Inverse problems for time-harmonic Maxwell equations

Mikko Salo University of Jyväskylä

Durham, 19 July 2016

European Research Council

Outline

1. Inverse problem for Maxwell equations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2. Matrix Schrödinger equation
- 3. Complex geometrical optics
- 4. Partial data

Calderón problem

Conductivity equation

$$\begin{cases} \operatorname{div}(\sigma(x)\nabla u) = 0 & \text{ in } \Omega, \\ u = f & \text{ on } \partial\Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^n$ bounded Lipschitz domain, $\sigma \in L^{\infty}(\Omega)$ positive scalar function (electrical conductivity).

Boundary measurements given by *Dirichlet-to-Neumann (DN) map*

$$\Lambda_{\sigma}: f \mapsto \sigma \nabla u \cdot \nu|_{\partial \Omega}.$$

Inverse problem: given Λ_{σ} , determine σ .

・ロト ・周ト ・ヨト ・ヨト

Maxwell equations

Consider (elliptic) Maxwell equations in $\Omega \subset \mathbb{R}^3$,

 $\left\{ \begin{array}{l} \nabla \times E = i\omega \mu H, \\ \nabla \times H = -i\omega \varepsilon E. \end{array} \right.$

Here Ω is a bounded C^{∞} domain and

- $E, H : \Omega \to \mathbb{C}^3$ are electric and magnetic fields
- $\omega > 0$ is a fixed (non-resonant) frequency
- $\varepsilon, \mu \in C^{\infty}(\overline{\Omega}, \mathbb{C})$ and $\operatorname{Re}(\varepsilon), \operatorname{Re}(\mu) > 0$

Boundary measurements (admittance map)

$$\Lambda_{\varepsilon,\mu}: E_{\tan}|_{\partial\Omega} \mapsto H_{\tan}|_{\partial\Omega}.$$

Inverse problem: given $\Lambda_{\varepsilon,\mu}$, determine ε , μ .

Relation to Calderón problem

Maxwell equations with real μ_0, ε_0 and conductivity σ :

$$\begin{cases} \nabla \times E = i\omega\mu_0 H, \\ \nabla \times H = -i\omega(\varepsilon_0 + \frac{i}{\omega}\sigma)E. \end{cases}$$

Formal limit as $\omega \rightarrow 0$:

$$\begin{cases} \nabla \times E = 0, \\ \nabla \times H = \sigma E \end{cases}$$

From first equation get $E = \nabla u$, then second equation implies the *conductivity equation*

$$\nabla \cdot \sigma \nabla u = 0.$$

Also $\Lambda_{\varepsilon,\mu} \rightsquigarrow \Lambda_{\sigma}$ as $\omega \to 0$ [Lassas 1997].

Maxwell inverse problem

uniqueness	$arepsilon, \mu \in \mathcal{C}^3$	Ola-Päivärinta-Somersalo 1993
	$\varepsilon, \mu \in \mathcal{C}^1$	Caro-Zhou 2014
log stability	$\varepsilon, \mu \in \mathit{C}^2$	Caro 2010
partial data	under	Caro-Ola-S 2009
	various	Brown-Marletta-Reyes 2016
	conditions	Chung-Ola-S-Tzou 2016
matrix ε , μ		Kenig-S-Uhlmann 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results (mostly for scalar ε , μ):

Outline

1. Inverse problems for Maxwell equations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2. Matrix Schrödinger equation

3. Complex geometrical optics

4. Partial data

Elliptization

Maxwell equations in $\Omega \subset \mathbb{R}^3$,

$$\begin{cases} \nabla \times E = i\omega\mu H, \\ \nabla \times H = -i\omega\varepsilon E. \end{cases}$$

This is a 6×6 system, not elliptic as it is written! Since $div \circ curl = 0$, obtain constituent equations

$$\begin{cases} \nabla \cdot (\mu H) = 0, \\ \nabla \cdot (\varepsilon E) = 0. \end{cases}$$

Elliptization (Herz/Sommerfeld potentials, [Picard 1984], [Ola-Somersalo 1996]): adding two equations requires adding two extra unknowns, the scalar fields Φ and Ψ .

Elliptization

Maxwell equations become the 8×8 system

$$\begin{bmatrix} * & \nabla \cdot & 0 & * \\ * & 0 & \nabla \times & * \\ * & \nabla \times & 0 & * \\ * & 0 & \nabla \cdot & * \end{bmatrix} + V(x) \begin{bmatrix} \Phi \\ E \\ H \\ \Psi \end{bmatrix} = 0$$

where V is an 8×8 matrix function. Here $(E \ H)^t$ will solve Maxwell iff $(0 \ E \ H \ 0)^t$ solves the above system (that is, need $\Phi = \Psi = 0$ in order to solve Maxwell).

We are free to choose the * entries so that the new system becomes elliptic. How to do this?

Geometric setup

Let (M, g) compact 3D Riemannian manifold with boundary. Maxwell equations

$$\begin{cases} *dE = i\omega\mu H, \\ *dH = -i\omega\varepsilon E \end{cases}$$

Here

- ► *E*, *H* complex 1-forms on *M*
- ε, μ smooth functions in *M* with $\operatorname{Re}(\varepsilon), \operatorname{Re}(\mu) > 0$
- d exterior derivative

• * Hodge star in (M, g), maps k-forms to (3 - k)-forms

The adjoint of *d* is the *codifferential* $\delta = \pm * d*$. Recall that

d and δ act as \pm grad / curl / div.

Elliptization

The previous 8×8 system may be rewritten as

$$\begin{bmatrix} \ast & \delta & 0 & \ast \\ \ast & 0 & d & \ast \\ \ast & d & 0 & \ast \\ \ast & 0 & \delta & \ast \end{bmatrix} + V(x) \begin{bmatrix} \Phi \\ E \\ \ast H \\ \ast \Psi \end{bmatrix} = 0.$$

where Φ, Ψ are 0-forms and E, H are 1-forms. The vector $(\Phi \ E \ *H \ *\Psi)^t$ identifies with the *graded differential form*

$$X = \Phi + E + *H + *\Psi.$$

There is a natural elliptic operator, the *Hodge Dirac operator*, acting on graded forms:

$$D = d + \delta.$$

Elliptization

Reduce Maxwell equations to a *Dirac equation* $(8 \times 8 \text{ system})$

$$(D+V)X=0$$

where $X = \Phi + E + *H + *\Psi$ is a graded differential form, and

$$D = d + \delta.$$

Here $D^2 = \Delta_g$ is the *Hodge Laplacian* acting on graded forms. For functions, Δ_g is the Laplace-Beltrami operator

$$\Delta_g u = \sum_{j,k=1}^n \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x_j} \left(\sqrt{\det g} \, g^{jk} \frac{\partial u}{\partial x_k} \right),$$

where $g = (g_{jk}), g^{-1} = (g^{jk}).$

Calderón problem

Recall the steps to solve the Calderón problem:

- 1. Substitute $u = \gamma^{-1/2} v$, conductivity equation $\operatorname{div}(\gamma \nabla u) = 0 \iff$ Schrödinger equation $(-\Delta + q)v = 0$.
- 2. Integral identity: for any u_j solving $(-\Delta + q_j)u_j = 0$,

$$\int_{\Omega}(q_1-q_2)u_1u_2\,dx=0.$$

3. Insert *complex geometrical optics* solutions

$$u_j = e^{\rho_j \cdot x} (1 + r_j), \quad \rho \in \mathbb{C}^n, \quad \rho \cdot \rho = 0$$

to integral identity, recover Fourier transform of q.

Want to use a similar strategy for Maxwell equations.

Strategy [Ola-Somersalo (1996) in \mathbb{R}^3]

- 1. Reduce Maxwell equations to Dirac equation (D + V)X = 0.
- 2. Rescale by $\varepsilon^{1/2}$ and $\mu^{1/2}$, obtain rescaled Dirac equation (D+W)Y=0.
- 3. Reduce to Schrödinger equation $(-\Delta_g + Q)Z = 0$ by squaring.
- 4. Construct *complex geometrical optics* solutions *Z*.
- 5. Obtain solutions to Maxwell by showing that $\Phi = \Psi = 0$ (need *uniqueness notion* for complex geometrical optics).
- 6. Insert solutions to an integral identity.
- 7. Recover ε and μ from nonlinear differential expressions by unique continuation.

Outline

1. Inverse problems for Maxwell equations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2. Matrix Schrödinger equation
- 3. Complex geometrical optics
- 4. Partial data

Complex geometrical optics

Recall exponential solutions for $\rho \in \mathbb{C}^n$ [Calderón 1980]

$$\Delta u = 0, \quad u = e^{\rho \cdot x}, \quad \rho \cdot \rho = 0.$$

If $q \in L^{\infty}(\Omega)$, CGO solutions [Sylvester-Uhlmann 1987]

$$(-\Delta+q)u=0, \quad u=e^{\rho\cdot x}(1+r),$$

where $\|r\|_{L^2} \to 0$ as $|\rho| \to \infty$.

If $\Omega \subset \mathbb{R}^3$ and ε , μ are scalar, matrix Schrödinger equation becomes

$$((-\Delta)I_{8\times 8}+Q)Z=0.$$

Can use Sylvester-Uhlmann approach with *uniqueness notion* to produce CGO solutions with $\Phi = \Psi = 0$.

Complex geometrical optics

For matrix ε , μ or partial data need a new method, leading to:

Theorem (Kenig-S-Uhlmann 2011) Let ε and μ be matrices conformal to

$$A(x_1,x')=\left(egin{array}{cc} 1&0\0&g_0(x')^{-1}\end{array}
ight)$$

where g_0 is a simple metric¹. Then $\Lambda_{\varepsilon,\mu}$ determines ε and μ .

Here, matrices ε and μ are *conformal* if

 $\varepsilon(x) = \alpha(x)\mu(x), \quad \alpha \text{ positive scalar function.}$

¹e.g. a small perturbation of the identity matrix $\rightarrow \langle \mathcal{P} \rangle \land \langle \mathcal{P} \rangle \land \langle \mathcal{P} \rangle \land \langle \mathcal{P} \rangle$

Dynamic Maxwell equations

Theorem (Kurylev-Lassas-Somersalo 2006)

Knowledge of $\Lambda_{\varepsilon,\mu}$ for *all* frequencies $\omega > 0$ determines any conformal real matrices ε , μ uniquely up to diffeomorphism.

(Reduces to an inverse problem for hyperbolic Maxwell equations.)

If $\varepsilon,\,\mu$ are not conformal, many open questions in both elliptic and hyperbolic cases:

 [Krupchyk-Kurylev-Lassas 2010] Recover Betti numbers of the domain Ω from Λ_{ε,μ} for all frequencies

Complex geometrical optics

If $\Omega \subset \mathbb{R}^3$, Sylvester-Uhlmann obtain CGO solutions with *uniqueness notion* by *extending to* \mathbb{R}^3 and *fixing decay at* ∞ .

If (M,g) is compact and

$$g(x_1,x')=\left(egin{array}{cc} 1 & 0 \ 0 & g_0(x') \end{array}
ight),$$

get CGO solutions with *uniqueness notion* by *extending to a cylinder* and *requiring decay at ends* + *zero boundary values.*

Complex geometrical optics

Let $T = \mathbb{R} \times M_0$, $g = e \oplus g_0$, where (M_0, g_0) is a compact manifold with boundary. Write $x = (x_1, x')$, and define

$$\begin{split} \|f\|_{L^{2}_{\delta}(T)} &= \|\langle x_{1}\rangle^{\delta}f\|_{L^{2}(T)},\\ H^{1}_{\delta}(T) &= \{f \in L^{2}_{\delta}(T) \,;\, df \in L^{2}_{\delta}(T)\},\\ H^{1}_{\delta,0}(T) &= \{f \in H^{1}(T) \,;\, f|_{\partial T} = 0\}. \end{split}$$

Theorem (Kenig-S-Uhlmann 2011) Let $\delta > 1/2$. If $|\tau| \ge 1$ and $\tau^2 \notin \text{Spec}(-\Delta_{g_0})$, then for any $f \in L^2_{\delta}(T)$ there is a unique solution $u \in H^1_{-\delta,0}(T)$ of

$$e^{ au x_1}(-\Delta_g)e^{- au x_1}u = f \text{ in } T,$$

 $\|u\|_{L^2_{-\delta}(T)} \le rac{C}{|\tau|}\|f\|_{L^2_{\delta}(T)}.$

Proof of norm estimates

Here Spec $(-\Delta_{g_0}) = \{\lambda_l\}_{l=1}^{\infty}$ are Dirichlet eigenvalues of the Laplacian in (M_0, g_0) , with eigenfunctions $\{\phi_l\}_{l=1}^{\infty}$ forming an orthonormal basis of $L^2(M_0)$:

$$-\Delta_{g_0}\phi_I = \lambda_I\phi_I \text{ in } M_0, \quad \phi_I|_{\partial M_0} = 0.$$

If $f \in L^2(T)$ write partial Fourier expansion

$$f(x_1, x') = \sum_{l=1}^{\infty} \tilde{f}(x_1, l) \phi_l(x'), \quad \tilde{f}(x_1, l) = (f(x_1, \cdot), \phi_l)_{L^2}.$$

Example: if $M_0 = \mathbb{T}^{n-1}$, eigenfunctions are $\{e^{im' \cdot x'}\}_{m' \in \mathbb{Z}^{n-1}}$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Uniqueness

Assume $u \in H^1_{\delta,0}(T)$ and $e^{\tau x_1}(-\Delta_g)e^{-\tau x_1}u = 0$. Have

$$g = e \oplus g_0 \implies \Delta_g = \partial_1^2 + \Delta_{g_0}$$

Taking partial Fourier coefficients in x' and Fourier transform in x_1 , obtain

$$e^{\tau x_1} \Delta_g e^{-\tau x_1} u = 0 \implies (-\partial_1^2 + 2\tau \partial_1 - \tau^2 - \Delta_{g_0}) u = 0$$

$$\implies (-\partial_1^2 + 2\tau \partial_1 - \tau^2 + \lambda_I) \tilde{u}(\cdot, I) = 0$$

$$\implies (\xi_1^2 + 2i\tau\xi_1 - \tau^2 + \lambda_I) \hat{u}(\cdot, I) = 0.$$

The symbol is nonvanishing since $\tau^2 \notin \text{Spec}(-\Delta_{g_0})$ (look at the real and imaginary parts). Thus $\hat{u} = 0$.

Existence

Let $f \in L^2_{\delta}(T)$ with $\delta > 1/2$, $\tau \ge 1$. Have

$$e^{\tau x_1} \Delta_g e^{-\tau x_1} u = f \iff (-\partial_1^2 + 2\tau \partial_1 - \tau^2 - \Delta_{g_0}) u = f$$

$$\iff (-\partial_1^2 + 2\tau \partial_1 - \tau^2 + \lambda_I) \tilde{u}(\cdot, I) = \tilde{f}(\cdot, I)$$

This is an ODE for the partial Fourier coefficients of *u*. Factorize:

$$(\partial_1 - [\tau + \sqrt{\lambda_l}])(\partial_1 - [\tau - \sqrt{\lambda_l}])\tilde{u}(\cdot, l) = -\tilde{f}(\cdot, l).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It is enough to solve these ODEs with suitable estimates.

Existence

Lemma Let $a \in \mathbb{R} \setminus \{0\}$. The equation

$$u'-au=f$$
 in ${\mathbb R}$

has a unique solution $u \in \mathscr{S}'(\mathbb{R})$ for any $f \in \mathscr{S}'(\mathbb{R})$. The solution operator S_a satisfies

$$\begin{split} \|S_{a}f\|_{L^{2}_{\delta}} &\leq \frac{C_{\delta}}{|a|} \|f\|_{L^{2}_{\delta}} \quad \text{if } |a| \geq 1 \text{ and } \delta \in \mathbb{R}, \\ \|S_{a}f\|_{L^{2}_{-\delta}} &\leq C_{\delta} \|f\|_{L^{2}_{\delta}} \quad \text{if } a \neq 0 \text{ and } \delta > 1/2. \end{split}$$

Proof of Lemma

Since $a \neq 0$,

$$u'-au=f\iff (i\xi-a)\hat{u}=\hat{f}\iff \hat{u}=rac{1}{i\xi-a}\hat{f}.$$

Have unique solution $u \in \mathscr{S}'$ for any $f \in \mathscr{S}'$. If $|a| \ge 1$,

$$\|u\|_{L^{2}_{\delta}} = \|\hat{u}\|_{H^{\delta}} \leq \|(i\xi - a)^{-1}\|_{C^{k}}\|\hat{f}\|_{H^{\delta}} \leq \frac{C_{\delta}}{|a|}\|f\|_{L^{2}_{\delta}}.$$

If a > 0, have $u(x) = -\int_x^\infty f(t)e^{-a(t-x)} dt$ so $||u||_{L^\infty} \le ||f||_{L^1}$. Since $\delta > 1/2$,

$$\begin{split} \|u\|_{L^2_{-\delta}} &\leq \|u\|_{L^{\infty}} \|\langle x \rangle^{-\delta}\|_{L^2} \leq C_{\delta} \|f\|_{L^1} = C_{\delta} \int \langle t \rangle^{-\delta} \langle t \rangle^{\delta} |f| \, dt \\ &\leq C_{\delta} \|f\|_{L^2_{\delta}}. \quad \Box \end{split}$$

Outline

1. Inverse problems for Maxwell equations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2. Matrix Schrödinger equation
- 3. Complex geometrical optics
- 4. Partial data

Local data problem

Prescribe $E_{tan}|_{\Gamma}$, measure $H_{tan}|_{\Gamma}$:

・ロト ・四ト ・ヨト ・ヨト

æ

Local data problem

Theorem (Brown-Marletta-Reyes 2016) Let $\varepsilon, \mu \in C^2(\overline{\Omega})$ be a priori known near $\partial\Omega$. If $\Gamma \subset \partial\Omega$ is open, boundary measurements on Γ determine ε, μ .

Extends scalar result of [Ammari-Uhlmann 2004]. Ideas:

- boundary map on Γ + known coefficients near ∂Ω
 → full boundary map on a subdomain Ω₀ ⊂⊂ Ω
- ► uses the *Runge approximation property* (solutions in Ω₀ approximated by solutions in Ω vanishing on ∂Ω \ Γ), follows from unique continuation principle

Partial data problem

Theorem (Chung-Ola-S-Tzou 2016)

Let $\Omega \subset \mathbb{R}^3$ be strictly convex and $\varepsilon, \mu \in C^3(\overline{\Omega})$. If $\Gamma \subset \partial \Omega$ is open, measuring $H_{tan}|_{\Gamma}$ for any $E_{tan}|_{\partial\Omega}$ determines ε and μ .

Extends scalar result of [Kenig-Sjöstrand-Uhlmann 2007]. Ideas:

CGO solutions for matrix Schrödinger equation

$$(-\Delta_g + Q)Z = 0$$

- ► control Z|_{Γ^c} via Carleman estimates with boundary terms [Chung-S-Tzou 2016]
- relative/absolute boundary conditions for Hodge Laplace
 good boundary conditions for Maxwell

Partial data problem

Matrix Schrödinger equation

$$(-\Delta_g + Q)u = 0$$

Relative boundary conditions $(tu, t\delta u)$, where $t = i^*$ is the tangential part of a differential form, lead to a well-posed BVP.

If $u = (\Phi \ E \ *H \ *\Psi)^t$ with Φ, Ψ 0-forms and E, H 1-forms, *relative BC* correspond to fixing

 $\Phi|_{\partial\Omega}, \ E_{\tan}|_{\partial\Omega}, \ \nabla \cdot E|_{\partial\Omega}, \ \nu \cdot H|_{\partial\Omega}, \ (\nabla \times H)_{\tan}|_{\partial\Omega}, \ \partial_{\nu}\Psi|_{\partial\Omega}.$

If $\Phi = \Psi = 0$, this leads to CGO solutions for Maxwell with E_{tan} and H_{tan} vanishing on a (large) part of $\partial \Omega$.

Open questions

- 1. Solve the Maxwell inverse problem without reducing to a second order equation or extending to a larger set.
- 2. Can one determine $\varepsilon, \mu \in W^{1,3}$ in $\Omega \subset \mathbb{R}^3$ from $\Lambda_{\varepsilon,\mu}$?
- 3. Is it possible in some cases to recover matrix ε , μ that are not conformal?