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Calderón problem

Conductivity equation{
div(σ(x)∇u) = 0 in Ω,

u = f on ∂Ω

where Ω ⊂ Rn bounded Lipschitz domain, σ ∈ L∞(Ω) positive
scalar function (electrical conductivity).

Boundary measurements given by Dirichlet-
to-Neumann (DN) map

Λσ : f 7→ σ∇u · ν|∂Ω.

Inverse problem: given Λσ, determine σ.



Maxwell equations

Consider (elliptic) Maxwell equations in Ω ⊂ R3,{
∇× E = iωµH ,
∇× H = −iωεE .

Here Ω is a bounded C∞ domain and

I E ,H : Ω→ C3 are electric and magnetic fields

I ω > 0 is a fixed (non-resonant) frequency

I ε, µ ∈ C∞(Ω,C) and Re (ε),Re (µ) > 0

Boundary measurements (admittance map)

Λε,µ : Etan|∂Ω 7→ Htan|∂Ω.

Inverse problem: given Λε,µ, determine ε, µ.



Relation to Calderón problem

Maxwell equations with real µ0, ε0 and conductivity σ:{
∇× E = iωµ0H ,
∇× H = −iω(ε0 + i

ω
σ)E .

Formal limit as ω → 0:{
∇× E = 0,
∇× H = σE .

From first equation get E = ∇u, then second equation implies
the conductivity equation

∇ · σ∇u = 0.

Also Λε,µ  Λσ as ω → 0 [Lassas 1997].



Maxwell inverse problem

Results (mostly for scalar ε, µ):

uniqueness ε, µ ∈ C 3 Ola-Päivärinta-Somersalo 1993

ε, µ ∈ C 1 Caro-Zhou 2014

log stability ε, µ ∈ C 2 Caro 2010

partial data under Caro-Ola-S 2009

various Brown-Marletta-Reyes 2016

conditions Chung-Ola-S-Tzou 2016

matrix ε, µ Kenig-S-Uhlmann 2011
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Elliptization

Maxwell equations in Ω ⊂ R3,{
∇× E = iωµH ,
∇× H = −iωεE .

This is a 6× 6 system, not elliptic as it is written! Since
div ◦ curl = 0, obtain constituent equations{

∇ · (µH) = 0,
∇ · (εE ) = 0.

Elliptization (Herz/Sommerfeld potentials, [Picard 1984], [Ola-Somersalo 1996]):
adding two equations requires adding two extra unknowns, the
scalar fields Φ and Ψ.



Elliptization

Maxwell equations become the 8× 8 system

∗ ∇· 0 ∗
∗ 0 ∇× ∗
∗ ∇× 0 ∗
∗ 0 ∇· ∗

+ V (x)




Φ
E
H
Ψ

 = 0

where V is an 8× 8 matrix function. Here (E H)t will solve
Maxwell iff (0 E H 0)t solves the above system (that is,
need Φ = Ψ = 0 in order to solve Maxwell).

We are free to choose the ∗ entries so that the new system
becomes elliptic. How to do this?



Geometric setup

Let (M , g) compact 3D Riemannian manifold with boundary.
Maxwell equations {

∗dE = iωµH ,
∗dH = −iωεE

Here

I E ,H complex 1-forms on M

I ε, µ smooth functions in M with Re (ε),Re (µ) > 0

I d exterior derivative

I ∗ Hodge star in (M , g), maps k-forms to (3− k)-forms

The adjoint of d is the codifferential δ = ± ∗ d∗. Recall that

d and δ act as ±grad / curl / div.



Elliptization
The previous 8× 8 system may be rewritten as


∗ δ 0 ∗
∗ 0 d ∗
∗ d 0 ∗
∗ 0 δ ∗

+ V (x)




Φ
E
∗H
∗Ψ

 = 0.

where Φ,Ψ are 0-forms and E ,H are 1-forms. The vector
(Φ E ∗ H ∗Ψ)t identifies with the graded differential form

X = Φ + E + ∗H + ∗Ψ.

There is a natural elliptic operator, the Hodge Dirac operator,
acting on graded forms:

D = d + δ.



Elliptization

Reduce Maxwell equations to a Dirac equation (8× 8 system)

(D + V )X = 0

where X = Φ + E + ∗H + ∗Ψ is a graded differential form, and

D = d + δ.

Here D2 = ∆g is the Hodge Laplacian acting on graded forms.
For functions, ∆g is the Laplace-Beltrami operator

∆gu =
n∑

j ,k=1

1√
det g

∂

∂xj

(√
det g g jk ∂u

∂xk

)
,

where g = (gjk), g−1 = (g jk).



Calderón problem

Recall the steps to solve the Calderón problem:

1. Substitute u = γ−1/2v , conductivity equation
div(γ∇u) = 0 ! Schrödinger equation (−∆ + q)v = 0.

2. Integral identity: for any uj solving (−∆ + qj)uj = 0,∫
Ω

(q1 − q2)u1u2 dx = 0.

3. Insert complex geometrical optics solutions

uj = eρj ·x(1 + rj), ρ ∈ Cn, ρ · ρ = 0

to integral identity, recover Fourier transform of q.

Want to use a similar strategy for Maxwell equations.



Strategy [Ola-Somersalo (1996) in R3]

1. Reduce Maxwell equations to Dirac equation
(D + V )X = 0.

2. Rescale by ε1/2 and µ1/2, obtain rescaled Dirac equation
(D + W )Y = 0.

3. Reduce to Schrödinger equation (−∆g + Q)Z = 0 by
squaring.

4. Construct complex geometrical optics solutions Z .

5. Obtain solutions to Maxwell by showing that Φ = Ψ = 0
(need uniqueness notion for complex geometrical optics).

6. Insert solutions to an integral identity.

7. Recover ε and µ from nonlinear differential expressions by
unique continuation.
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Complex geometrical optics

Recall exponential solutions for ρ ∈ Cn [Calderón 1980]

∆u = 0, u = eρ·x , ρ · ρ = 0.

If q ∈ L∞(Ω), CGO solutions [Sylvester-Uhlmann 1987]

(−∆ + q)u = 0, u = eρ·x(1 + r),

where ‖r‖L2 → 0 as |ρ| → ∞.

If Ω ⊂ R3 and ε, µ are scalar, matrix Schrödinger equation
becomes

((−∆)I8×8 + Q)Z = 0.

Can use Sylvester-Uhlmann approach with uniqueness notion
to produce CGO solutions with Φ = Ψ = 0.



Complex geometrical optics

For matrix ε, µ or partial data need a new method, leading to:

Theorem (Kenig-S-Uhlmann 2011)
Let ε and µ be matrices conformal to

A(x1, x
′) =

(
1 0
0 g0(x ′)−1

)
where g0 is a simple metric1. Then Λε,µ determines ε and µ.

Here, matrices ε and µ are conformal if

ε(x) = α(x)µ(x), α positive scalar function.

1e.g. a small perturbation of the identity matrix



Dynamic Maxwell equations

Theorem (Kurylev-Lassas-Somersalo 2006)
Knowledge of Λε,µ for all frequencies ω > 0 determines any
conformal real matrices ε, µ uniquely up to diffeomorphism.

(Reduces to an inverse problem for hyperbolic Maxwell
equations.)

If ε, µ are not conformal, many open questions in both elliptic
and hyperbolic cases:

I [Krupchyk-Kurylev-Lassas 2010] Recover Betti numbers of
the domain Ω from Λε,µ for all frequencies



Complex geometrical optics

If Ω ⊂ R3, Sylvester-Uhlmann obtain CGO solutions with
uniqueness notion by extending to R3 and fixing decay at ∞.

If (M , g) is compact and

g(x1, x
′) =

(
1 0
0 g0(x ′)

)
,

get CGO solutions with uniqueness notion by extending to a
cylinder and requiring decay at ends + zero boundary values.



Complex geometrical optics
Let T = R×M0, g = e ⊕ g0, where (M0, g0) is a compact
manifold with boundary. Write x = (x1, x

′), and define

‖f ‖L2
δ(T ) = ‖〈x1〉δf ‖L2(T ),

H1
δ (T ) = {f ∈ L2

δ(T ) ; df ∈ L2
δ(T )},

H1
δ,0(T ) = {f ∈ H1(T ) ; f |∂T = 0}.

Theorem (Kenig-S-Uhlmann 2011)
Let δ > 1/2. If |τ | ≥ 1 and τ 2 /∈ Spec(−∆g0), then for any
f ∈ L2

δ(T ) there is a unique solution u ∈ H1
−δ,0(T ) of

eτx1(−∆g )e−τx1u = f in T ,

‖u‖L2
−δ(T ) ≤

C

|τ |
‖f ‖L2

δ(T ).



Proof of norm estimates

Here Spec(−∆g0) = {λl}∞l=1 are Dirichlet eigenvalues of the
Laplacian in (M0, g0), with eigenfunctions {φl}∞l=1 forming an
orthonormal basis of L2(M0):

−∆g0φl = λlφl in M0, φl |∂M0 = 0.

If f ∈ L2(T ) write partial Fourier expansion

f (x1, x
′) =

∞∑
l=1

f̃ (x1, l)φl(x ′), f̃ (x1, l) = (f (x1, · ), φl)L2 .

Example: if M0 = Tn−1, eigenfunctions are {e im′·x ′}m′∈Zn−1 .



Uniqueness

Assume u ∈ H1
δ,0(T ) and eτx1(−∆g )e−τx1u = 0. Have

g = e ⊕ g0 =⇒ ∆g = ∂2
1 + ∆g0 .

Taking partial Fourier coefficients in x ′ and Fourier transform
in x1, obtain

eτx1∆ge−τx1u = 0 =⇒ (−∂2
1 + 2τ∂1 − τ 2 −∆g0)u = 0

=⇒ (−∂2
1 + 2τ∂1 − τ 2 + λl)ũ( · , l) = 0

=⇒ (ξ2
1 + 2iτξ1 − τ 2 + λl)û( · , l) = 0.

The symbol is nonvanishing since τ 2 /∈ Spec(−∆g0) (look at
the real and imaginary parts). Thus û = 0.



Existence

Let f ∈ L2
δ(T ) with δ > 1/2, τ ≥ 1. Have

eτx1∆ge−τx1u = f ⇐⇒ (−∂2
1 + 2τ∂1 − τ 2 −∆g0)u = f

⇐⇒ (−∂2
1 + 2τ∂1 − τ 2 + λl)ũ( · , l) = f̃ ( · , l)

This is an ODE for the partial Fourier coefficients of u.
Factorize:

(∂1 − [τ +
√
λl ])(∂1 − [τ −

√
λl ])ũ( · , l) = −f̃ ( · , l).

It is enough to solve these ODEs with suitable estimates.



Existence

Lemma
Let a ∈ Rr {0}. The equation

u′ − au = f in R

has a unique solution u ∈ S ′(R) for any f ∈ S ′(R). The
solution operator Sa satisfies

‖Saf ‖L2
δ
≤ Cδ
|a|
‖f ‖L2

δ
if |a| ≥ 1 and δ ∈ R,

‖Saf ‖L2
−δ
≤ Cδ‖f ‖L2

δ
if a 6= 0 and δ > 1/2.



Proof of Lemma
Since a 6= 0,

u′ − au = f ⇐⇒ (iξ − a)û = f̂ ⇐⇒ û =
1

iξ − a
f̂ .

Have unique solution u ∈ S ′ for any f ∈ S ′. If |a| ≥ 1,

‖u‖L2
δ

= ‖û‖Hδ ≤ ‖(iξ − a)−1‖C k‖f̂ ‖Hδ ≤ Cδ
|a|
‖f ‖L2

δ
.

If a > 0, have u(x) = −
∫∞
x

f (t)e−a(t−x) dt so ‖u‖L∞ ≤ ‖f ‖L1 .
Since δ > 1/2,

‖u‖L2
−δ
≤ ‖u‖L∞‖〈x〉−δ‖L2 ≤ Cδ‖f ‖L1 = Cδ

∫
〈t〉−δ〈t〉δ|f | dt

≤ Cδ‖f ‖L2
δ
.
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Local data problem

Prescribe Etan|Γ, measure Htan|Γ:



Local data problem

Theorem (Brown-Marletta-Reyes 2016)
Let ε, µ ∈ C 2(Ω) be a priori known near ∂Ω.
If Γ ⊂ ∂Ω is open, boundary measurements
on Γ determine ε, µ.

Extends scalar result of [Ammari-Uhlmann 2004]. Ideas:

I boundary map on Γ + known coefficients near ∂Ω
 full boundary map on a subdomain Ω0 ⊂⊂ Ω

I uses the Runge approximation property (solutions in Ω0

approximated by solutions in Ω vanishing on ∂Ω \ Γ),
follows from unique continuation principle



Partial data problem

Theorem (Chung-Ola-S-Tzou 2016)
Let Ω ⊂ R3 be strictly convex and ε, µ ∈ C 3(Ω). If Γ ⊂ ∂Ω is
open, measuring Htan|Γ for any Etan|∂Ω determines ε and µ.

Extends scalar result of [Kenig-Sjöstrand-Uhlmann 2007]. Ideas:

I CGO solutions for matrix Schrödinger equation

(−∆g + Q)Z = 0

I control Z |Γc via Carleman estimates with boundary terms
[Chung-S-Tzou 2016]

I relative/absolute boundary conditions for Hodge Laplace
 good boundary conditions for Maxwell



Partial data problem

Matrix Schrödinger equation

(−∆g + Q)u = 0

Relative boundary conditions (tu, tδu), where t = i∗ is the
tangential part of a differential form, lead to a well-posed BVP.

If u = (Φ E ∗ H ∗Ψ)t with Φ,Ψ 0-forms and E ,H 1-forms,
relative BC correspond to fixing

Φ|∂Ω, Etan|∂Ω, ∇ · E |∂Ω, ν · H |∂Ω, (∇× H)tan|∂Ω, ∂νΨ|∂Ω.

If Φ = Ψ = 0, this leads to CGO solutions for Maxwell with
Etan and Htan vanishing on a (large) part of ∂Ω.



Open questions

1. Solve the Maxwell inverse problem without reducing to a
second order equation or extending to a larger set.

2. Can one determine ε, µ ∈ W 1,3 in Ω ⊂ R3 from Λε,µ?

3. Is it possible in some cases to recover matrix ε, µ that are
not conformal?


