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Scattering by an Inhomogeneous Medium
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The direct scattering problem under
consideration is to find u such that

∆u + k2nu = 0 in R3

u = us + ui

lim
r→∞

r
(
∂us

∂r
− ikus

)
= 0

where ui (x) = eikd·x , |d | = 1, n := n(x) is piecewise smooth and
n = 1 on R3 \ D where D is a smooth bounded domain with
connected complement. There exists a unique solution u of the direct
scattering problem for which us has the asymptotic behavior

us(x ,d) =
eikr

r
u∞(x̂ ,d) + O

(
1
r2

)
where x̂ = x/|x |. The function u∞ is the far field pattern of us.
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Target Signatures

Assume u∞(x̂ ,d) is known for all d and x̂ . We want to find
target signatures that can be used to signal changes in D or n,
or that can be used to identify D and n from a library of
signatures. Here are some examples

The Singularity Expansion Method attempts to measure
scattering resonances from time domain data. See for
example Melrose1 and Baum2

Transmission Eigenvalues (see Prof. Cakoni’s talk)
Stekloff eigenvalues. There is a long history of the use of
the related Dirichlet-to-Neumann map in inverse problems.

1
Geometric Scattering Theory by Richard Melrose

2
Discrimination of buried targets via the singularity expansion, Inverse Problems 13 (1997), 557-570.
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Transmission Eigenvalues

The far field operator F : L2(S2)→ L2(S2) where S2 := {x : |x | = 1}
is defined by

(Fg)(x̂) :=

∫
S2

u∞(x̂ ,d)g(d)dsd

and is injective unless k is a transmission eigenvalue, i.e. a value of k
such that there exists a nontrivial solution to

∆w + k2nw = 0 in D
∆v + k2v = 0 in D

w = v on ∂D
∂w
∂ν

=
∂v
∂ν

on ∂D

where ν is the unit outward normal to ∂D.

Transmission eigenvalues can be determined using the operator F
and carry information about n [Cakoni, Colton & Haddar 2010].
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Transmission Eigenvalues

Let k1 be the first transmission eigenvalue and suppose n(x) > 1 for
x ∈ D or n(x) < 1 for x ∈ D. Then, given k1 and a knowledge of D, a
constant n0 can be determined such that the scattering problem for
n(x) = n0 also has k1 as its first transmission eigenvalue. Then

min
D

n(x) ≤ n0 ≤ max
D

n(x).

[Cakoni, Gintides, & Haddar, 2010]

So changes in transmission eigenvalues could perhaps be used to
detect changes in n or the shape of D.
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Comments on Transmission Eigenvalues

1 An estimate of the average value of n(x) is determined.

2 Transmission eigenvalues are a physical characterization of the
media which corresponds to the non-scattering of special
incident fields.

3 To determine transmission eigenvalues require sweeping
through frequency.

4 Only real transmission eigenvalues can be detected (so the
scatterer needs to be a dielectric).
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Stekloff Eigenvalue Problem

We propose an alternative approach to using transmission
eigenvalues by modifying the far field operator and make use of
Stekloff eigenvalues3.

Given a bounded domain D, the Stekloff eigenvalue problem is
to find u 6= 0, u ∈ H1(D) and λ ∈ C such that

∆w + k2nw = 0 in D,
∂w
∂ν

+ λw = 0 on ∂D.

Stekloff eigenvalues will be our proposed target signature, and
we need to determine them from far field data.

3
Stekloff eigenvalues in Inverse Scattering, F. Cakoni, D. Colton, S. Meng and P. Monk, to appear in SIAM J.

Appl. Math.
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An aside about Stekloff eigenvalues

Standard Stekloff problem (1895): Find λ
and u 6= 0 such that

∆u = 0 in D,
∂u
∂ν

+ λu = 0 on ∂D.

This has been studied extensively

1 Eigenvalues 0 = λ1 > λ2 >→ −∞
2 Relation to Dirichlet-to-Neumann map
3 Geometric spectral theory

Vladimir Steklov4

4
The Legacy of Vladimir Andreevich Steklov by Nikolay Kuznetsov et al., Notices of the AMS, 61 (2014)

http://www.ams.org/notices/201401/rnoti-p9.pdf
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Stekloff eigenvalues for the unit disk

Stekloff eigenvalues for the Helmholtz equation are less well
behaved.

Here are graphs pf the first three Stekloff eigenvalues for the
unit disk as a function of k for n(x) = 1

Wave number k
0 1 2 3 4 5 6

S
te

k
lo

v
 E

ig
e

n
v
a

lu
e

 λ

-20

-15

-10

-5

0

5

10

15

20

m=0
m=1
m=2



Introduction Stekloff Eigenvalues Helmholtz equation Maxwell

Stekloff Eigenvalues

Theorem
Assume that n is real valued. Then Stekloff eigenvalues exist, are
real and are discrete.

The case when n(x) is complex valued (i.e. the scattering object is
absorbing) is more difficult since then the eigenvalue problem is no
longer self-adjoint.

Theorem

Assume that n(x) = n1(x) + i
n2(x)

k
when n1 > 0 and n2 > 0. Then

1 There exist infinitely many Stekloff eigenvalues in the complex
plane and they form a discrete set without finite accumulation
points.

2 Except for a finite number of eigenvalues, all the Stekloff
eigenvalues lie in a wedge of arbitrarily small angle with lower
edge on the negative x-axis.
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Modified Far Field Operator

To define the modified far field operator let ν be the unit outward
normal to ∂D and h denote the solution of the exterior impedance
problem:

∆h + k2h = 0, in R3 \ D
h(x) = eikd·x + hs(x) in R3 \ D

∂h
∂ν

+ λh = 0 on ∂D

lim
r→∞

r
(
∂hs

∂r
− ikhs

)
= 0.

For k > 0 real and λ ∈ C with =(λ) ≥ 0 this problem has a unique
solution.



Introduction Stekloff Eigenvalues Helmholtz equation Maxwell

Modified Far Field Operator

We now replace the far field operator F by the modified far field
operator F : L2(S2)→ L2(S2) defined by

(Fg)(x̂) :=

∫
S2

[u∞(x̂ ,d)− h∞(x̂ ,d)] g(d) ds(d)

where h∞ is the far field pattern of h
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Heuristic argument linking Stekloff and F
Suppose g ∈ L2(S) is a non-trivial solution of Fg = 0 then∫

S
[u∞(x̂ ,d)− h∞(x̂ ,d)]g(d) ds(d) = 0.

Then define the Herglotz wave function with kernel g by

vg(x) :=

∫
S

exp(ikx · d) g(d) ds(d)

and note that

w∞(x̂) :=

∫
S

u∞(x̂ ,d) g(d) ds(d)

is the far field pattern for

∆w + k2nw = 0 in R3

w = vg + ws in R3 \ D

lim
r→∞

r
1
2

(
∂ws

∂r
− ikws

)
= 0
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In the same way

v∞(x̂) :=

∫
S

h∞(x̂ ,d) g(d) ds(d)

is the far field pattern for v that satisfies

∆v + k2v = 0 in R3 \ D
v = vg + vs in R3 \ D

∂v
∂ν

+ λv = 0 on ∂D

lim
r→∞

r
1
2

(
∂vs

∂r
− ikvs

)
= 0.

Lemma (Rellich)
Suppose D has connected complement and that the far field
pattern z∞ of a scattering solution to the Helmholtz equation
∆z + k2z = 0 in R3 \ D is such that z∞(x̂) = 0 for all x̂ ∈ S2,
then z = 0 in R3 \ D.
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From Fg = 0 we have that w∞(x̂) = v∞(x̂). So by Rellich’s
Lemma w(x) = v(x) in R3 \ D .

Hence w satisfies the boundary value problem

∆w + k2nw = 0 in D (from the equation for w),
∂w
∂ν

+ λw = 0 on ∂D (from the boundary condition for v ).

So w will be identically zero unless λ is a Stekloff eigenvalue.
Then vg = 0 and we conclude g = 0.
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Modified Far Field Equation

Now for z ∈ D let

Φ(x , z) =
eik|x−z|

4π|x − z|
and let Φ∞ be the far field pattern for Φ(x , z), i.e.

Φ∞(x̂ , z) =
1

4π
e−ik x̂·z , x̂ =

x
|x |
.

Consider the modified equation

(Fg)(x̂) = Φ∞(x̂ , z)

where F is the modified far field operator and where g ∈ L2(S2).
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Properties of the Modified Far Field Equation I

Theorem
If λ is not a Stekloff eigenvalue then for every ε > 0 there exists
gz
ε ∈ L2(S2) such that for z ∈ D

‖Fgz
ε − Φ∞(·, z)‖L2(S2) < ε.

In addition ‖vgz
ε
‖L2(D) is bounded as ε→ 0.

If w is the solution to

∆w + k2nw = 0 in D
∂w
∂ν

+ λw =
∂Φ(·, z)

∂ν
+ λΦ(·, z) on ∂D.

then w can be uniquely decomposed as w = w i + ws where
w i ∈ H1(D) satisfies ∆w + k2w = 0 in D and ws ∈ H1

loc(R3) satisfies
the radiation condition. The function gz

ε is such that vgz
ε

satisfies

‖w i − vgz
ε
‖H1(D) = O(ε).
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Properties of the Modified Far Field Operator II

Theorem

1 Assume that λ is not a Stekloff eigenvalue and let gz
ε satisfy the

far field equation with error ε. Then if vgz
ε

is the Herglotz wave
function with kernel gz

ε for every z ∈ D we have that ‖vgz
ε
‖H1(D) is

bounded as ε→ 0.

2 Assume that λ is a Stekloff eigenvalue and let gz
ε ∈ L2(S2)

satisfy the far field equation with error ε. Then for all z ∈ D,
except for possibly a nowhere dense subset, we have that
‖vgz

ε
‖H1(D) cannot be bounded as ε→ 0.

Remark If λ is a Stekloff eigenvalue then we can obtain an
approximate solution of the far field equation unless the Stekloff
eigenfunction can be uniquely continued as a solution of
∆w + k2n(x)w = 0 into all of R3.
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Stekloff Eigenvalues and Nondestructive Testing

In nondestructive testing one is interested in small changes in the
inhomogeneity n(x). In particular, suppose n(x) is perturbed by δn
giving rise to a change in the Stekloff eigenfunction w ∈ H1(D) by δw
and Stekloff eigenvalue by δλ. Define

(f ,g) :=

∫
D

f g dx , 〈f ,g〉 :=

∫
∂D

f g ds.

Then, neglecting quadratic terms, we have that

δλ ≈ k2 (δnw ,w)

〈w ,w〉
.
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Comments on Stekloff Eigenvalues

The advantage of using Stekloff eigenvalues as a target signature are
the following:

1 The interrogation frequency can be chosen arbitrarily.

2 Stekloff eigenvalues can be computed from far field data for both
absorbing and non-absorbing media.
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Remarks on Numerical Examples

The perturbation formula suggests that some eigenvalues
are more susceptible to changes in n than others.
We can usually approximate two or three Stekloff
eigenvalues using far field data for the wave numbers and
coefficients n that we have used.
Examples are given using far field data. However, near
field data can also be used just as easily.
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Stekloff Eigenvalues: Unit Disk

D is the unit disk
n(x) = 4, k = 1
Arbitrary 51
incoming waves
No extra noise on
the data
Eigenvalues are
exact and shown by
+ in the graph. -6 -4 -2 0 2 4 6
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Sensitivity to Noise

Same example as
before but n(x) = 4
or n(x) = 4.1
Noise added
pointwise
Percentage is the
relative `2 norm
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Sensitivity of Eigenvalues: Unit Disk with Flaw

The “flaw” is a circular region of radius rc centered at (xc ,0) with
n(x) = 1 inside the flaw. Noise ε = 0.01. Wavenumber k = 1.
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Changing xc , rc = 0.05 Changing rc , xc = 0.3.

Plot (λc
j∗ − λj)/|λj |, j = 1, · · · ,7 against geometric parameters.
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Changes in Eigenvalues: Unit Disk with Flaw

Flaw is radius rc = 0.05 centered at (0.3,0). All parameters as
in the previous examples.
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Figure: Density plots of the eigenfunctions for the three domains. Left
column: λ7, Right Column: λ14.
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Complex Eigenvalues: Unit Disk n(x) = 4 + 4i

Complex eigenvalues can be detected by the same procedure as
before but now searching in a region in the complex plane.
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Replacing D by a Ball

The impedance boundary value problem for h can be replaced by an
impedance boundary value problem where the boundary condition is
prescribed on the boundary of a ball B centered at the origin and
containing D in its interior instead of on the boundary of D.

The price for doing this is that the Stekloff eigenvalues are less
sensitive to changes in the refractive index than if the boundary
condition in h is prescribed on the boundary of D.

The advantage of doing this is that for complex geometries the
Stekloff eigenvalues perhaps could be more accurately
computed from the modified far field equation.
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Replacing D by a Ball

D is L-shaped domain with n(x) = 4.

Stekloff parameter λ
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Replacing D by a Ball

B is a disk of radius 1.5 centered at the origin
D is again L-shaped domain with n(x) = 4.
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The electromagnetic Stekloff problem

We now wish to extend our study for Helmholtz equation to
electromagnetism.5 Let uT = (ν × u)× ν and define

X = {u ∈ H(curl; D) | uT ∈ L2
t (Γ)}

An obvious analogue of the Helmholtz Stekloff eigenvalue
problem is: Find w ∈ X , w 6= 0 and λ such that

∇×∇×w− k2n w = 0 in D
ν ×∇×w− λwT = 0 on ∂D

Note: if n = 1 is constant, and λ is a Stekloff eigenvalue, then
so is −k2/λ. For a sphere eigenvalues can be computed
explicitly and the two distinct families verified.

5
J. Camaño, C. Lackner and P. Monk, Stekloff eigenvalues in electromagnetic scattering, in prep.
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A modified Stekloff problem

The Stekloff problem is an artificial problem in our case so we
can modify it. Given f ∈ L2

t (Γ) define

Sf = f−∇Γ(∆Γ)−1∇Γ · f

Then the modified Stekloff eigenvalue problem is to find w ∈ X ,
w 6= 0 and λ such that

∇×∇×w− k2n w = 0 in D
ν ×∇×w− λSwT = 0 on ∂D

When n is real this can be cast as an eigenvalue for a compact
and self adjoint “Neumann-to-Dirichlet” operator. So existence
of a discrete set of modified Stekloff eigenvalues can be
verified.
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Spliting lemma

Consider the following problem: given f ∈ H1/2(Div; ∂D) find w
such that

∇×∇×w − κ2n w = 0 in D ,

ν ×∇×w − λSwT = f on ∂D .

Lemma
Assume that λ 6= 0 is not a modified Stekloff eigenvalue. Then
the unique solution w ∈ H(curl,D) of the above boundary value
problem can be decomposed as w = wi + ws where
wi ∈ H(curl,D) solves the Maxwell system in D and
ws ∈ Hloc(curl,R3) is a radiating field (i.e. satisfies Maxwell’s
equations with n = 1 outside D and the Silver–Müller radiation
condition).
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By the Stratton-Chu formula, w = wi + ws where

wi (x) = −∇×
∫
∂D

ν(y)× w(y)Φ(x, y)dsy +∇
∫
∂D

ν(y) · w(y)Φ(x, y)dsy

−
∫
∂B

ν(y)×∇×w(y)Φ(x, y)dsy x ∈ D,

and

Φ(x, z) :=
eiκ|x−z|

4π|x− z |
.

In addition,

ws(x) = κ
2
∫

B
(n(y)− 1)w(y)Φ(x, y)dy −∇

∫
B
∇y · (w(y))Φ(x, y)dy x ∈ R3

satisfies Maxwell’s equations outside D and the Silver–Müller
radiation condition.
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Properties of the modified Far Field Operator

Since wi on the previous slide can be approximated by an
electromagnetic Herglotz wave function:

vg(x) := − iκ
∫
S2

g(d) e−iκx·d dsd

where g ∈ L2
t (S2), we can now prove the same theorems

regarding the electromagnetic Herglotz kernel g as for the
Helmholtz kernel g.
This opens the way for an unfortunately incomplete numerical
study of electromagnetic Stekloff problems.
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Conclusions

By modifying the far field operator we can find new target
signatures for scattering problems.
We have provided a theoretical study in the case of Stekloff
eigenvalues for the Helmholtz and Maxwell systems.
Extensions to Maxwell’s equations with complex n and to
standard electromagnetic Stekloff eigenvalues will be
undertaken.
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Conference on Metamaterials and Applications

A workshop on "Mathematical Analysis of Metamaterials and
Applications" will be held at the TSIMF( Tsinghua Sanya
International Mathematics Forum) located in Sanya, China,
during Dec.5-9, 2016.

All local expenses (airport pick up and send off, hotel and
meals) will be covered for invited participants. You would just
need to cover your own travel to Sanya (a very beautiful
seaside city).

More details about the workshop can be found online:
http://ymsc.tsinghua.edu.cn/sanya/2016/MAMAA2016/synopsis_and_organizers.aspx.

http://ymsc.tsinghua.edu.cn/sanya/2016/MAMAA2016/synopsis_and_organizers.aspx
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