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Calderón problem

Electrical Resistivity Imaging in geophysics (1920’s) [image: TerraDat]

A.P. Calderón (1980):

I mathematical formulation

I solution of the linearized problem

I exponential solutions



Calderón problem

Conductivity equation{
div(γ(x)∇u) = 0 in Ω,

u = f on ∂Ω

where Ω ⊂ Rn bounded Lipschitz domain, γ ∈ L∞(Ω) positive
scalar function (electrical conductivity).

Boundary measurements given by Dirichlet-
to-Neumann (DN) map1

Λγ : f 7→ γ∇u · ν|∂Ω.

Inverse problem: given Λγ, determine γ.

1as a map Λγ : H1/2(∂Ω)→ H−1/2(∂Ω)



Calderón problem

Model case of inverse boundary problems for elliptic equations
(Schrödinger, Maxwell, elasticity). Arises as the zero frequency
limit of an inverse problem for Maxwell equations.

Related to:

I optical and hybrid imaging methods

I inverse scattering

I geometric problems (boundary rigidity)

I periodic Schrödinger operators

I invisibility



Calderón problem

Uniqueness results:

n ≥ 3 linearized problem Calderón 1980

γ ∈ C 2 Sylvester-Uhlmann 1987

γ ∈W 1,∞ Haberman-Tataru 2013, Caro-Rogers 2016

γ ∈W 1,n Haberman 2016, n=3,4

n = 2 γ ∈ C 2 Nachman 1996

γ ∈ L∞ Astala-Päivärinta 2006



Calderón problem

Techniques:

n ≥ 3 linearized problem exponential solutions

γ ∈ C 2 L2 Carleman estimates

γ ∈W 1,∞ Bourgain space estimates + averaging

γ ∈W 1,n Lp harmonic analysis, n=3,4

n = 2 γ ∈ C 2 ∂-scattering theory

γ ∈ L∞ quasiconformal methods

Similarities with the unique continuation principle
(u vanishes in a ball =⇒ u ≡ 0)!



Outline

1. Calderón problem

2. Low regularity

3. Partial data and anisotropy



Schrödinger equation

Substitute u = γ−1/2v , conductivity equation div(γ∇u) = 0
reduces to Schrödinger equation (−∆ + q)v = 0 where

q =
∆(γ1/2)

γ1/2
.

If q ∈ L∞(Ω), consider Dirichlet problem{
(−∆ + q)u = 0 in Ω,

u = f on ∂Ω.

The DN map is Λq : f 7→ ∂νu|∂Ω.

Inverse problem: given Λq, determine q.



Integration by parts

Recall that Λq : u|∂Ω 7→ ∂νu|∂Ω when (−∆ + q)u = 0.

Lemma (Integration by parts)

Λq1 = Λq2 ⇐⇒
∫

Ω

(q1 − q2)u1u2 dx = 0

whenever uj ∈ H1(Ω) solve (−∆ + qj)uj = 0 in Ω.

Need to show that products {u1u2} are complete!



Complex geometrical optics

Exponential solutions for ρ ∈ Cn [Calderón 1980]

∆u = 0, u = eρ·x , ρ · ρ = 0.

If q ∈ L∞(Ω), CGO solutions [Sylvester-Uhlmann 1987]

(−∆ + q)u = 0, u = eρ·x(1 + r),

where ‖r‖L2 → 0 as |ρ| → ∞.

Need solvability for the conjugated Laplacian

∆ρ := e−ρ·x ◦∆ ◦ eρ·x = ∆ + 2ρ · ∇.



Estimates for ∆ρ = ∆ + 2ρ · ∇

Theorem. If f ∈ L2(Ω), there is u = ∆−1
ρ f with

∆ρu = f , ‖∆−1
ρ f ‖L2(Ω) ≤

C

|ρ|
‖f ‖L2(Ω).

Proof. Taking Fourier transforms, we have

∆ρu = f ⇐⇒ (−|ξ|2 + 2iρ · ξ)︸ ︷︷ ︸
:=pρ(ξ)

û = f̂ ⇐⇒ u = F−1

{
1

pρ
f̂

}
.

Characteristic set is a codim 2 sphere : for ρ = τ(en − ie1)

p−1
ρ (0) = {ξ ∈ Rn ; |ξ − τe1| = τ , ξn = 0}.

Microlocally 1
pρ(ξ)
∼ 1
|ρ|(η1+iη2)

, use L2 estimates for ∂.



Sylvester-Uhlmann (1987), n ≥ 3

Theorem. If q1, q2 ∈ L∞(Ω) satisfy Λq1 = Λq2 , then q1 = q2.

Proof. Show that {u1u2} is complete where

(−∆ + qj)uj = 0, uj = eρj ·x(1 + rj).

Need (∆ρj − qj)rj = qj . Trying rj = ∆−1
ρj

fj leads to

(Id− qj∆
−1
ρj︸ ︷︷ ︸

‖ · ‖L2→L2≤‖qj‖L∞ C
|ρj |

)fj = qj︸ ︷︷ ︸
‖ · ‖L2≤C

.

Solve by Neumann series for |ρj | large. If n ≥ 3, then for any
ξ ∈ Rn find ρj ∈ Cn, ρj · ρj = 0, to recover Fourier transform

u1u2 ≈ e(ρ1+ρ2)·x = e ix ·ξ as |ρj | → ∞.



Low regularity

If γ is W 1,∞, then q ∈ W−1,∞. Need [Haberman-Tataru 2013]

I Bourgain type spaces Ẋ s
ρ adapted to the equation:

‖u‖Ẋ s
ρ

= ‖|∆ρ|su‖L2

I substitute of L2 estimate (trivial): ‖∆−1
ρ f ‖

Ẋ
−1/2
ρ →Ẋ

1/2
ρ

= 1

I averaged estimate

‖q‖
Ẋ
−1/2
ρ

= o(1) on average as |ρ| → ∞.

Here q̂ cannot concentrate on all codim 2 spheres p−1
ρ (0)!

Caro-Rogers (2016) proved uniqueness for γ ∈ W 1,∞ using
Bourgain spaces with two large parameters.



Unbounded potentials

If q ∈ L∞ (i.e. γ ∈ W 2,∞), we used the estimate

‖q∆−1
ρ ‖L2→L2 ≤ ‖q‖L∞‖∆−1

ρ ‖L2→L2 ,

hence L2 estimates for ∆−1
ρ suffice.

Multiplication by q ∈ Ln/2 maps L
2n
n−2 to L

2n
n+2 , thus require

Lp estimates for ∆−1
ρ . More generally, consider q ∈ W−1,n

(i.e. γ ∈ W 1,n).



Lp estimates

Theorem (Kenig-Ruiz-Sogge 1987)
If ρ · ρ = 0, then

‖u‖
L

2n
n−2

. ‖∆ρu‖
L

2n
n+2
, u ∈ C∞c (Rn).

Proof. Characteristic set is a codim 2 sphere + Stein-Tomas
Fourier restriction estimates.

Implies unique continuation for −∆ + q for q ∈ Ln/2, and the
uniqueness result: [Chanillo, Jerison-Kenig 1990, Lavine-Nachman 1991]

qj ∈ Ln/2, Λq1 = Λq2 =⇒ q1 = q2.



Lp estimates

Theorem (Haberman 2016)
Uniqueness in the Calderón problem holds for the equations

div(γ∇u) = 0, γ ∈ W 1,n, n = 3, 4,

((D + ~b)2 + q)u = 0, ‖~b‖W ε,n small, q ∈ W−1,n, n = 3.

Related to unique continuation for −∆ + ~b · ∇ with ~b ∈ Ln

[Wolff 1992]. Main ideas:

I frequency localized KRS (Strichartz) estimates

I Bourgain spaces, averaging over suitable ρ

I paradifferential and Littlewood-Paley methods



The two-dimensional case

If D ⊂ R2 and γ ∈ L∞(D), have

div(γ∇u) = 0 !
u=Re(f )

∂f = µ∂f

where µ = 1−γ
1+γ

, ‖µ‖L∞ < 1. Reduce conductivity equation to
Beltrami equation, requires no derivatives for γ! Employ

I CGO solutions f (z , k) = e ikz(1 + η(z , k)) for all k ∈ C
I ∂-scattering theory [Beals-Coifman 1988]

I quasiconformal methods

to determine γ ∈ L∞(D) from Λγ [Astala-Päivärinta 2006].



Open questions

1. (Low regularity, n ≥ 3) Can one solve the Calderón problem

for the operator Pu = −div(a∇u) + ~b · ∇u + cu where

a ∈ W 1,n, ~b ∈ Ln, c ∈ W−1,n

up to natural gauges?

2. (Counterexamples, n ≥ 3) Can one find γ1, γ2 ∈ Cα with
0 < α < 1 so that

Λγ1 = Λγ2 but γ1 6= γ2?
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Local data problem

Prescribe voltages on Γ, measure currents on Γ:

Measure Λγf |Γ for any f with supp(f ) ⊂ Γ. Reduces to
showing density of products {u1u2} where supp(uj |∂Ω) ⊂ Γ.



Local data problem

Uniqueness known

I if n = 2 for any Γ ⊂ ∂Ω [Imanuvilov-Uhlmann-Yamamoto 2010]

I if n ≥ 3 and inaccessible part has a conformal symmetry
(e.g. flat, cylindrical or part of a surface of revolution)
[Kenig-S 2013, Isakov 2007, Kenig-Sjöstrand-Uhlmann 2007]

Flattening the boundary results in matrix conductivities:

Calderón problem for div(A∇u) = 0, A = (ajk), open if n ≥ 3!



Geometric formulation

Let (M , g) be a compact smooth Riemannian manifold with
boundary ∂M . The Laplace-Beltrami operator ∆g on M is
given by

∆gu =
n∑

j ,k=1

1√
det g

∂

∂xj

(√
det g g jk ∂u

∂xk

)
,

where g = (gjk), g−1 = (g jk).

If n = dim(M) ≥ 3, one has

∆gu = 0 ⇐⇒ div(A∇u) = 0

upon taking ajk =
√

det g g jk .



Anisotropic problem

(M, g) compact C∞ mfld with boundary, q ∈ C∞(M). Consider{
(−∆g + q)u = 0 in M ,

u = f on ∂M .

Here ∆g ! div(A∇ · ). Consider DN map

Λq : f 7→ ∂νu|∂M .

Recover q from Λq. As before, enough to show that the set

{u1u2 ; (−∆g + qj)uj = 0}

is complete in L1(M).



Complex geometrical optics

Recall CGO solutions [Sylvester-Uhlmann 1987]

(−∆ + q)u = 0 in Rn, u = eρ·x(1 + r).

Geometric version [Dos Santos-Kenig-S-Uhlmann 2009]:

(−∆g + q)u = 0 in M , u = e±ϕ/h(a + r),

where ϕ is a weight, h� 1 and ‖r‖L2 → 0 as h→ 0.
Need estimates for the conjugated Laplacian (∼ ∆ρ)

Pϕ = eϕ/h(−h2∆g )e−ϕ/h.

Fourier transforms are not enough, need ”variable coefficient
Fourier analysis” (=microlocal analysis) to study Pϕ!



Solvability

L2 estimates for P±ϕ ⇐⇒ principal symbol pϕ of Pϕ satisfies:

Definition (Kenig-Sjöstrand-Uhlmann 2007, Dos Santos et al 2009)
If (M , g) ⊂⊂ (U , g), we say that ϕ ∈ C∞(U) with dϕ 6= 0 is
a limiting Carleman weight (LCW) if

{pϕ, pϕ} = 0 in the set where pϕ = 0.

Examples in R3: ϕ(x) = x1 and ϕ(x) = log |x |. Questions:

1. Which (M , g) have LCWs?

2. If (M , g) has LCWs, can one solve the Calderón problem?



1. Existence of LCWs

LCWs require a certain conformal symmetry, such as:

(M , g) is conformally transversally anisotropic (CTA) if
(M , g) ⊂⊂ (R×M0, g) where g = c(e ⊕ g0).

I corresponds to A(x1, x
′) = c(x1, x

′)

(
1 0
0 A0(x ′)

)
I a 3D manifold has an LCW ! det(Cotton-York) = 0

[Angulo-Guijarro-Faraco-Ruiz 2016]



2. Solving the Calderón problem

Dos Santos-Kenig-S-Uhlmann (2009): uniqueness results when

(a) (M , g) is CTA

(b) transversal mfld (M0, g0) is simple2.

Dos Santos-Kurylev-Lassas-S (2016) weakened (b) to

(b’) transversal mfld (M0, g0) has injective X-ray transform.

Difficulty: need a replacement for Fourier transform in Rn!

2strictly convex ball with no conjugate points



Solving the Calderón problem

Equality of DN maps =⇒ a certain transform of q1 − q2

vanishes (replaces Fourier transform in Rn):

Theorem (S 2016)
(M , g) compact with LCW ϕ. Then

Λq1 = Λq2 =⇒
∫

Γ

(q1 − q2)Ψ dS = 0

if Γ is a good bicharacteristic leaf for Pϕ and Ψ ∈ Holom(Γ).

In Rn any 2-plane is a good leaf [Greenleaf-Uhlmann 2001]. In
general they are curved 2-manifolds (related to geodesics).



Complex involutive operators

Write pϕ = a + ib (= |ξ|2 − |dϕ|2 + 2i〈dϕ, ξ〉). Then

{a, b} = 0 on the characteristic set Σ = {a = b = 0}.

Complex involutive symbol [Duistermaat-Hörmander 1972]:

I Σ is an involutive (2n − 2)-dim. submanifold of T ∗U

I Σ is foliated by 2-dim. manifolds (bicharacteristic leaves)
generated by integral curves of Ha and Hb

I singularities for Pϕ propagate along bicharacteristic leaves

A leaf Γ is good if it ”straightens to a domain in R2” and
supports quasimodes. Then Pϕ ≈ ∂ microlocally near Γ.



Bicharacteristic leaves

Good Good

? (holonomy) Not good (trapped)



Normal form

Microlocal reduction to normal form: a good bicharacteristic
leaf can be ”straightened” in phase space.

Theorem. If Γ is a good bicharacteristic leaf, there is a
canonical transformation χ near Γ with

χ(Γ) ⊂ {((x1, x2, 0), en)}, χ∗pϕ = ξ1 + iξ2.

There is a semiclassical Fourier integral operator F associated
with the graph of χ such that

F ∗P±ϕF ∼ h(D1 ± iD2) + lower order.

Thus enough to study the operator h(D1 ± iD2).



Transform

If (M , g) ⊂⊂ (R×M0, g) is CTA, Calderón problem solvable
if the geodesic X-ray transform on M0,

If (γ) =

∫
γ

f dt, γ maximal geodesic,

is invertible. This holds on compact strictly convex M0, if M0:

I is simple (ball with no conjugate points) [Mukhometov 1978]

I has negative curvature [Guillarmou 2016]

I has nonnegative curvature and dim(M0) ≥ 3
[Uhlmann-Vasy 2016, Paternain-S-Uhlmann-Zhou 2016]

I embeds in a product of non-closed manifolds [S 2016]



Open questions

3. (Local data, n ≥ 3) If Ω ⊂ Rn is bounded and Γ ⊂ ∂Ω is
nonempty, can one solve the Calderón problem with
measurements on Γ?

4. (Linearized problem, n ≥ 3) If (M , g) is compact with
boundary, are products of harmonic functions dense in L1?


