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Scattering by an Inhomogeneous Media

i sEE

!

D

curl Es − iωµ0Hs = 0 in R3 \ D
curl Hs − iωε0Es = 0 in R3 \ D
curl E − iωµ(x)H = 0 in D

curl H − (iωε(x)− σ(x)E = 0 in D
ν × E = ν × (Es + E i) on ∂D
ν × H = ν × (Hs + H i) on ∂D

lim
|x|→∞

(√
µ0Hs × x −√

ε0|x |Es
)
= 0

lim
|x|→∞

(√
ε0Es × x −√

µ0|x |Hs
)
= 0

E i ,H i incident electro-magnetic field (satisfy the equations in the
vacuum).

ε0 and µ0 electric permittivity and magnetic permeability in the
vacuum.

ε(x), µ(x) and σ(x) electric permittivity, magnetic permeability
and conductivity in the homogeneity.



Scattering by an Inhomogeneous Media

i sEE

!

D

curl curl Es − k2Es = 0 in R3 \ D
curl A curl E − k2NE = 0 in D
ν × E = ν × (Es + E i) on ∂D

ν × A curl E = ν × (curl Es + curl E i) on ∂D
lim

|x|→∞
(curl Es × x − ik |x |Es) = 0

k = ω
√
ε0µ0 is the wave number.

N =
ε(x)
ε0

+ i
σ(x)
ωε0

(relative permittivity plus conductivity),

positive definite 3 × 3 matrix valued function in L∞(D)

A =
µ(x)
µ0

(relative permeability), positive definite 3 × 3 matrix

valued function in L∞(D)



Scattering by an Inhomogeneous Media
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D

curl curl Es − k2Es = 0 in R3 \ D
curl A curl E − k2NE = 0 in D
ν × E = ν × (Es + E i) on ∂D

ν × A curl E = ν × (curl Es + curl E i) on ∂D
lim

|x|→∞
(curl Es × x − ik |x |Es) = 0

More generally A and N are such that:

The scattering problem is well-posed.

The corresponding (so-called) interior transmission problem is
Fredholm.



Inverse Scattering Problem

Typical Data: From a knowledge
of Es measured on Γm, for sev-
eral interrogating waves E i sit-
uated on Γi and possibly for a
range of frequencies

Problem 1: Reconstruct everything i.e. D, N and A.
Weak scattering approximation, optimization techniques . . .

Problem 2: Obtain partial information such as the support D and
estimates on N and A
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Qualitative Methods
A class of methods for solving Problem 2 is known as
Qualitative Methods

Linear sampling method (COLTON-KIRSCH (1996)) . . . and
Factorization method (KIRSCH (1998)) . . .

Singular sources method (POTTHAST (2001)) . . .

Convex scattering support (KUSIAK-SYLVESTER (2003),
GRIESMAIER-HANKE-SYLVESTER (2013)) . . .

. . .

F. CAKONI AND D. COLTON AND P. MONK (2011), The linear
Sampling Method in Inverse Electromagnetic Scattering,
CBMS-NSF, SIAM Publications, 80.

A. KIRSCH AND N. GRINBERG (2008), The Factorization Method
for Inverse Problems, Oxford University Press.

F. CAKONI AND D. COLTON AND H. HADDAR (2016), Inverse
Scattering Theory and Transmission Eigenvalues, CBMS-NSF,
SIAM Publications.
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Qualitative Methods

To fix the ideas we take a plane wave incident field

E i(x ,d ,p) := ik(d × p)× deikx·d

propagating in the direction d ∈ S2 with polarization p ∈ R3

The scattered field Es has the asymptotic behavior

Es(x ;d ,p, k) =
eik|x|

|x |

{
E∞(x̂ ;d ,p, k) + O

(
1
|x |

)}
as |x | → ∞ uniformly with respect x̂ = x/|x |.

E∞(x̂ ,d ,p, k) is the far field pattern of the scattered field Es.

Scattering Data

E∞(x̂ ;d ,p, k), for d ∈ S2
i ⊂ S2, x̂ ∈ S2

m ⊂ S2 and (possibly)
k ∈ [k1, k2].
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Far Field Operator

The far field operator F : L2
t (S2) → L2

t (S2) is defined by

(Fg)(x̂) :=
∫
S2

E∞(x̂ ;d ,g(d), k)dsd .

Fg is the far field pattern of the scattered field corresponding to
the incident field

Eg(x) :=
∫
S2

eikx·dg(d)dsd g ∈ L2
t (S2) (g(x̂) · x̂ = 0)

known as a electric Herglotz wave function .

F is related to the scattering operator S by

S = I +
ik
2π

F



Far Field Operator

Theorem

F : L2
t (S2) → L2

t (S2) is injective and has dense range if and only if
there does not exist a nontrivial solution to the homogeneous interior
transmission problem

curl curl E0 − k2E0 = 0 in D
curl A curl E − k2NE = 0 in D

ν × E = ν × E0 on ∂D
ν × A curl E = ν × curl E0 on ∂D

such that E0 := Eg is an electric Herglotz wave function.

Values of k ∈ C for which the transmission eigenvalue problem has
non trivial solution are called transmission eigenvalues.



TE and Non-Scattering Frequencies

If k is a transmission eigenvalue and the eigenfunction E0 that solves
curl curl E0 − k2E0 = 0 in D can be extended outside D as a solution
Ẽ0 of the same equation, then the scattered field due to Ẽ0 as an
incident wave is identically zero.

In general such an extension of E0 does not exist. For example in the
case of scalar Helmholtz equation corners always scatter!

BLASTEN-PÄIVÄRINTA-SYLVESTER (2013),Comm. Math. Phys.

PÄIVÄRINTA-SALO-VESALEINEN (2014), Rev. Mat. Iberoamericana

Since electric Herglotz wave functions are dense in{
U ∈ H(D) : curl curl U − k2U = 0 in D

}
,

at a transmission eigenvalue it is possible to superimpose plane
waves such that this superposition produces an arbitrarily small
scattered field.
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incident wave is identically zero.

In general such an extension of E0 does not exist. For example in the
case of scalar Helmholtz equation corners always scatter!

BLASTEN-PÄIVÄRINTA-SYLVESTER (2013),Comm. Math. Phys.

PÄIVÄRINTA-SALO-VESALEINEN (2014), Rev. Mat. Iberoamericana

Since electric Herglotz wave functions are dense in{
U ∈ H(D) : curl curl U − k2U = 0 in D

}
,

at a transmission eigenvalue it is possible to superimpose plane
waves such that this superposition produces an arbitrarily small
scattered field.



Determination of the Support

(Uniqueness)

If D1, A1, N1 and D2, A2, N2 give rise to the same far field data, i.e
E (1)
∞ (x̂ ;d ,p, k) = E (2)

∞ (x̂ ;d ,p, k), for d ∈ S2
i ⊂ S2, x̂ ∈ S2

m ⊂ S2, three
linearly independent polarizations and fixed k , then D1 = D2.

CAKONI-COLTON (2003) - Proc. Edinburgh Math. Soc. 46

The conditions on A and N for the above theorem to be valid are
those that guarantee that the transmission eigenvalue problem is a
compact perturbation of an invertible operator.

In the scalar case using transmission eigenvalues uniqueness results
for D with one incident wave are

HU-SALO-VESALAINEN (2016) - SIAM J. Math. Anal. 48

Problem

Determine the support D without any a priory knowledge of A and N
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Linear Sampling Method

The linear sampling method is based on solving the far field equation

(Fg)(x̂) = E∞(x̂ , z,q, k) for g ∈ L2
t (S2)

x̂ ∈ S2, q, z ∈ R3 and k fixed

where E∞(x̂ , z,q, k) :=
ik
4π

(x̂ × q)× x̂e−ik x̂·z .

k is not a transmission eigenvalue, and let gε := gz,k,ε,q be such that

‖Fgε − E∞(x̂ , z,q, k)‖L2
t (S2) < ε

for z ∈ D there is a gε such that limε→0 ‖Egε
‖H(D) exists

for z /∈ D limε→0 ‖Egε‖H(D) = ∞

The underlying mathematical tools are the 1) Fredholm property of
the interior transmission problem and 2) approximation by Eg .
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Linear Sampling Method

In practice, one solves the regularized far field equation

inf
g

{
‖Fg − E∞(x̂ , z,q, k)‖2

L2 + α‖g‖2
L2

t

}
or (αI + F ∗F )g = F ∗E∞

Indicator Function

I(z) =
1

‖gz,k,α,q1‖
+

1
‖gz,k,α,q2‖

+
1

‖gz,k,α,q3‖

∂D is the surface I(z) = C

for some C that is a ad hoc value transitioning from small and large.

Question: Is the Tikhonov regularized solution gz,k,α,q as α → 0 the
one given by the above theoretical statement?



Factorization Method

The answer to this question led to the development of the
Factorization Method.

For the case when A = I and under the assumption that <(N) > I or
<(N) < I uniformly on D

z ∈ D ⇐⇒ E∞(x̂ , z,q, k) ∈ Range (F#)
1/2

where F# = |<(F )|+ |=(F )|

For Maxwell’s equations the factorization method was done in

A. KIRSCH (2004) - Inverse Problems, 20

A. LECHLEITER (2009) - Inverse Problems and Imaging, 3



Factorization Method

F = H∗TH

R(H) =
{

U ∈ L2(D) : curl curl U − k2U = 0 in D
}

z ∈ D ⇐⇒ E∞(x̂ , z,q, k) ∈ Range(H∗)

T which is roughly the solution operator of the forward problem,
must satisfy a list of properties that restrict the class of the
problems where the factorization method can be justified.

Observation: If T was coercive then

|(Fg,g)L2 | ∼ ‖Hg‖L2(D)

However this is not the case but one can use instead of F a different
operator B known in terms of B := H∗TbH with Tb coercive (in
appropriate spaces). Then

Jα(g,Ez
∞) := α |(Bg,g)L2 |+ ‖Fg − Ez

∞‖
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Generalized Linear Sampling Method

GLSM rigorously characterizes D in terms of a minimizing sequence
gα of the functional Jα(·,E∞).

L. AUDIBERT (2016), Qualitative Methods for Heterogeneous
Media, Ph.D Thesis, Ecole Polytechnique.

For Maxwell’s equations GLSM is discussed in the article
by H. Haddar in

H. HADDAR, R. HIPTMAIER, P. MONK AND R. RODRIGUEZ
(2015), Computational Electromagnetism, CIME Foundation
Subseries, Springer.

Links between all this methods are discussed in

F. CAKONI AND D. COLTON AND H. HADDAR (2016), Inverse
Scattering Theory and Transmission Eigenvalues, CBMS-NSF,
SIAM Publications.



Shape Reconstruction
COLLINO-FARES-HADDAR (2003) – 252 directions, π/k (ka) are 0.224
(12), 0.112 (24) and 0.075 (42)



Shape Reconstruction

DUE TO P. MONK



Limited Aperture
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Shape Reconstruction

Inhomogeneous background. Example from

CAKONI-FARES-HADDAR (2006) - Inverse Problems



Limited Aperture

DUE TO P. MONK
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Examples of Reconstruction

N = 16I, k is not TE



Examples of Reconstruction

N = 16I, k is a TE



Transmission Eigenvalue Problem

Having determined the support D without knowing anything about the
material properties we would like to get some information about the
constitutive parameters A and N.

For this we appeal to the transmission eigenvalue problem:

curl curl E0 − k2E0 = 0 in D
curl A curl E − k2NE = 0 in D

ν × E = ν × E0 on ∂D
ν × A curl E = ν × curl E0 on ∂D

Question: Can real transmission eigenvalues be determined from
scattering data?



Linear Sampling Method

CAKONI-COLTON-HADDAR (2010) C. R. Math. Acad. Sci. Paris

We can use again the far field equation for z ∈ D

(Fg)(x̂) = E∞(x̂ , z,q, k) for g ∈ L2
t (S2) and k ∈ [k0, k1]

Assume that A and N are such that the interior transmission problem
is Fredholm, and let gα be the regularize solution of the far field
equation.

For any ball B ⊂ D and all z ∈ B, ‖Egα
‖H(D) is bounded as α → 0 if

and only if k is not a transmission eigenvalue



Computation of Real Transmission Eigenvalues
Results for an isotropic sphere of unit radius. DUE TO P. MONK.
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N = 16I

Solving the far-field equation for several source points z inside the
sphere gives obvious peaks at the first transmission eigenvalue.
Red dots indicate exact transmission eigenvalues.



TE and the Far Field Operator

Real transmission eigenvalues can be characterized in terms of the
eigenvalues of the far field operator Fk : L2

t (S2) → L2
t (S2).

LECHLEITER-RENNOCH (2015) - SIAM J. Math Anal.

Assume that A = I and either N − I > 0 or N − I < 0

Facts on the compact operator Fk (recall Sk = I + ik
2πFk ).

Fk is normal, i.e. Fk F ∗
k = F ∗

k Fk . Thus, Sk is unitary, i.e.
SkS∗

k = S∗
k Sk = I.

As such Fk has an infinite number of eigenvalues λj(k)
accumulating to 0: they lie on the circle in C

|λ|2 − 4π
k

=(λ) = 0.

Write λj(k) = rj(k)eiϑj (k)



Inside-Outside Duality

Essential is the symmetric factorization of the far field operator

Fk = H∗
k Tk Hk

=(Tk u,u) ≥ 0

(Fk g,g)L2(D) = (Tk Hk g,Hk g)L2(D) = (Tk u,u)H(D)

Fix N > I

If k is not a transmission eigenvalue, then <(λj(k)) > 0 for j ∈ N
large enough thus

ϑj(k) → 0 as j → ∞



Inside-Outside Duality

The largest phase eigenvalue λ∗(k) is well defined, i.e.

ϑ∗(k) := max
j

{ϑj(k) ∈ [0, π)} .

If k is not a transmission eigenvalue,

cotϑ∗(k) = min
R(Hk )

L2(D)

<(Tk u,u)H(D)

=(Tk u,u)H(D)

k is a transmission eigenvalue if and only if there is

u0 ∈ R(Hk )
L2(D)

such that =(Tk u0,u0) = 0

Inside-Outside Duality

If N − I > 0 and
lim

k→k0

ϑ∗(k) = π

then k0 > 0 is a transmission eigenvalue.



Transmission Eigenvalue Problem

Important questions in the context of inverse scattering:

Fredholm property of the transmission eigenvalue problem. It
arises in important questions such as uniqueness of inverse
problems for inhomogenous media or justification of linear
sampling methods.

Discreteness of transmission eigenvalues. Methods for solving
the inverse problem for inhomogeneous media such as the linear
sampling method and factorization method fail at a transmission
eigenvalue. Connection to uniqueness in thermo-acoustic
tomography.

Existence of transmission eigenvalues

Real transmission eigenvalues can be determined from the
scattering data.
Transmission eigenvalues carry information about material
properties.



Historical Overview

The transmission eigenvalue problem in scattering theory was
introduced by KIRSCH (1986) and COLTON-MONK (1988)

Research was focused on the discreteness of transmission
eigenvalues for variety of scattering problems:
COLTON-KIRSCH-PÄIVÄRINTA (1989) and RYNNE-SLEEMAN
(1991).

The first proof of existence of at least one transmission
eigenvalues for large contrast PÄIVÄRINTA-SYLVESTER (2009).

The existence of an infinite set of real transmission eigenvalues
was first proven by CAKONI-GINTIDES-HADDAR (2010).

Completeness+Weyl estimates first given by LAKSHTANOV-
VAINBERG (2012) and ROBBIANO (2013).

Since the appearance of these papers there has been an
explosion of interest in the transmission eigenvalue problem . . .

Special issue of Inverse Problems on Transmission Eigenvalues,
October 2013



Transmission Eigenvalues

curl curl E0 − k2E0 = 0 in D
curl A curl E − k2NE = 0 in D

ν × E = ν × E0 on ∂D
ν × A curl E = ν × curl E0 on ∂D

In a "natural" variational form this problem reads∫
D
(curl AE) · (curl E

′
)dx −

∫
D
(curl E0) · (curl E

′
0)dx

−k2
∫

D
NE · E

′
dx + k2

∫
D

E0 · E
′
0 dx = 0

for all E ′,E ′
0 ∈ X (D), where

X (D) := {(w , v) ∈ H(curl ,D)× H(curl ,D) | ν × w = ν × v on Γ}.



Transmission Eigenvalues

L. CHESNEL (2013) - Inverse Problems

proved the discreteness of transmission eigenvalues+Fredholm
property, provided A − I and N − I are bounded away from zero and
have same sign in a neighborhood of ∂D using >- coercivity.

F. CAKONI AND A. KIRSCH (2010) - Int. Jour. Comp. Sci. Math.

proved the existence of infinitely many real transmission eigenvalues
for A = a0I constant different from one and N − I have the same sign
uniformly in D.

HOAI-MINH NGUYEN has recently obtained spectral results for
the scalar case for much less regular A and N and various
combinations of contrast sign.



Transmission Eigenvalues
Consider A = I, letting k2 := τ and assume that N − I > 0.
It is possible to write

curl curl E − τNE = 0 in D
curl curl E0 − τE0 = 0 in D

ν × E = ν × E0 on Γ

ν × curl E = ν × curl E0 on Γ

E ,E0 ∈ L2(D), for the difference W = E − E0 ∈ H0(curl 2,D) as

(∇×∇×−τ)(N − I)−1(∇×∇×−τN)W = 0

and in the variational form, for all W ′ ∈ H0(cur2,D)∫
D

(N − I)−1(∇×∇× W − τNW )(∇×∇× W
′ − τW

′
)dx = 0

H0(curl 2,D) = {u ∈ H(curl ,D), curl u ∈ H(curl ,D), ν×u = 0, ν×curl u = 0 on ∂D}



Existence of Real Transmission Eigenvalues

(Aτ − τB)u = 0 in H0(curl 2,D)

(AτW ,W ′) =

∫
D
(N − I)−1(curl curl W − τW ) · (curl curl W ′ − τW ′)dx

+ τ2
∫

D
W · W ′ dx

(BW ,W ′) =

∫
D

curl W · curl W ′ dx

The mapping τ → Aτ is continuous from (0, +∞) to the set of
self-adjoint coercive operators from H0(curl 2,D) → H0(curl 2,D).

B : H0(curl 2,D) → H0(curl 2,D) is self-adjoint, compact and
non-negative.



Existence of Real Transmission Eigenvalues

Now we consider the generalized eigenvalue problem

(Aτ − λ(τ)B)u = 0 in H2
0 (curl 2,D)

For a fixed τ > 0 there exists an increasing sequence of eigenvalues
λj(τ)j≥1 such that λj(τ) → +∞ and they satisfy Courant-Fisher
max-min principle.

τ is a transmission eigenvalue if and only λj(τ) = τ



Existence of Real Transmission Eigenvalues

For 0 < τ0 <
λ1(D)

Nmax
, we have that Aτ0 − τ0B is positive on H2

0 (D),

where λ1(D) is the first Dirichlet eigenvalue for −∆ in D.

There exists τ1 such that Aτ1 − τ1B is non positive on an m
dimensional subspace of H2

0 (D). This can be done for m
arbitrarily large

Max-min principle for λj(τ) implies each λj(τ) = τ for j = 1, . . . ,m,
has at least one solution in [τ0, τ1] meaning that there exists m
transmission eigenvalues counting multiplicity within the interval
[τ0, τ1].

CAKONI-GINTIDES-HADDAR (2010) - SIAM J. Math. Anal.



Existence of Real Transmission Eigenvalues

Theorem
Assume that Nmin > 1. Then, there exists an infinite discrete set of
real transmission eigenvalues τj accumulating at +∞ and satisfying

τj(Nmax ,B1) ≤ τj(Nmax ,D) ≤ τj(N(x),D) ≤ τj(Nmin,D) ≤ τj(Nmin,B2)

where B2 ⊂ D ⊂ B1.

For N := nI constant, the first transmission eigenvalue τ1(n) is
strictly monotonically decreasing and continuous with respect to
n.

In particular, the first transmission eigenvalue uniquely
determines the constant index of refraction.

Inverse spectral problem is solved for spherically stratified
media, AKTOSUN, COLTON, GINTIDES, LEUNG, PAPANICOLAOU
· · ·



Changing Sign Contrast

Similar results as above can be obtained for the case when
0 < Nmin ≤ N(x) ≤ Nmax < 1.

The analysis holds for media with voids D0 ⊂ D where N ≡ I.

CAKONI-COLTON-HADDAR (2012) - SIAM J. Math. Anal.

The general case of sign-changing contrast N − I is considered under
the assumption that either N − I > 0 or N − I < 0 only in a
neighborhood of ∂D.

F. CAKONI, H. HADDAR, S. MENG (2015) - J. Int. Eqns Appl.

where the discreteness is proven using integral equations method.

Full spectrum is recently analyzed by H. HADDAR AND S. MENG
for N ∈ C∞ using Agmon’s theory for non-selfadjoint operators.



Non-destructive Testing and TE

Given the measured k1(D,N(x)), we now compute a constant n such
that k1(D,N(x)) = k1(D,n). Then the monotonicity result implies that

Nmin ≤ n ≤ Nmax

In the isotropic case N(x) := n(x)I, the above constant n gives

n ≈ 1
|D|

∫
D

n(x)dx



Numerical Examples

We can compute numerical approximations of transmission
eigenvalues for anisotropic media using a finite element method
due to MONK-SUN.
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 N=diag([16−a,16,16+a])

N=diag([16,16,16+a])
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 N=diag([5−a,5,5+a])

N=diag([5,5,5+a])

Perturbation of N = 16I Perturbation of N = 5I



Numerical Examples (cont)

Using the same finite ele-
ment code we can compute
the transmission eigenval-
ues for isotropic N then
compute the isotropic n
discussed previously for
any measured transmission
eigenvalue 16 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17
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Lowest transmission eigenvalue against N (isotropic)

N λ1,D,N(x) n
diag([15.5,16,16.5]) 1.163 16.33

diag([15,16,17]) 1.151 16.65
diag([16,16,16.5]) 1.161 16.38
diag([16,16,17]) 1.146 16.77



Numerical Examples (cont)

The same procedure can be
carried out at lower N as
well (the lowest transmis-
sion eigenvalue increases
and so the calculations be-
come more expensive)
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Lowest transmission eigenvalue against N (isotropic)

N λ1,D,N(x) n
diag([4.5,5,5.5]) 2.442 5.339

diag([4,5,6]) 2.302 5.631
diag([5,5,5.5]) 2.410 5.397
diag([5,5,6]) 2.245 5.778



Numerical Example: Inhomogeneous Isotropic Media

ne ni k1 n-exact shape n-recon. shape
8 8 2.98 8.07 7.61

11 5 3.27 7.05 6.69
22 19 1.76 20.28 18.86
67 61 0.97 64.11 59.42

Example from

GIORGI-HADDAR (2012) - Inverse Problems



Future Directions

Drawback of these methods is the amount of spatial data
needed.

Possible remedy using time domain data.

Development of qualitative methods in the time domain for Maxwell’s
equation!



Future Directions

GUO-MONK-COLTON (2014) - Inverse Problems



Future Directions

Drawback of the use of transmission eigenvalues is that it needs
data for a range of frequencies and it does not work for media
with absorption.

Possible remedy

Introduce a new eigenvalue problem by modifying the far field
equations!

(see P. Monk’s talk)

CAKONI-COLTON-MENG-MONK (2016) - SIAM J. Appl. Math


