Recent progress in the Calderón problem

Mikko Salo University of Jyväskylä

Durham, 18 July 2016

Finnish Centre of Excellence in Inverse Problems Research

European Research Council Established by the European Commission

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Outline

- 1. Calderón problem
- 2. Low regularity
- 3. Partial data and anisotropy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Electrical Resistivity Imaging in geophysics (1920's) $_{[image: TerraDat]}$

A.P. Calderón (1980):

- mathematical formulation
- solution of the linearized problem
- exponential solutions

Conductivity equation

$$\begin{cases} \operatorname{div}(\gamma(x)\nabla u) = 0 & \text{ in } \Omega, \\ u = f & \text{ on } \partial\Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^n$ bounded Lipschitz domain, $\gamma \in L^{\infty}(\Omega)$ positive scalar function (electrical conductivity).

Boundary measurements given by *Dirichletto-Neumann (DN) map*¹

$$\Lambda_{\gamma}: f \mapsto \gamma \nabla u \cdot \nu|_{\partial \Omega}.$$

Inverse problem: given Λ_{γ} , determine γ .

 1 as a map $\Lambda_\gamma: H^{1/2}(\partial\Omega) o H^{-1/2}(\partial\Omega)$

Model case of inverse boundary problems for elliptic equations (Schrödinger, *Maxwell*, elasticity). Arises as the zero frequency limit of an inverse problem for Maxwell equations.

Related to:

- optical and hybrid imaging methods
- inverse scattering
- geometric problems (boundary rigidity)
- periodic Schrödinger operators
- invisibility

Uniqueness results:

<i>n</i> ≥ 3	linearized problem	Calderón 1980
	$\gamma\in \mathit{C}^2$	Sylvester-Uhlmann 1987
	$\gamma\in W^{1,\infty}$	Haberman-Tataru 2013, Caro-Rogers 2016
	$\gamma \in \textit{W}^{1,\textit{n}}$	Haberman 2016, n=3,4
<i>n</i> = 2	$\gamma \in \mathit{C}^2$	Nachman 1996
	$\gamma\in \mathit{L}^\infty$	Astala-Päivärinta 2006

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Techniques:

<i>n</i> ≥ 3	linearized problem	exponential solutions
	$\gamma\in \mathit{C}^2$	L ² Carleman estimates
	$\gamma\in W^{1,\infty}$	Bourgain space estimates + averaging
	$\gamma \in \mathit{W^{1,n}}$	L^p harmonic analysis, n=3,4
<i>n</i> = 2	$\gamma\in \mathcal{C}^2$	$\overline{\partial}$ -scattering theory
	$\gamma\in \mathit{L}^\infty$	quasiconformal methods

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Similarities with the *unique continuation principle* $(u \text{ vanishes in a ball} \implies u \equiv 0)!$

Outline

1. Calderón problem

2. Low regularity

3. Partial data and anisotropy

Schrödinger equation

Substitute $u = \gamma^{-1/2} v$, conductivity equation $\operatorname{div}(\gamma \nabla u) = 0$ reduces to Schrödinger equation $(-\Delta + q)v = 0$ where

$$q=rac{\Delta(\gamma^{1/2})}{\gamma^{1/2}}.$$

If $q \in L^{\infty}(\Omega)$, consider Dirichlet problem

$$\begin{cases} (-\Delta + q)u = 0 & \text{in } \Omega, \\ u = f & \text{on } \partial\Omega. \end{cases}$$

The DN map is $\Lambda_q : f \mapsto \partial_{\nu} u|_{\partial\Omega}$.

Inverse problem: given Λ_q , determine q.

Integration by parts

Recall that $\Lambda_q : u|_{\partial\Omega} \mapsto \partial_{\nu} u|_{\partial\Omega}$ when $(-\Delta + q)u = 0$.

Lemma (Integration by parts)

$$\Lambda_{q_1} = \Lambda_{q_2} \iff \int_{\Omega} (q_1 - q_2) u_1 u_2 \, dx = 0$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

whenever $u_j \in H^1(\Omega)$ solve $(-\Delta + q_j)u_j = 0$ in Ω .

Need to show that products $\{u_1u_2\}$ are complete!

Complex geometrical optics

Exponential solutions for $\rho \in \mathbb{C}^n$ [Calderón 1980]

$$\Delta u = 0, \quad u = e^{\rho \cdot x}, \quad \rho \cdot \rho = 0.$$

If $q \in L^{\infty}(\Omega)$, CGO solutions [Sylvester-Uhlmann 1987]

$$(-\Delta+q)u=0, \quad u=e^{\rho\cdot x}(1+r),$$

where $\|r\|_{L^2} \to 0$ as $|\rho| \to \infty$.

Need solvability for the conjugated Laplacian

$$\Delta_{
ho} := e^{-
ho\cdot x} \circ \Delta \circ e^{
ho\cdot x} = \Delta + 2
ho\cdot
abla.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Estimates for $\Delta_{
ho} = \Delta + 2
ho \cdot
abla$

Theorem. If $f \in L^2(\Omega)$, there is $u = \Delta_{\rho}^{-1} f$ with

$$\Delta_{\rho} u = f, \qquad \|\Delta_{\rho}^{-1} f\|_{L^{2}(\Omega)} \leq \frac{C}{|\rho|} \|f\|_{L^{2}(\Omega)}.$$

Proof. Taking Fourier transforms, we have

$$\Delta_{\rho} u = f \iff \underbrace{(-|\xi|^2 + 2i\rho \cdot \xi)}_{:=\rho_{\rho}(\xi)} \hat{u} = \hat{f} \iff u = \mathscr{F}^{-1} \left\{ \frac{1}{\rho_{\rho}} \hat{f} \right\}.$$

Characteristic set is a *codim* 2 *sphere*: for $\rho = \tau(e_n - ie_1)$

$$p_{\rho}^{-1}(0) = \{\xi \in \mathbb{R}^n ; |\xi - \tau e_1| = \tau, \xi_n = 0\}.$$

Microlocally $\frac{1}{\rho_{\rho}(\xi)} \sim \frac{1}{|\rho|(\eta_1 + i\eta_2)}$, use L^2 estimates for $\overline{\partial}$.

Sylvester-Uhlmann (1987), $n \ge 3$

Theorem. If $q_1, q_2 \in L^{\infty}(\Omega)$ satisfy $\Lambda_{q_1} = \Lambda_{q_2}$, then $q_1 = q_2$. Proof. Show that $\{u_1u_2\}$ is complete where

$$(-\Delta+q_j)u_j=0,$$
 $u_j=e^{
ho_j\cdot x}(1+r_j).$

Need $(\Delta_{\rho_j} - q_j)r_j = q_j$. Trying $r_j = \Delta_{\rho_j}^{-1}f_j$ leads to

$$(\mathrm{Id} - \underbrace{q_j \Delta_{\rho_j}^{-1}}_{\|\cdot\|_{L^2 \to L^2} \le \|q_j\|_{L^\infty} \frac{C}{|\rho_j|}})f_j = \underbrace{q_j}_{\|\cdot\|_{L^2} \le C}$$

Solve by Neumann series for $|\rho_j|$ large. If $n \ge 3$, then for any $\xi \in \mathbb{R}^n$ find $\rho_j \in \mathbb{C}^n$, $\rho_j \cdot \rho_j = 0$, to recover *Fourier transform*

$$u_1u_2 \approx e^{(\rho_1+\rho_2)\cdot x} = e^{ix\cdot\xi}$$
 as $|\rho_j| \to \infty$.

Low regularity

If γ is $W^{1,\infty}$, then $q \in W^{-1,\infty}$. Need [Haberman-Tataru 2013]

• Bourgain type spaces \dot{X}_{ρ}^{s} adapted to the equation:

$$||u||_{\dot{X}^{s}_{\rho}} = |||\Delta_{\rho}|^{s}u||_{L^{2}}$$

- ▶ substitute of L^2 estimate (trivial): $\|\Delta_{\rho}^{-1}f\|_{\dot{X}_{\rho}^{-1/2} \to \dot{X}_{\rho}^{1/2}} = 1$
- averaged estimate

$$\|q\|_{\dot{X}_{
ho}^{-1/2}}=o(1)$$
 on average as $|
ho| o\infty.$

Here \hat{q} cannot concentrate on all *codim* 2 spheres $p_{\rho}^{-1}(0)!$ Caro-Rogers (2016) proved uniqueness for $\gamma \in W^{1,\infty}$ using Bourgain spaces with two large parameters.

Unbounded potentials

If $q \in L^{\infty}$ (i.e. $\gamma \in W^{2,\infty}$), we used the estimate

$$\|q\Delta_{
ho}^{-1}\|_{L^2\to L^2} \le \|q\|_{L^{\infty}}\|\Delta_{
ho}^{-1}\|_{L^2\to L^2},$$

hence L^2 estimates for Δ_{ρ}^{-1} suffice.

Multiplication by $q \in L^{n/2}$ maps $L^{\frac{2n}{n-2}}$ to $L^{\frac{2n}{n+2}}$, thus require L^{p} estimates for Δ_{ρ}^{-1} . More generally, consider $q \in W^{-1,n}$ (i.e. $\gamma \in W^{1,n}$).

L^p estimates

Theorem (Kenig-Ruiz-Sogge 1987) If $\rho \cdot \rho = 0$, then

$$\|u\|_{L^{\frac{2n}{n-2}}} \lesssim \|\Delta_{\rho}u\|_{L^{\frac{2n}{n+2}}}, \qquad u \in C^{\infty}_{c}(\mathbb{R}^{n}).$$

Proof. Characteristic set is a *codim* 2 *sphere* + Stein-Tomas Fourier restriction estimates.

Implies unique continuation for $-\Delta + q$ for $q \in L^{n/2}$, and the uniqueness result: [Chanillo, Jerison-Kenig 1990, Lavine-Nachman 1991]

$$q_j \in L^{n/2}, \hspace{0.2cm} \Lambda_{q_1} = \Lambda_{q_2} \hspace{0.2cm} \Longrightarrow \hspace{0.2cm} q_1 = q_2.$$

L^p estimates

Theorem (Haberman 2016)

Uniqueness in the Calderón problem holds for the equations

$$\operatorname{div}(\gamma \nabla u) = 0, \quad \gamma \in W^{1,n}, \quad n = 3, 4,$$
$$((D + \vec{b})^2 + q)u = 0, \quad \|\vec{b}\|_{W^{\varepsilon,n}} \text{ small}, \ q \in W^{-1,n}, \quad n = 3.$$

Related to unique continuation for $-\Delta + \vec{b} \cdot \nabla$ with $\vec{b} \in L^n$ [Wolff 1992]. Main ideas:

- frequency localized KRS (Strichartz) estimates
- Bourgain spaces, averaging over suitable ρ
- paradifferential and Littlewood-Paley methods

The two-dimensional case

If $\mathbb{D} \subset \mathbb{R}^2$ and $\gamma \in L^\infty(\mathbb{D})$, have

$$\operatorname{div}(\gamma \nabla u) = 0 \quad \underset{u = \operatorname{Re}(f)}{\longleftrightarrow} \quad \overline{\partial} f = \mu \overline{\partial} \overline{f}$$

where $\mu = \frac{1-\gamma}{1+\gamma}$, $\|\mu\|_{L^{\infty}} < 1$. Reduce *conductivity equation* to *Beltrami equation*, requires no derivatives for γ ! Employ

• CGO solutions $f(z,k) = e^{ikz}(1 + \eta(z,k))$ for all $k \in \mathbb{C}$

- $\overline{\partial}$ -scattering theory [Beals-Coifman 1988]
- quasiconformal methods

to determine $\gamma \in L^{\infty}(\mathbb{D})$ from Λ_{γ} [Astala-Päivärinta 2006].

Open questions

1. (Low regularity, $n \ge 3$) Can one solve the Calderón problem for the operator $Pu = -\operatorname{div}(a\nabla u) + \vec{b} \cdot \nabla u + cu$ where

$$a \in W^{1,n}, \quad \vec{b} \in L^n, \quad c \in W^{-1,n}$$

up to natural gauges?

2. (Counterexamples, $n \ge 3$) Can one find $\gamma_1, \gamma_2 \in C^{\alpha}$ with $0 < \alpha < 1$ so that

$$\Lambda_{\gamma_1} = \Lambda_{\gamma_2}$$
 but $\gamma_1 \neq \gamma_2$?

Outline

- 1. Calderón problem
- 2. Low regularity
- 3. Partial data and anisotropy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Local data problem

Prescribe voltages on Γ , measure currents on Γ :

Measure $\Lambda_{\gamma} f|_{\Gamma}$ for any f with $\operatorname{supp}(f) \subset \Gamma$. Reduces to showing density of products $\{u_1 u_2\}$ where $\operatorname{supp}(u_j|_{\partial\Omega}) \subset \Gamma$.

Local data problem

Uniqueness known

- ▶ if n = 2 for any $\Gamma \subset \partial \Omega$ [Imanuvilov-Uhlmann-Yamamoto 2010]
- ▶ if $n \ge 3$ and inaccessible part has a conformal symmetry (e.g. flat, cylindrical or part of a surface of revolution) [Kenig-S 2013, Isakov 2007, Kenig-Sjöstrand-Uhlmann 2007]

Flattening the boundary results in *matrix conductivities*:

Calderón problem for $\operatorname{div}(A\nabla u) = 0$, $A = (a^{jk})$, open if $n \ge 3!$

Geometric formulation

Let (M, g) be a compact smooth Riemannian manifold with boundary ∂M . The Laplace-Beltrami operator Δ_g on M is given by

$$\Delta_{g} u = \sum_{j,k=1}^{n} \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x_{j}} \left(\sqrt{\det g} g^{jk} \frac{\partial u}{\partial x_{k}} \right),$$

where $g = (g_{jk}), g^{-1} = (g^{jk}).$
If $n = \dim(M) \ge 3$, one has
 $\Delta_{g} u = 0 \iff \operatorname{div}(A \nabla u) = 0$
upon taking $a^{jk} = \sqrt{\det g} g^{jk}.$

Anisotropic problem

(M,g) compact C^∞ mfld with boundary, $q \in C^\infty(M)$. Consider

$$\begin{cases} (-\Delta_g + q)u = 0 & \text{ in } M, \\ u = f & \text{ on } \partial M. \end{cases}$$

Here $\Delta_g \iff \operatorname{div}(A\nabla \cdot)$. Consider DN map

$$\Lambda_q : f \mapsto \partial_{\nu} u |_{\partial M}.$$

Recover q from Λ_q . As before, enough to show that the set

$$\{ {\color{black}{u_1}u_2}$$
 ; $(-\Delta_g+q_j)u_j=0\}$

is complete in $L^1(M)$.

Complex geometrical optics

Recall CGO solutions [Sylvester-Uhlmann 1987]

$$(-\Delta + q)u = 0$$
 in \mathbb{R}^n , $u = e^{\rho \cdot x}(1+r)$.

Geometric version [Dos Santos-Kenig-S-Uhlmann 2009]:

$$(-\Delta_g + q)u = 0$$
 in M , $u = e^{\pm \varphi/h}(a+r)$

where φ is a weight, $h \ll 1$ and $||r||_{L^2} \to 0$ as $h \to 0$. Need estimates for the conjugated Laplacian ($\sim \Delta_{\rho}$)

$$P_{arphi} = e^{arphi/h} (-h^2 \Delta_g) e^{-arphi/h}$$

Fourier transforms are not enough, need "variable coefficient Fourier analysis" (=microlocal analysis) to study P_{φ} !

Solvability

 L^2 estimates for $P_{\pm \varphi} \iff$ principal symbol p_{φ} of P_{φ} satisfies:

Definition (Kenig-Sjöstrand-Uhlmann 2007, Dos Santos et al 2009) If $(M,g) \subset (U,g)$, we say that $\varphi \in C^{\infty}(U)$ with $d\varphi \neq 0$ is a *limiting Carleman weight* (LCW) if

$$\{\overline{p}_{arphi}, p_{arphi}\} = 0$$
 in the set where $p_{arphi} = 0.$

Examples in \mathbb{R}^3 : $\varphi(x) = x_1$ and $\varphi(x) = \log |x|$. Questions:

1. Which (M, g) have LCWs?

2. If (M, g) has LCWs, can one solve the Calderón problem?

1. Existence of LCWs

LCWs require a certain conformal symmetry, such as:

(M,g) is conformally transversally anisotropic (CTA) if $(M,g) \subset \subset (\mathbb{R} \times M_0,g)$ where $g = c(e \oplus g_0)$.

• corresponds to $A(x_1, x') = c(x_1, x') \begin{pmatrix} 1 & 0 \\ 0 & A_0(x') \end{pmatrix}$

► a 3D manifold has an LCW ↔ det(Cotton-York) = 0 [Angulo-Guijarro-Faraco-Ruiz 2016]

2. Solving the Calderón problem

Dos Santos-Kenig-S-Uhlmann (2009): uniqueness results when

- (a) (M, g) is CTA (b) transverse mfld (M, g) is
- (b) transversal mfld (M_0, g_0) is simple².

Dos Santos-Kurylev-Lassas-S (2016) weakened (b) to (b') transversal mfld (M_0, g_0) has injective X-ray transform.

Difficulty: need a replacement for Fourier transform in \mathbb{R}^{n} !

²strictly convex ball with *no conjugate points* $(\square) (\square) ($

Solving the Calderón problem

Equality of DN maps \implies a certain *transform* of $q_1 - q_2$ vanishes (replaces Fourier transform in \mathbb{R}^n):

Theorem (S 2016)

(M,g) compact with LCW φ . Then

$$\Lambda_{q_1} = \Lambda_{q_2} \implies \int_{\Gamma} (q_1 - q_2) \Psi \, dS = 0$$

if Γ is a *good bicharacteristic leaf* for P_{φ} and $\Psi \in \operatorname{Holom}(\Gamma)$.

In \mathbb{R}^n any 2-plane is a good leaf [Greenleaf-Uhlmann 2001]. In general they are curved 2-manifolds (related to geodesics).

Complex involutive operators

Write
$$p_{\varphi} = a + ib \ (= |\xi|^2 - |d\varphi|^2 + 2i\langle d\varphi, \xi \rangle)$$
. Then

 $\{a, b\} = 0$ on the *characteristic set* $\Sigma = \{a = b = 0\}$.

Complex involutive symbol [Duistermaat-Hörmander 1972]:

- ► Σ is an involutive (2n-2)-dim. submanifold of T^*U
- Σ is foliated by 2-dim. manifolds (*bicharacteristic leaves*) generated by integral curves of H_a and H_b
- singularities for P_{\varphi} propagate along bicharacteristic leaves

A leaf Γ is *good* if it "straightens to a domain in \mathbb{R}^{2} " and supports quasimodes. Then $P_{\varphi} \approx \overline{\partial}$ microlocally near Γ .

Bicharacteristic leaves

Normal form

Microlocal reduction to normal form: a good bicharacteristic leaf can be "straightened" in phase space.

Theorem. If Γ is a *good bicharacteristic leaf*, there is a canonical transformation χ near Γ with

$$\chi(\Gamma) \subset \{((x_1, x_2, 0), e_n)\}, \quad \chi^* p_{\varphi} = \xi_1 + i\xi_2.$$

There is a semiclassical Fourier integral operator F associated with the graph of χ such that

 $F^* P_{\pm \varphi} F \sim h(D_1 \pm iD_2) + \text{lower order.}$

Thus enough to study the operator $h(D_1 \pm iD_2)$.

Transform

If $(M,g) \subset (\mathbb{R} \times M_0,g)$ is *CTA*, Calderón problem solvable if the *geodesic X-ray transform* on M_0 ,

$$If(\gamma) = \int_{\gamma}^{\gamma} f dt$$
, γ maximal geodesic,

~

is invertible. This holds on compact strictly convex M_0 , if M_0 :

- is simple (ball with no conjugate points) [Mukhometov 1978]
- has negative curvature [Guillarmou 2016]
- ► has nonnegative curvature and dim(M₀) ≥ 3 [Uhlmann-Vasy 2016, Paternain-S-Uhlmann-Zhou 2016]
- embeds in a product of non-closed manifolds [S 2016]

Open questions

- (Local data, n ≥ 3) If Ω ⊂ ℝⁿ is bounded and Γ ⊂ ∂Ω is nonempty, can one solve the Calderón problem with measurements on Γ?
- 4. (Linearized problem, $n \ge 3$) If (M, g) is compact with boundary, are products of harmonic functions dense in L^1 ?