7% credibility intervals respectively.

It must be emphasized, that the credibility interval is dependent on the
forward model and the prior. If either the model or the prior information
is poor, then the estimates (and the credibility intervals) are bound to
be misleading.
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Simulations

The investigated domain was [−5mm,5mm]n, n = 2 and n = 3.
µa varied between 0.07− 0.98mm−1 and µ′s between
0.75− 1.36mm−1. Sound speed of c = 1500 m=s was used.
The data was formed by two different illuminations. Each illumination
had light entering the investigated domain from 1-3 sides with both
illluminations covering at least 2 sides.
Acoustic detectors were located densely on 1-4 sides (2D) and 1 side
(3D) of the domain, as well as sparsely on a circle (2D). Number of
detectors was 31 - 128 (2D) and 1089 (3D).
Measurement data was simulated in grid with 372 = 1369 (2D) and
373 = 50653 (3D) nodes. Reconstructions were computed in grids with
312 = 961 (2D) and 313 = 29791 (3D) nodes.
Noise was added to the simulated photoacoustic time series with
standard deviation being 5%, 1%, or 0.1% of the peak-to-peak
pressure amplitude.
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Simulations (continued)

Accurate noise statistics were assumed in the reconstructions.
Ornstein-Ohlenbeck was used for the prior with ζ = 1mm. Prior
parameters were chosen for µa and µ′s separately, s.t. the mean of the
prior corresponded to mean of peak-to-peak variation of parameters,
and peak-to-peak variation corresponed to mean ± standard deviation
of the prior:

η =
1
2

(max+min), σ =
1
2

(max- min),

MAP estimates were obtained in 2D and 3D for varying illumination
and acoustic detector setups. 99.7% credibility intervals were
computed for some 2D estimates.
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Simulations (2D)
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Simulations (2D)
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Simulations (2D)
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Simulations (3D)
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Summary

1 Optical Tomography is of interest because of its spectral contrast
that relate to functional activity of tissues

Low resolution but relatively fast
Inverse problems in parameter identification, source identification,
or both
Multimodality systems provide complementary information

2 Photoacoustic imaging : seeing optical contrast with high
resolution

an example of “Coupled Physics Imaging”, not just data fusion
large variety of systems with different resolution/speed/depth
penetration trade off

Many challenges remain, in solving both the acoustic and optical
inverse problems together : “Quantitative PhotoAcoustic Tomography”.
Next step : combine numerical methods (time -reversal) with optical
models (radiative transport equation).
The goal is to get high resolution, dynamic and spectrally resolved
quantitiative images (5D).
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