Recent progress in the Calderón problem

Mikko Salo
University of Jyväskylä

Durham, 18 July 2016

Finnish Centre of Excellence in Inverse Problems Research

Outline

1. Calderón problem
2. Low regularity
3. Partial data and anisotropy

Calderón problem

Electrical Resistivity Imaging in geophysics (1920's) [image: Terabat]

General resistivity principle
P1/P2 = Potential electode
C1/C2 = Current electode

Typical field set-up

A.P. Calderón (1980):

- mathematical formulation
- solution of the linearized problem
- exponential solutions

Calderón problem

Conductivity equation

$$
\left\{\begin{aligned}
\operatorname{div}(\gamma(x) \nabla u)=0 & \text { in } \Omega, \\
u=f & \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\Omega \subset \mathbb{R}^{n}$ bounded Lipschitz domain, $\gamma \in L^{\infty}(\Omega)$ positive scalar function (electrical conductivity).

Boundary measurements given by Dirichlet-to-Neumann (DN) map ${ }^{1}$

$$
\Lambda_{\gamma}:\left.f \mapsto \gamma \nabla u \cdot \nu\right|_{\partial \Omega}
$$

Inverse problem: given Λ_{γ}, determine γ.

$$
{ }^{1} \text { as a } \operatorname{map} \Lambda_{\gamma}: H^{1 / 2}(\partial \Omega) \rightarrow H^{-1 / 2}(\partial \Omega)
$$

Calderón problem

Model case of inverse boundary problems for elliptic equations (Schrödinger, Maxwell, elasticity). Arises as the zero frequency limit of an inverse problem for Maxwell equations.

Related to:

- optical and hybrid imaging methods
- inverse scattering
- geometric problems (boundary rigidity)
- periodic Schrödinger operators
- invisibility

Calderón problem

Uniqueness results:

$n \geq 3$	linearized problem	Calderón 1980
	$\gamma \in C^{2}$	Sylvester-Uhlmann 1987
	$\gamma \in W^{1, \infty}$	Haberman-Tataru 2013, Caro-Rogers 2016
	$\gamma \in W^{1, n}$	Haberman 2016, $\mathrm{n}=3,4$
$n=2$	$\gamma \in C^{2}$	Nachman 1996
	$\gamma \in L^{\infty}$	Astala-Päivärinta 2006

Calderón problem

Techniques:

$$
\begin{array}{lll}
n \geq 3 & \text { linearized problem } & \text { exponential solutions } \\
& \gamma \in C^{2} & L^{2} \text { Carleman estimates } \\
& \gamma \in W^{1, \infty} & \text { Bourgain space estimates + averaging } \\
& \gamma \in W^{1, n} & L^{p} \text { harmonic analysis, } \mathrm{n}=3,4 \\
\hline n=2 & \gamma \in C^{2} & \bar{\partial} \text {-scattering theory } \\
& \gamma \in L^{\infty} & \text { quasiconformal methods }
\end{array}
$$

Similarities with the unique continuation principle (u vanishes in a ball $\Longrightarrow u \equiv 0$)!

Outline

1. Calderón problem

2. Low regularity
3. Partial data and anisotropy

Schrödinger equation

Substitute $u=\gamma^{-1 / 2} v$, conductivity equation $\operatorname{div}(\gamma \nabla u)=0$ reduces to Schrödinger equation $(-\Delta+q) v=0$ where

$$
q=\frac{\Delta\left(\gamma^{1 / 2}\right)}{\gamma^{1 / 2}}
$$

If $q \in L^{\infty}(\Omega)$, consider Dirichlet problem

$$
\left\{\begin{aligned}
(-\Delta+q) u=0 & \text { in } \Omega, \\
u=f & \text { on } \partial \Omega
\end{aligned}\right.
$$

The DN map is $\Lambda_{q}:\left.f \mapsto \partial_{\nu} u\right|_{\partial \Omega}$.
Inverse problem: given Λ_{q}, determine q.

Integration by parts

Recall that $\Lambda_{q}:\left.\left.u\right|_{\partial \Omega} \mapsto \partial_{\nu} u\right|_{\partial \Omega}$ when $(-\Delta+q) u=0$.

Lemma (Integration by parts)

$$
\Lambda_{q_{1}}=\Lambda_{q_{2}} \Longleftrightarrow \int_{\Omega}\left(q_{1}-q_{2}\right) u_{1} u_{2} d x=0
$$

whenever $u_{j} \in H^{1}(\Omega)$ solve $\left(-\Delta+q_{j}\right) u_{j}=0$ in Ω.

Need to show that products $\left\{u_{1} u_{2}\right\}$ are complete!

Complex geometrical optics

Exponential solutions for $\rho \in \mathbb{C}^{n}$ [Calderón 1980]

$$
\Delta u=0, \quad u=e^{\rho \cdot x}, \quad \rho \cdot \rho=0
$$

If $q \in L^{\infty}(\Omega)$, CGO solutions [Sylvester-Uhlmann 1987]

$$
(-\Delta+q) u=0, \quad u=e^{\rho \cdot x}(1+r)
$$

where $\|r\|_{L^{2}} \rightarrow 0$ as $|\rho| \rightarrow \infty$.
Need solvability for the conjugated Laplacian

$$
\Delta_{\rho}:=e^{-\rho \cdot x} \circ \Delta \circ e^{\rho \cdot x}=\Delta+2 \rho \cdot \nabla
$$

Estimates for $\Delta_{\rho}=\Delta+2 \rho \cdot \nabla$

Theorem. If $f \in L^{2}(\Omega)$, there is $u=\Delta_{\rho}^{-1} f$ with

$$
\Delta_{\rho} u=f, \quad\left\|\Delta_{\rho}^{-1} f\right\|_{L^{2}(\Omega)} \leq \frac{C}{|\rho|}\|f\|_{L^{2}(\Omega)} .
$$

Proof. Taking Fourier transforms, we have

$$
\Delta_{\rho} u=f \Longleftrightarrow \underbrace{\left(-|\xi|^{2}+2 i \rho \cdot \xi\right)}_{:=p_{\rho}(\xi)} \hat{u}=\hat{f} \Longleftrightarrow u=\mathscr{F}^{-1}\left\{\frac{1}{p_{\rho}} \hat{f}\right\} .
$$

Characteristic set is a codim 2 sphere: for $\rho=\tau\left(e_{n}-i e_{1}\right)$

$$
p_{\rho}^{-1}(0)=\left\{\xi \in \mathbb{R}^{n} ;\left|\xi-\tau e_{1}\right|=\tau, \xi_{n}=0\right\} .
$$

Microlocally $\frac{1}{p_{\rho}(\xi)} \sim \frac{1}{|\rho|\left(\eta_{1}+i \eta_{2}\right)}$, use L^{2} estimates for $\bar{\partial}$.

Sylvester-Uhlmann (1987), $n \geq 3$

Theorem. If $q_{1}, q_{2} \in L^{\infty}(\Omega)$ satisfy $\Lambda_{q_{1}}=\Lambda_{q_{2}}$, then $q_{1}=q_{2}$. Proof. Show that $\left\{u_{1} u_{2}\right\}$ is complete where

$$
\left(-\Delta+q_{j}\right) u_{j}=0, \quad u_{j}=e^{\rho_{j} \times x}\left(1+r_{j}\right) .
$$

Need $\left(\Delta_{\rho_{j}}-q_{j}\right) r_{j}=q_{j}$. Trying $r_{j}=\Delta_{\rho_{j}}^{-1} f_{j}$ leads to

$$
(\operatorname{Id}-\underbrace{q_{j} \Delta_{\rho_{j}}^{-1}}_{\|\cdot\|_{L^{2} \rightarrow L^{2}} \leq\left\|q_{j}\right\|_{L \infty} \frac{c}{\left|\rho_{j}\right|}}) f_{j}=\underbrace{q_{j}}_{\|\cdot\|_{L^{2} \leq C} \leq} .
$$

Solve by Neumann series for $\left|\rho_{j}\right|$ large. If $n \geq 3$, then for any $\xi \in \mathbb{R}^{n}$ find $\rho_{j} \in \mathbb{C}^{n}, \rho_{j} \cdot \rho_{j}=0$, to recover Fourier transform

$$
u_{1} u_{2} \approx e^{\left(\rho_{1}+\rho_{2}\right) \cdot x}=e^{i \times \cdot \xi} \quad \text { as }\left|\rho_{j}\right| \rightarrow \infty .
$$

\square

Low regularity

If γ is $W^{1, \infty}$, then $q \in W^{-1, \infty}$. Need [Haberman-Tataru 2013]

- Bourgain type spaces \dot{X}_{ρ}^{s} adapted to the equation:

$$
\|u\|_{\dot{X}_{\rho}^{s}}=\left\|\left|\Delta_{\rho}\right|^{s} u\right\|_{L^{2}}
$$

- substitute of L^{2} estimate (trivial): $\left\|\Delta_{\rho}^{-1} f\right\|_{\dot{X}_{\rho}^{-1 / 2} \rightarrow \dot{X}_{\rho}^{1 / 2}}=1$
- averaged estimate

$$
\|q\|_{\dot{\chi}_{\rho}^{-1 / 2}}=o(1) \text { on average as }|\rho| \rightarrow \infty
$$

Here \hat{q} cannot concentrate on all codim 2 spheres $p_{\rho}^{-1}(0)$!
Caro-Rogers (2016) proved uniqueness for $\gamma \in W^{1, \infty}$ using Bourgain spaces with two large parameters.

Unbounded potentials

If $q \in L^{\infty}$ (i.e. $\gamma \in W^{2, \infty}$), we used the estimate

$$
\left\|q \Delta_{\rho}^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq\|q\|_{L^{\infty}}\left\|\Delta_{\rho}^{-1}\right\|_{L^{2} \rightarrow L^{2}}
$$

hence L^{2} estimates for Δ_{ρ}^{-1} suffice.

Multiplication by $q \in L^{n / 2}$ maps $L^{\frac{2 n}{n-2}}$ to $L^{\frac{2 n}{n+2}}$, thus require L^{p} estimates for Δ_{ρ}^{-1}. More generally, consider $q \in W^{-1, n}$
(i.e. $\gamma \in W^{1, n}$).

L^{p} estimates

Theorem (Kenig-Ruiz-Sogge 1987)
If $\rho \cdot \rho=0$, then

$$
\|u\|_{L^{\frac{2 n}{n-2}}} \lesssim\left\|\Delta_{\rho} u\right\|_{L^{\frac{2 n}{n+2}},}, \quad u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

Proof. Characteristic set is a codim 2 sphere + Stein-Tomas Fourier restriction estimates.

Implies unique continuation for $-\Delta+q$ for $q \in L^{n / 2}$, and the uniqueness result: [Chanillo, Jerison-Kenig 1990, Lavine-Nachman 1991]

$$
q_{j} \in L^{n / 2}, \quad \Lambda_{q_{1}}=\Lambda_{q_{2}} \Longrightarrow q_{1}=q_{2} .
$$

L^{p} estimates

Theorem (Haberman 2016)
Uniqueness in the Calderón problem holds for the equations

$$
\begin{gathered}
\operatorname{div}(\gamma \nabla u)=0, \quad \gamma \in W^{1, n}, \quad n=3,4, \\
\left((D+\vec{b})^{2}+q\right) u=0, \quad\|\vec{b}\|_{W^{\varepsilon}, n} \text { small, } \quad q \in W^{-1, n}, \quad n=3 .
\end{gathered}
$$

Related to unique continuation for $-\Delta+\vec{b} \cdot \nabla$ with $\vec{b} \in L^{n}$ [Wolff 1992]. Main ideas:

- frequency localized KRS (Strichartz) estimates
- Bourgain spaces, averaging over suitable ρ
- paradifferential and Littlewood-Paley methods

The two-dimensional case

If $\mathbb{D} \subset \mathbb{R}^{2}$ and $\gamma \in L^{\infty}(\mathbb{D})$, have

$$
\operatorname{div}(\gamma \nabla u)=0 \quad \min _{u=\operatorname{Re}(f)} \quad \bar{\partial} f=\mu \overline{\partial f}
$$

where $\mu=\frac{1-\gamma}{1+\gamma},\|\mu\|_{L^{\infty}}<1$. Reduce conductivity equation to Beltrami equation, requires no derivatives for γ ! Employ

- CGO solutions $f(z, k)=e^{i k z}(1+\eta(z, k))$ for all $k \in \mathbb{C}$
- $\bar{\partial}$-scattering theory [Beals-Coifman 1988]
- quasiconformal methods
to determine $\gamma \in L^{\infty}(\mathbb{D})$ from Λ_{γ} [Astala-Päivärinta 2006].

Open questions

1. (Low regularity, $n \geq 3$) Can one solve the Calderón problem for the operator $P u=-\operatorname{div}(a \nabla u)+\vec{b} \cdot \nabla u+c u$ where

$$
a \in W^{1, n}, \quad \vec{b} \in L^{n}, \quad c \in W^{-1, n}
$$

up to natural gauges?
2. (Counterexamples, $n \geq 3$) Can one find $\gamma_{1}, \gamma_{2} \in C^{\alpha}$ with $0<\alpha<1$ so that

$$
\Lambda_{\gamma_{1}}=\Lambda_{\gamma_{2}} \quad \text { but } \quad \gamma_{1} \neq \gamma_{2} ?
$$

Outline

1. Calderón problem

2. Low regularity
3. Partial data and anisotropy

Local data problem

Prescribe voltages on Γ, measure currents on Γ :

Measure $\left.\Lambda_{\gamma} f\right|_{\Gamma}$ for any f with $\operatorname{supp}(f) \subset \Gamma$. Reduces to showing density of products $\left\{u_{1} u_{2}\right\}$ where $\operatorname{supp}\left(\left.u_{j}\right|_{\partial \Omega}\right) \subset \Gamma$.

Local data problem

Uniqueness known

- if $n=2$ for any $\Gamma \subset \partial \Omega$ [Imanuvilov-UhImann-Yamamoto 2010]
- if $n \geq 3$ and inaccessible part has a conformal symmetry (e.g. flat, cylindrical or part of a surface of revolution) [Kenig-S 2013, Isakov 2007, Kenig-Sjöstrand-UhImann 2007]

Flattening the boundary results in matrix conductivities:

Calderón problem for $\operatorname{div}(A \nabla u)=0, A=\left(a^{j k}\right)$, open if $n \geq 3$!

Geometric formulation

Let (M, g) be a compact smooth Riemannian manifold with boundary ∂M. The Laplace-Beltrami operator Δ_{g} on M is given by

$$
\Delta_{g} u=\sum_{j, k=1}^{n} \frac{1}{\sqrt{\operatorname{det} g}} \frac{\partial}{\partial x_{j}}\left(\sqrt{\operatorname{det} g} g^{j k} \frac{\partial u}{\partial x_{k}}\right)
$$

where $g=\left(g_{j k}\right), g^{-1}=\left(g^{j k}\right)$.
If $n=\operatorname{dim}(M) \geq 3$, one has

$$
\Delta_{g} u=0 \Longleftrightarrow \operatorname{div}(A \nabla u)=0
$$

upon taking $a^{j k}=\sqrt{\operatorname{det} g} g^{j k}$.

Anisotropic problem

(M, g) compact C^{∞} mfld with boundary, $q \in C^{\infty}(M)$. Consider

$$
\left\{\begin{aligned}
&\left(-\Delta_{g}+q\right) u=0 \\
& u=f \text { in } M, \\
& \text { on } \partial M
\end{aligned}\right.
$$

Here $\Delta_{g} \nprec \rightsquigarrow \operatorname{div}(A \nabla \cdot)$. Consider DN map

$$
\Lambda_{q}:\left.f \mapsto \partial_{\nu} u\right|_{\partial M}
$$

Recover q from Λ_{q}. As before, enough to show that the set

$$
\left\{u_{1} u_{2} ;\left(-\Delta_{g}+q_{j}\right) u_{j}=0\right\}
$$

is complete in $L^{1}(M)$.

Complex geometrical optics

Recall CGO solutions [Sylvester-Uhlmann 1987]

$$
(-\Delta+q) u=0 \text { in } \mathbb{R}^{n}, \quad u=e^{\rho \cdot x}(1+r)
$$

Geometric version [Dos Santos-Kenig-S-Uhlmann 2009]:

$$
\left(-\Delta_{g}+q\right) u=0 \text { in } M, \quad u=e^{ \pm \varphi / h}(a+r)
$$

where φ is a weight, $h \ll 1$ and $\|r\|_{L^{2}} \rightarrow 0$ as $h \rightarrow 0$.
Need estimates for the conjugated Laplacian $\left(\sim \Delta_{\rho}\right)$

$$
P_{\varphi}=e^{\varphi / h}\left(-h^{2} \Delta_{g}\right) e^{-\varphi / h}
$$

Fourier transforms are not enough, need "variable coefficient Fourier analysis" (=microlocal analysis) to study P_{φ} !

Solvability

L^{2} estimates for $P_{ \pm \varphi} \Longleftrightarrow$ principal symbol p_{φ} of P_{φ} satisfies:
Definition (Kenig-Sjöstrand-Uhlmann 2007, Dos Santos et al 2009)
If $(M, g) \subset \subset(U, g)$, we say that $\varphi \in C^{\infty}(U)$ with $d \varphi \neq 0$ is a limiting Carleman weight (LCW) if

$$
\left\{\bar{p}_{\varphi}, p_{\varphi}\right\}=0 \text { in the set where } p_{\varphi}=0 .
$$

Examples in $\mathbb{R}^{3}: \varphi(x)=x_{1}$ and $\varphi(x)=\log |x|$. Questions:

1. Which (M, g) have LCWs?
2. If (M, g) has LCWs, can one solve the Calderón problem?

1. Existence of LCWs

LCWs require a certain conformal symmetry, such as:
(M, g) is conformally transversally anisotropic (CTA) if $(M, g) \subset \subset\left(\mathbb{R} \times M_{0}, g\right)$ where $g=c\left(e \oplus g_{0}\right)$.

- corresponds to $A\left(x_{1}, x^{\prime}\right)=c\left(x_{1}, x^{\prime}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & A_{0}\left(x^{\prime}\right)\end{array}\right)$
- a 3D manifold has an LCW $\leadsto \operatorname{det}$ (Cotton-York) $=0$ [Angulo-Guijarro-Faraco-Ruiz 2016]

2. Solving the Calderón problem

Dos Santos-Kenig-S-Uhlmann (2009): uniqueness results when
(a) (M, g) is CTA
(b) transversal mfld $\left(M_{0}, g_{0}\right)$ is simple ${ }^{2}$.

Dos Santos-Kurylev-Lassas-S (2016) weakened (b) to
(b') transversal mfld $\left(M_{0}, g_{0}\right)$ has injective X-ray transform.

Difficulty: need a replacement for Fourier transform in \mathbb{R}^{n} !

[^0]
Solving the Calderón problem

Equality of DN maps \Longrightarrow a certain transform of $q_{1}-q_{2}$ vanishes (replaces Fourier transform in \mathbb{R}^{n}):

Theorem (S 2016)
(M, g) compact with LCW φ. Then

$$
\Lambda_{q_{1}}=\Lambda_{q_{2}} \Longrightarrow \int_{\Gamma}\left(q_{1}-q_{2}\right) \Psi d S=0
$$

if Γ is a good bicharacteristic leaf for P_{φ} and $\Psi \in \operatorname{Holom}(\Gamma)$.
In \mathbb{R}^{n} any 2-plane is a good leaf [Greenleaf-Uhlmann 2001]. In general they are curved 2-manifolds (related to geodesics).

Complex involutive operators

Write $p_{\varphi}=a+i b\left(=|\xi|^{2}-|d \varphi|^{2}+2 i\langle d \varphi, \xi\rangle\right)$. Then

$$
\{a, b\}=0 \text { on the characteristic set } \Sigma=\{a=b=0\}
$$

Complex involutive symbol [Duistermaat-Hörmander 1972]:

- Σ is an involutive ($2 n-2$)-dim. submanifold of $T^{*} U$
- Σ is foliated by 2-dim. manifolds (bicharacteristic leaves) generated by integral curves of H_{a} and H_{b}
- singularities for P_{φ} propagate along bicharacteristic leaves

A leaf Γ is good if it "straightens to a domain in $\mathbb{R}^{2 "}$ and supports quasimodes. Then $P_{\varphi} \approx \bar{\partial}$ microlocally near Γ.

Bicharacteristic leaves

Normal form

Microlocal reduction to normal form: a good bicharacteristic leaf can be "straightened" in phase space.

Theorem. If Γ is a good bicharacteristic leaf, there is a canonical transformation χ near Γ with

$$
\chi(\Gamma) \subset\left\{\left(\left(x_{1}, x_{2}, 0\right), e_{n}\right)\right\}, \quad \chi^{*} p_{\varphi}=\xi_{1}+i \xi_{2} .
$$

There is a semiclassical Fourier integral operator F associated with the graph of χ such that

$$
F^{*} P_{ \pm \varphi} F \sim h\left(D_{1} \pm i D_{2}\right)+\text { lower order. }
$$

Thus enough to study the operator $h\left(D_{1} \pm i D_{2}\right)$.

Transform

If $(M, g) \subset \subset\left(\mathbb{R} \times M_{0}, g\right)$ is CTA, Calderón problem solvable if the geodesic X-ray transform on M_{0},

$$
\text { If }(\gamma)=\int_{\gamma} f d t, \quad \gamma \text { maximal geodesic, }
$$

is invertible. This holds on compact strictly convex M_{0}, if M_{0} :

- is simple (ball with no conjugate points) [Mukhometov 1978]
- has negative curvature [Guillarmou 2016]
- has nonnegative curvature and $\operatorname{dim}\left(M_{0}\right) \geq 3$
[Uhlmann-Vasy 2016, Paternain-S-Uhlmann-Zhou 2016]
- embeds in a product of non-closed manifolds [S 2016]

Open questions

3. (Local data, $n \geq 3$) If $\Omega \subset \mathbb{R}^{n}$ is bounded and $\Gamma \subset \partial \Omega$ is nonempty, can one solve the Calderón problem with measurements on 「?
4. (Linearized problem, $n \geq 3)$ If (M, g) is compact with boundary, are products of harmonic functions dense in L^{1} ?

[^0]: ${ }^{2}$ strictly convex ball with no conjugate points

