Cloaking and superlensing using negative index materials Durham Symposium on Mathematical and Computational Aspects of Maxwell's Equations

Hoai-Minh Nguyen
École Polytechnique Fédérale de Lausanne EPFL, Switzerland

July 13, 2016

Outline

1 Negative index materials
2 Two interesting examples.

3 Superlensing using complementary media

4 Cloaking using complementary media
5 Summary

Part 1: Negative index materials

Negative index materials (NIMs)

Definition: NIMs are artificial structures where the refractive index has a negative value over some frequency range.

positive-index material

negative-index material

Figure: Left: RP-photonics; Right: Wikipedia.
Highlights of the development
1 Veselago (UFN 64) investigated theoretically NIMs.
1 Nicorovici, McPhedran, \& Milton (PRB 94) and Pendry (PRL 00).
3 Shelby et al. (Science 01) confirmed experimentally.

Mathematical settings

Electromagnetic setting:

$$
\left\{\begin{array}{l}
\nabla \times \mathrm{E}=i k \mu \mathrm{H}, \\
\nabla \times \mathrm{H}=-\mathrm{ik} \in \mathrm{E}+\mathrm{j} .
\end{array}\right.
$$

Negative index materials: $\epsilon<0$ and $\mu<0$.

Negative index materials:

Mathematical settings

Electromagnetic setting:

$$
\left\{\begin{array}{l}
\nabla \times \mathrm{E}=i k \mu \mathrm{H} \\
\nabla \times \mathrm{H}=-\mathrm{ik} \in \mathrm{E}+\mathrm{j}
\end{array}\right.
$$

Negative index materials: $\epsilon<0$ and $\mu<0$.

Acoustic setting:

$$
\operatorname{div}(A \nabla u)+\mathrm{k}^{2} \Sigma \mathrm{u}=\mathrm{f}
$$

Negative index materials: $A<0$ and $\Sigma<0$.

Mathematical settings

Electromagnetic setting:

$$
\left\{\begin{array}{l}
\nabla \times \mathrm{E}=i k \mu \mathrm{H} \\
\nabla \times \mathrm{H}=-\mathrm{ik} \in \mathrm{E}+\mathrm{j}
\end{array}\right.
$$

Negative index materials: $\epsilon<0$ and $\mu<0$.

Acoustic setting:

$$
\operatorname{div}(A \nabla u)+\mathrm{k}^{2} \Sigma \mathrm{u}=\mathrm{f}
$$

Negative index materials: $A<0$ and $\Sigma<0$.

Remarks:
1 The ellipticity and compactness might be lost.
$\sqrt{2}$ Localized resonance might appear.
3 Many surprising interesting properties.

Part 2: Two examples

First example: Nicorovici, McPhedran, \& Milton's result, PRB 94

Consider

$$
\begin{gathered}
\operatorname{div}\left(A_{\delta} \nabla u_{\delta}\right)=f \text { in } \mathbb{R}^{2} \text { where } \\
A_{\delta}=\left\{\begin{array}{cl}
1 & \text { in } \mathbb{R}^{2} \backslash B_{r_{2}}, \\
-1-i \delta & \text { in } B_{r_{2}} \backslash B_{r_{1}}, \\
1 & \text { in } B_{r_{1}} .
\end{array}\right.
\end{gathered}
$$

First example: Nicorovici, McPhedran, \& Milton's result, PRB 94

Consider

$$
\begin{gathered}
\operatorname{div}\left(A_{\delta} \nabla u_{\delta}\right)=f \text { in } \mathbb{R}^{2} \text { where } \\
A_{\delta}=\left\{\begin{array}{cl}
1 & \text { in } \mathbb{R}^{2} \backslash B_{r_{2}} \\
-1-i \delta & \text { in } B_{r_{2}} \backslash B_{r_{1}}, \\
1 & \text { in } B_{r_{1}}
\end{array}\right.
\end{gathered}
$$

Theorem

If supp $f \cap B_{r_{3}}=\emptyset$ where $r_{3}=r_{2}^{2} / r_{1}$, then

$$
\mathrm{u}_{\delta} \rightarrow \mathrm{U} \text { in } \mathbb{R}^{2} \backslash \mathrm{~B}_{\mathrm{r}_{3}}, \text { where } \Delta \mathrm{U}=\mathrm{f} \text { in } \mathbb{R}^{2} .
$$

Some questions:
Il Why do the phenomena hold for r ?

First example: Nicorovici, McPhedran, \& Milton's result, PRB 94

Consider

$$
\begin{gathered}
\operatorname{div}\left(A_{\delta} \nabla u_{\delta}\right)=f \text { in } \mathbb{R}^{2} \text { where } \\
A_{\delta}=\left\{\begin{array}{cl}
1 & \text { in } \mathbb{R}^{2} \backslash B_{r_{2}} \\
-1-i \delta & \text { in } B_{r_{2}} \backslash B_{r_{1}} \\
1 & \text { in } B_{r_{1}}
\end{array}\right.
\end{gathered}
$$

Theorem

If supp $f \cap B_{r_{3}}=\emptyset$ where $r_{3}=r_{2}^{2} / r_{1}$, then

$$
\mathrm{u}_{\delta} \rightarrow \mathrm{U} \text { in } \mathbb{R}^{2} \backslash \mathrm{~B}_{\mathrm{r}_{3}}, \text { where } \Delta \mathrm{U}=\mathrm{f} \text { in } \mathbb{R}^{2} .
$$

Some questions:
\square Why do the phenomena hold for 1
2] Is it necessary that the geometry is radial symmetric?

First example: Nicorovici, McPhedran, \& Milton's result, PRB 94

Consider

$$
\begin{gathered}
\operatorname{div}\left(A_{\delta} \nabla u_{\delta}\right)=f \text { in } \mathbb{R}^{2} \text { where } \\
A_{\delta}=\left\{\begin{array}{cl}
1 & \text { in } \mathbb{R}^{2} \backslash B_{r_{2}} \\
-1-i \delta & \text { in } B_{r_{2}} \backslash B_{r_{1}}, \\
1 & \text { in } B_{r_{1}}
\end{array}\right.
\end{gathered}
$$

Theorem

If supp $f \cap B_{r_{3}}=\emptyset$ where $r_{3}=r_{2}^{2} / r_{1}$, then

$$
\mathrm{u}_{\delta} \rightarrow \mathrm{U} \text { in } \mathbb{R}^{2} \backslash \mathrm{~B}_{\mathrm{r}_{3}} \text {, where } \Delta \mathrm{U}=\mathrm{f} \text { in } \mathbb{R}^{2} .
$$

Some questions:
1 Why do the phenomena hold for $r_{3}=r_{2}^{2} / r_{1}$?
2 Is it necessary that the geometry is radial symmetric?
(3) What happens in the finite frequency case $(k \neq 0)$ and in three dimensions?

First example: Nicorovici, McPhedran, \& Milton's result, PRB 94

Consider

$$
\begin{gathered}
\operatorname{div}\left(A_{\delta} \nabla u_{\delta}\right)=f \text { in } \mathbb{R}^{2} \text { where } \\
A_{\delta}=\left\{\begin{array}{cl}
1 & \text { in } \mathbb{R}^{2} \backslash B_{r_{2}} \\
-1-i \delta & \text { in } B_{r_{2}} \backslash B_{r_{1}}, \\
1 & \text { in } B_{r_{1}}
\end{array}\right.
\end{gathered}
$$

Theorem

If supp $f \cap B_{r_{3}}=\emptyset$ where $r_{3}=r_{2}^{2} / r_{1}$, then

$$
\mathrm{u}_{\delta} \rightarrow \mathrm{U} \text { in } \mathbb{R}^{2} \backslash \mathrm{~B}_{\mathrm{r}_{3}}, \text { where } \Delta \mathrm{U}=\mathrm{f} \text { in } \mathbb{R}^{2} .
$$

Some questions:

1 Why do the phenomena hold for $r_{3}=r_{2}^{2} / r_{1}$?
2 Is it necessary that the geometry is radial symmetric?

First example: Nicorovici, McPhedran, \& Milton's result, PRB 94

Consider

$$
\begin{gathered}
\operatorname{div}\left(A_{\delta} \nabla u_{\delta}\right)=f \text { in } \mathbb{R}^{2} \text { where } \\
A_{\delta}=\left\{\begin{array}{cl}
1 & \text { in } \mathbb{R}^{2} \backslash B_{r_{2}}, \\
-1-i \delta & \text { in } B_{r_{2}} \backslash B_{r_{1}}, \\
1 & \text { in } B_{r_{1}}
\end{array}\right.
\end{gathered}
$$

Theorem

If supp $f \cap B_{r_{3}}=\emptyset$ where $r_{3}=r_{2}^{2} / r_{1}$, then

$$
\mathrm{u}_{\delta} \rightarrow \mathrm{U} \text { in } \mathbb{R}^{2} \backslash \mathrm{~B}_{\mathrm{r}_{3}} \text {, where } \Delta \mathrm{U}=\mathrm{f} \text { in } \mathbb{R}^{2} .
$$

Some questions:

1 Why do the phenomena hold for $r_{3}=r_{2}^{2} / r_{1}$?
$\boxed{2}$ Is it necessary that the geometry is radial symmetric?
3 What happens in the finite frequency case $(k \neq 0)$ and in three dimensions?

Second example: Ng. \& Loc Nguyen, M2AN 15

Set

$$
\varepsilon_{\delta}=\left\{\begin{array}{cl}
-1-i \delta & \text { in } B_{1} \\
1 & \text { otherwise }
\end{array}\right.
$$

Theorem
Let $d=2, R>1, g \in H^{1 / 2}\left(\partial B_{R}\right)$ and $u_{\delta} \in H^{1}\left(B_{R}\right)$ be s.t.

$$
\operatorname{div}\left(\varepsilon_{\delta} \nabla \mathrm{u}_{\delta}\right)=0 \text { in } \mathrm{B}_{\mathrm{R}} \quad \text { and } \quad \mathrm{u}_{\delta}=\mathrm{g} \text { on } \partial \mathrm{B}_{\mathrm{R}} .
$$

Second example: Ng. \& Loc Nguyen, M2AN 15

Set

$$
\varepsilon_{\delta}=\left\{\begin{array}{cl}
-1-i \delta & \text { in } B_{1} \\
1 & \text { otherwise } .
\end{array}\right.
$$

Theorem

Let $d=2, R>1, g \in H^{1 / 2}\left(\partial B_{R}\right)$ and $u_{\delta} \in H^{1}\left(B_{R}\right)$ be s.t.

$$
\operatorname{div}\left(\varepsilon_{\delta} \nabla \mathrm{u}_{\delta}\right)=0 \text { in } \mathrm{B}_{\mathrm{R}} \quad \text { and } \quad \mathrm{u}_{\delta}=\mathrm{g} \text { on } \partial \mathrm{B}_{\mathrm{R}}
$$

Case 1: g is compatible. Then $\mathrm{u}_{\delta} \rightarrow \mathrm{u}_{0}$ weakly in $\mathrm{H}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)$ as $\delta \rightarrow 0$.

Second example: Ng. \& Loc Nguyen, M2AN 15

Set

$$
\varepsilon_{\delta}=\left\{\begin{array}{cl}
-1-i \delta & \text { in } B_{1} \\
1 & \text { otherwise }
\end{array}\right.
$$

Theorem

Let $d=2, R>1, g \in H^{1 / 2}\left(\partial B_{R}\right)$ and $u_{\delta} \in H^{1}\left(B_{R}\right)$ be s.t.

$$
\operatorname{div}\left(\varepsilon_{\delta} \nabla \mathrm{u}_{\delta}\right)=0 \text { in } \mathrm{B}_{\mathrm{R}} \quad \text { and } \quad \mathrm{u}_{\delta}=\mathrm{g} \text { on } \partial \mathrm{B}_{\mathrm{R}}
$$

Case 1: g is compatible. Then $\mathrm{u}_{\delta} \rightarrow \mathrm{u}_{0}$ weakly in $\mathrm{H}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)$ as $\delta \rightarrow 0$.
Case 2: g is not compatible. Then $\lim _{\delta \rightarrow 0}\left\|u_{\delta}\right\|_{\mathrm{H}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)}=+\infty$;

Second example: Ng. \& Loc Nguyen, M2AN 15

Set

$$
\varepsilon_{\delta}=\left\{\begin{array}{cl}
-1-i \delta & \text { in } B_{1} \\
1 & \text { otherwise }
\end{array}\right.
$$

Theorem

Let $d=2, R>1, g \in H^{1 / 2}\left(\partial B_{R}\right)$ and $u_{\delta} \in H^{1}\left(B_{R}\right)$ be s.t.

$$
\operatorname{div}\left(\varepsilon_{\delta} \nabla \mathrm{u}_{\delta}\right)=0 \text { in } \mathrm{B}_{\mathrm{R}} \quad \text { and } \quad \mathrm{u}_{\delta}=\mathrm{g} \text { on } \partial \mathrm{B}_{\mathrm{R}}
$$

Case 1: g is compatible. Then $\mathrm{u}_{\delta} \rightarrow \mathrm{u}_{0}$ weakly in $\mathrm{H}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)$ as $\delta \rightarrow 0$. Case 2: g is not compatible. Then $\lim _{\delta \rightarrow 0}\left\|u_{\delta}\right\|_{\mathrm{H}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)}=+\infty$; however,

$$
u_{\delta} \rightarrow v \text { weakly in } \mathrm{H}^{1}\left(\mathrm{~B}_{1 / \mathrm{R}}\right), \text { where }\left\{\begin{array}{cl}
\Delta v=0 & \text { in } \mathrm{B}_{1 / \mathrm{R}}, \\
v(x)=\mathrm{g}\left(\mathrm{x} /|\mathrm{x}|^{2}\right) & \text { on } \partial \mathrm{B}_{1 / \mathrm{R}} .
\end{array}\right.
$$

Second example: Ng. \& Loc Nguyen, M2AN 15

Set

$$
\varepsilon_{\delta}=\left\{\begin{array}{cl}
-1-i \delta & \text { in } B_{1} \\
1 & \text { otherwise }
\end{array}\right.
$$

Theorem

Let $d=2, R>1, g \in H^{1 / 2}\left(\partial B_{R}\right)$ and $u_{\delta} \in H^{1}\left(B_{R}\right)$ be s.t.

$$
\operatorname{div}\left(\varepsilon_{\delta} \nabla \mathrm{u}_{\delta}\right)=0 \text { in } \mathrm{B}_{\mathrm{R}} \quad \text { and } \quad \mathrm{u}_{\delta}=\mathrm{g} \text { on } \partial \mathrm{B}_{\mathrm{R}}
$$

Case 1: g is compatible. Then $\mathrm{u}_{\delta} \rightarrow \mathrm{u}_{0}$ weakly in $\mathrm{H}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)$ as $\delta \rightarrow 0$. Case 2: g is not compatible. Then $\lim _{\delta \rightarrow 0}\left\|u_{\delta}\right\|_{\mathrm{H}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)}=+\infty$; however,

$$
u_{\delta} \rightarrow v \text { weakly in } \mathrm{H}^{1}\left(\mathrm{~B}_{1 / \mathrm{R}}\right), \text { where }\left\{\begin{array}{cl}
\Delta v=0 & \text { in } \mathrm{B}_{1 / \mathrm{R}} \\
v(\mathrm{x})=\mathrm{g}\left(\mathrm{x} /|\mathrm{x}|^{2}\right) & \text { on } \partial \mathrm{B}_{1 / \mathrm{R}}
\end{array}\right.
$$

Moreover,

$$
\limsup _{\delta \rightarrow 0} \delta \int_{\mathrm{B}_{\mathrm{R}}}\left|\nabla \mathrm{u}_{\delta}\right|^{2} \mathrm{~d} x<+\infty, \quad \forall \mathrm{g} \in \mathrm{H}^{1 / 2}\left(\partial \mathrm{~B}_{\mathrm{R}}\right) .
$$

Compatibility condition: v can be extended as a harmonic function in B_{1}.

Second example contd.

Recall

$$
\varepsilon_{\delta}=\left\{\begin{array}{cl}
-1-i \delta & \text { in } B_{1}, \\
1 & \text { otherwise. }
\end{array}\right.
$$

Theorem

Let $\mathrm{d}=2$, and $\mathrm{f} \in \mathrm{L}_{\mathrm{c}}^{2}\left(\mathbb{R}^{2}\right)$ with supp $\mathrm{f} \cap \mathrm{B}_{1}=\varnothing$, and $\mathrm{u}_{\delta} \in \mathrm{W}^{1}\left(\mathbb{R}^{2}\right)$ be the unique solution to

$$
\operatorname{div}\left(\varepsilon_{\delta} \nabla u_{\delta}\right)=\mathrm{f} \text { in } \mathbb{R}^{2}
$$

Case 1: f is compatible. Then $\mathrm{u}_{\delta} \rightarrow \mathrm{u}_{0}$ weakly in $\mathrm{H}_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$ as $\delta \rightarrow 0$.

$$
\text { Compatibility condition: } \exists v \text { s.t. } \Delta v=\mathrm{f} \text { in } \mathbb{R}^{2} \backslash \mathrm{~B}_{1} \text { and } v=\partial_{r} v=0 \text { on } \partial \mathrm{B}_{1} .
$$

Second example contd.

Recall

$$
\varepsilon_{\delta}=\left\{\begin{array}{cl}
-1-i \delta & \text { in } B_{1}, \\
1 & \text { otherwise. }
\end{array}\right.
$$

Theorem

Let $\mathrm{d}=2$, and $\mathrm{f} \in \mathrm{L}_{\mathrm{c}}^{2}\left(\mathbb{R}^{2}\right)$ with supp $\mathrm{f} \cap \mathrm{B}_{1}=\varnothing$, and $\mathrm{u}_{\delta} \in \mathrm{W}^{1}\left(\mathbb{R}^{2}\right)$ be the unique solution to

$$
\operatorname{div}\left(\varepsilon_{\delta} \nabla u_{\delta}\right)=\mathrm{f} \text { in } \mathbb{R}^{2}
$$

Case 1: f is compatible. Then $\mathrm{u}_{\delta} \rightarrow \mathrm{u}_{0}$ weakly in $\mathrm{H}_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$ as $\delta \rightarrow 0$. Case 2: f is not compatible. Then, for any open O,

$$
0<\liminf _{\delta \rightarrow 0} \delta^{2} \int_{O}\left|\nabla \mathfrak{u}_{\delta}\right|^{2} \mathrm{~d} x \leqslant \limsup _{\delta \rightarrow 0} \delta^{2} \int_{O}\left|\nabla \mathfrak{u}_{\delta}\right|^{2} \mathrm{~d} x<+\infty
$$

Compatibility condition: $\exists v$ s.t. $\Delta v=\mathrm{f}$ in $\mathbb{R}^{2} \backslash \mathrm{~B}_{1}$ and $v=\partial_{\mathrm{r}} v=0$ on $\partial \mathrm{B}_{1}$.

Part 3: Superlensing using complementary media

Superlensing using complementary media - State of the art

- Veselago's lens (slab lens): Veselago UFN 64 (ray theory), Pendry PRL 00 (Maxwell's equations).

Figure: Left: Veselago's lens. Right: Yang et al.'s experiment Nature 08.

- Cylindrical lens: Nicorovici, McPhedran, Milton PRB 94 (quasistatic regime), Pendry OE 03 (finite frequency regime).
- Spherical lens: Ramakrishna \& Pendry PRE 04 (finite frequency regime).

State of the art contd.

- Standard proposal:

■ Cylindrical lens: To magnify m times "an object" in $\mathrm{B}_{\mathrm{r}_{0}}$, one puts a plasmonic structure $-I$ in $B_{r_{2}} \backslash B_{r_{0}}$ with $r_{2}^{2} / r_{0}^{2}=m$.

- Spherical lens: To magnify m times "an object" in $B_{r_{0}}$, one puts a plasmonic structure $-\left(r_{2}^{2} /|x|^{2}\right) I$ in $B_{r_{2}} \backslash B_{r_{0}}$ with $r_{2}^{2} / r_{0}^{2}=m$.

State of the art contd.

- Standard proposal:

■ Cylindrical lens: To magnify m times "an object" in $\mathrm{B}_{\mathrm{r}_{0}}$, one puts a plasmonic structure $-I$ in $B_{r_{2}} \backslash B_{r_{0}}$ with $r_{2}^{2} / r_{0}^{2}=m$.

- Spherical lens: To magnify m times "an object" in $B_{r_{0}}$, one puts a plasmonic structure $-\left(r_{2}^{2} /|x|^{2}\right) I$ in $B_{r_{2}} \backslash B_{r_{0}}$ with $r_{2}^{2} / r_{0}^{2}=m$.

- Known results: "Object": a constant isotropic object, homogeneous medium via separation of variables.
searching in the set of radial isotropic structures.

Electromagnetic setting: Ng. 15. Related but different schemes are used, the

State of the art contd.

- Standard proposal:

■ Cylindrical lens: To magnify m times "an object" in $\mathrm{B}_{\mathrm{r}_{0}}$, one puts a plasmonic structure $-I$ in $B_{r_{2}} \backslash B_{r_{0}}$ with $r_{2}^{2} / r_{0}^{2}=m$.
■ Spherical lens: To magnify m times "an object" in $B_{r_{0}}$, one puts a plasmonic structure $-\left(r_{2}^{2} /|x|^{2}\right) I$ in $B_{r_{2}} \backslash B_{r_{0}}$ with $r_{2}^{2} / r_{0}^{2}=m$.

- Known results: "Object": a constant isotropic object, homogeneous medium via separation of variables.
- Comments: The structure in 3d is not easy to predict. This was done by searching in the set of radial isotropic structures.

Electromagnetic setting: N

State of the art contd.

- Standard proposal:
- Cylindrical lens: To magnify m times "an object" in $\mathrm{B}_{\mathrm{r}_{0}}$, one puts a plasmonic structure $-I$ in $B_{r_{2}} \backslash B_{r_{0}}$ with $r_{2}^{2} / r_{0}^{2}=m$.
- Spherical lens: To magnify m times "an object" in $B_{r_{0}}$, one puts a plasmonic structure $-\left(r_{2}^{2} /|x|^{2}\right) I$ in $B_{r_{2}} \backslash B_{r_{0}}$ with $r_{2}^{2} / r_{0}^{2}=m$.

- Known results: "Object": a constant isotropic object, homogeneous medium via separation of variables.
- Comments: The structure in 3d is not easy to predict. This was done by searching in the set of radial isotropic structures.
- Theory confirmed for arbitrary objects: Acoustic setting: Ng. AIHP 15, Electromagnetic setting: Ng. 15. Related but different schemes are used, the modification is necessary.

The two dimensional quasistatic regime, Ng, AIHP 15
Magnified region: $\mathrm{B}_{\mathrm{r}_{0}}$; Magnification: $\mathrm{m}>1$.
The superlensing device contains two layers:
1 The first one -I in $B_{r_{2}} \backslash B_{r_{1}}$
2 The second (new) one I in $B_{r_{1}} \backslash B_{r_{0}}$. Here $r_{2}=m r_{0}$ and $r_{1}=m^{1 / 2} r_{0}$.
two layers of superlens object magnified

The two dimensional quasistatic regime, Ng, AIHP 15

Magnified region: $\mathrm{B}_{\mathrm{r}_{0}}$; Magnification: $\mathrm{m}>1$. The superlensing device contains two layers:

1 The first one $-I$ in $B_{r_{2}} \backslash B_{r_{1}}$
2 The second (new) one I in $B_{r_{1}} \backslash B_{r_{0}}$.
Here $r_{2}=m r_{0}$ and $r_{1}=m^{1 / 2} r_{0}$. With loss, the medium is

$$
s_{\delta} A=\left\{\begin{array}{cl}
1 \cdot \mathrm{I} & \text { in } \Omega \backslash \mathrm{B}_{\mathrm{r}_{2}}, \\
(-1-i \delta) \cdot \mathrm{I} & \text { in } \mathrm{B}_{\mathrm{r}_{2}} \backslash \mathrm{~B}_{\mathrm{r}_{1}}, \\
1 \cdot \mathrm{I} & \text { in } \mathrm{B}_{\mathrm{r}_{1}} \backslash \mathrm{~B}_{\mathrm{r}_{0}}, \\
1 \cdot \mathrm{a} & \text { in } \mathrm{B}_{\mathrm{r}_{0}} .
\end{array}\right.
$$

The two dimensional quasistatic regime, Ng, AIHP 15

Magnified region: $\mathrm{B}_{\mathrm{r}_{0}}$; Magnification: $\mathrm{m}>1$. The superlensing device contains two layers:

1 The first one -I in $B_{r_{2}} \backslash B_{r_{1}}$
2 The second (new) one I in $B_{r_{1}} \backslash B_{r_{0}}$.
Here $r_{2}=m r_{0}$ and $r_{1}=m^{1 / 2} r_{0}$. With loss, the medium is

$$
s_{\delta} A=\left\{\begin{array}{cl}
1 \cdot \mathrm{I} & \text { in } \Omega \backslash \mathrm{B}_{\mathrm{r}_{2}}, \\
(-1-\mathrm{i} \delta) \cdot \mathrm{I} & \text { in } \mathrm{B}_{\mathrm{r}_{2}} \backslash \mathrm{~B}_{\mathrm{r}_{1}}, \\
1 \cdot \mathrm{I} & \text { in } \mathrm{B}_{\mathrm{r}_{1}} \backslash \mathrm{~B}_{\mathrm{r}_{0}}, \\
1 \cdot \mathrm{a} & \text { in } \mathrm{B}_{\mathrm{r}_{0}} .
\end{array}\right.
$$

Theorem

Let $\mathrm{f} \in \mathrm{L}^{2}(\Omega)$ be s.t. supp $\mathrm{f} \subset \Omega \backslash \mathrm{B}_{\mathrm{r}_{3}}$ with $\mathrm{r}_{3}=\mathrm{r}_{2}^{2} / \mathrm{r}_{1}$ and let $u_{\delta} \in \mathrm{H}_{0}^{1}(\Omega)$ be s.t. $\operatorname{div}\left(s_{\delta} A \nabla u_{\delta}\right)=\mathrm{f}$. Then

$$
\mathrm{u}_{\delta} \rightarrow \hat{\mathrm{u}} \text { weakly in } \mathrm{H}^{1}\left(\Omega \backslash \mathrm{~B}_{\mathrm{r}_{3}}\right) \text { as } \delta \rightarrow 0,
$$

where $\hat{\mathrm{u}} \in \mathrm{H}_{0}^{1}(\Omega)$ is s.t. $\operatorname{div}(\hat{\mathrm{A}} \nabla \hat{\mathrm{u}})=\mathrm{f}$ in Ω.

Proof.

We first consider the case $\mathrm{a}=\mathrm{I}$ in $\mathrm{B}_{\mathrm{r}_{0}}$.

Proof.

We first consider the case $a=I$ in $B_{r_{0}}$. Define
$u_{1}\left(x^{*}\right)=u(x), \quad x^{*}=F(x)=r_{2}^{2} x /|x|^{2}$.
We have $\partial \mathrm{Br}_{3}=\mathrm{F}\left(\partial \mathrm{B}_{\mathrm{r}_{1}}\right)$ and

Proof.

We first consider the case $a=I$ in $\mathrm{B}_{\mathrm{r}_{0}}$. Define

$$
u_{1}\left(x^{*}\right)=u(x), \quad x^{*}=F(x)=r_{2}^{2} x /|x|^{2}
$$

We have $\partial \mathrm{Br}_{3}=\mathrm{F}\left(\partial \mathrm{B}_{\mathrm{r}_{1}}\right)$ and $\operatorname{div}\left(M \nabla \mathfrak{u}_{1}\right)=0$ in $\mathbb{R}^{2} \backslash B_{r_{2}}$ where $M=1$ in $\mathrm{B}_{\mathrm{r}_{3}} \backslash \mathrm{~B}_{\mathrm{r}_{2}},-1$ in $\mathbb{R}^{2} \backslash \mathrm{~B}_{\mathrm{r}_{3}}$.

Proof.

We first consider the case $a=I$ in $\mathrm{B}_{\mathrm{r}_{0}}$. Define

$$
u_{1}\left(x^{*}\right)=u(x), \quad x^{*}=F(x)=r_{2}^{2} x /|x|^{2}
$$

We have $\partial \mathrm{Br}_{3}=\mathrm{F}\left(\partial \mathrm{B}_{\mathrm{r}_{1}}\right)$ and $\operatorname{div}\left(M \nabla u_{1}\right)=0$ in $\mathbb{R}^{2} \backslash B_{r_{2}}$ where $M=1$ in $B_{r_{3}} \backslash B_{r_{2}},-1$ in $\mathbb{R}^{2} \backslash \mathrm{~B}_{\mathrm{r}_{3}}$. Thus

$$
\begin{gathered}
\Delta \mathfrak{u}_{1}=\Delta u=0 \text { in } B_{r_{3}} \backslash B_{r_{2}} \\
\mathfrak{u}_{1}-u=\partial_{\mathrm{r}} u_{1}-\left.\partial_{\mathrm{r}} u\right|_{+}=0 \text { on } \partial \mathrm{B}_{\mathrm{r}_{2}} .
\end{gathered}
$$

Proof.

We first consider the case $a=I$ in $\mathrm{B}_{\mathrm{r}_{0}}$. Define

$$
u_{1}\left(x^{*}\right)=u(x), \quad x^{*}=F(x)=r_{2}^{2} x /|x|^{2}
$$

We have $\partial \mathrm{Br}_{3}=\mathrm{F}\left(\partial \mathrm{B}_{\mathrm{r}_{1}}\right)$ and $\operatorname{div}\left(M \nabla \mathfrak{u}_{1}\right)=0$ in $\mathbb{R}^{2} \backslash B_{r_{2}}$ where $M=1$ in $B_{r_{3}} \backslash B_{r_{2}},-1$ in $\mathbb{R}^{2} \backslash \mathrm{~B}_{\mathrm{r}_{3}}$. Thus

$$
\begin{gathered}
\Delta \mathfrak{u}_{1}=\Delta u=0 \text { in } B_{r_{3}} \backslash \mathrm{~B}_{\mathrm{r}_{2}} \\
\mathfrak{u}_{1}-\mathfrak{u}=\partial_{\mathrm{r}} \mathfrak{u}_{1}-\left.\partial_{\mathrm{r}} \mathfrak{u}\right|_{+}=0 \text { on } \partial \mathrm{B}_{\mathrm{r}_{2}} .
\end{gathered}
$$

By the unique continuation principle,

$$
u_{1}=u \text { in } B_{r_{3}} \backslash B_{r_{2}} .
$$

Define

$$
u_{1}\left(x^{*}\right)=u(x), \quad x^{*}=F(x)=r_{2}^{2} x /|x|^{2}
$$

We have

$$
u_{1}=u \text { in } B_{r_{3}} \backslash B_{r_{2}} .
$$

$$
\begin{aligned}
& \text { Define } \\
& u_{2}\left(x^{* *}\right)=u_{1}(x), \quad x^{* *}=G(x)=r_{3}^{2} x /|x|^{2} .
\end{aligned}
$$

Define

$$
u_{1}\left(x^{*}\right)=u(x), \quad x^{*}=F(x)=r_{2}^{2} x /|x|^{2}
$$

We have

$$
u_{1}=u \text { in } B_{r_{3}} \backslash B_{r_{2}} .
$$

Define

$u_{2}\left(x^{* *}\right)=u_{1}(x), \quad x^{* *}=G(x)=r_{3}^{2} x /|x|^{2}$.
We have

$u_{2}=u_{1}$ in $B_{r_{3}} \backslash B_{r_{2}}, \Delta u_{2}=0$ in $B_{r_{3}}$.

Define

$$
u_{1}\left(x^{*}\right)=u(x), \quad x^{*}=F(x)=r_{2}^{2} x /|x|^{2}
$$

We have

$$
u_{1}=u \text { in } B_{r_{3}} \backslash B_{r_{2}} .
$$

Define

$u_{2}\left(x^{* *}\right)=u_{1}(x), \quad x^{* *}=G(x)=r_{3}^{2} x /|x|^{2}$.

We have

$u_{2}=u_{1}$ in $B_{r_{3}} \backslash B_{r_{2}}, \Delta u_{2}=0$ in $B_{r_{3}}$.

$$
\text { Set } \hat{u}=\left\{\begin{array}{ll}
u & \text { in } \Omega \backslash \overline{\mathrm{B}}_{\mathrm{r}_{3}} \\
u_{2} & \text { in } \mathrm{B}_{\mathrm{r}_{3}} .
\end{array} \quad \text {, then } \Delta \hat{u}=\mathrm{f} \text { in } \Omega\right. \text {. }
$$

The general case: $\operatorname{div}\left(\hat{A} \nabla u_{2}\right)=0$ in $B_{r_{3}}$ and $u_{2}=u_{1}$ in $B_{r_{2}} \backslash B_{r_{1}}$ and the conclusion follows.

Define

$$
u_{1}\left(x^{*}\right)=u(x), \quad x^{*}=F(x)=r_{2}^{2} x /|x|^{2}
$$

We have

$$
u_{1}=u \text { in } B_{r_{3}} \backslash B_{r_{2}} .
$$

Define

$u_{2}\left(x^{* *}\right)=u_{1}(x), \quad x^{* *}=G(x)=r_{3}^{2} x /|x|^{2}$.

We have

$\mathfrak{u}_{2}=\mathfrak{u}_{1}$ in $\mathrm{B}_{\mathrm{r}_{3}} \backslash \mathrm{~B}_{\mathrm{r}_{2}}, \Delta \mathfrak{u}_{2}=0$ in $\mathrm{B}_{\mathrm{r}_{3}}$.

$$
\text { Set } \hat{u}=\left\{\begin{array}{ll}
u & \text { in } \Omega \backslash \overline{\mathrm{B}}_{r_{3}} \\
u_{2} & \text { in } B_{r_{3}} .
\end{array} \quad, \text { then } \Delta \hat{u}=f \text { in } \Omega\right. \text {. }
$$

The general case: $\operatorname{div}\left(\hat{\mathcal{A}} \nabla \mathfrak{u}_{2}\right)=0$ in $\mathrm{B}_{\mathrm{r}_{3}}$

Define

$$
u_{1}\left(x^{*}\right)=u(x), \quad x^{*}=F(x)=r_{2}^{2} x /|x|^{2}
$$

We have

$$
u_{1}=u \text { in } B_{r_{3}} \backslash B_{r_{2}} .
$$

Define
$u_{2}\left(x^{* *}\right)=u_{1}(x), \quad x^{* *}=G(x)=r_{3}^{2} x /|x|^{2}$.
We have

$u_{2}=\mathfrak{u}_{1}$ in $B_{r_{3}} \backslash B_{r_{2}}, \Delta \mathfrak{u}_{2}=0$ in $B_{r_{3}}$.

$$
\text { Set } \hat{u}=\left\{\begin{array}{ll}
u & \text { in } \Omega \backslash \overline{\mathrm{B}}_{\mathrm{r}_{3}} \\
u_{2} & \text { in } \mathrm{B}_{\mathrm{r}_{3}} .
\end{array} \quad \text {, then } \Delta \hat{u}=\mathrm{f} \text { in } \Omega\right. \text {. }
$$

The general case: $\operatorname{div}\left(\hat{A} \nabla u_{2}\right)=0$ in $B_{r_{3}}$ and $\hat{A}=I$ in $B_{r_{3}} \backslash B_{r_{1}}$. Therefore $u_{2}=u_{1}$ in $B_{r_{2}} \backslash B_{r_{1}}$ and the conclusion follows.

Define

$$
u_{1}\left(x^{*}\right)=u(x), \quad x^{*}=F(x)=r_{2}^{2} x /|x|^{2}
$$

We have

$$
u_{1}=u \text { in } B_{r_{3}} \backslash B_{r_{2}} .
$$

Define
$u_{2}\left(x^{* *}\right)=u_{1}(x), \quad x^{* *}=G(x)=r_{3}^{2} x /|x|^{2}$.
We have

$\mathfrak{u}_{2}=\mathfrak{u}_{1}$ in $\mathrm{B}_{\mathrm{r}_{3}} \backslash \mathrm{~B}_{\mathrm{r}_{2}}, \Delta \mathfrak{u}_{2}=0$ in $\mathrm{B}_{\mathrm{r}_{3}}$.

$$
\text { Set } \hat{u}=\left\{\begin{array}{ll}
u & \text { in } \Omega \backslash \overline{\mathrm{B}}_{\mathrm{r}_{3}} \\
u_{2} & \text { in } \mathrm{B}_{\mathrm{r}_{3}} .
\end{array} \quad \text {, then } \Delta \hat{u}=\mathrm{f} \text { in } \Omega\right. \text {. }
$$

The general case: $\operatorname{div}\left(\hat{A} \nabla u_{2}\right)=0$ in $B_{r_{3}}$ and $\hat{A}=I$ in $B_{r_{3}} \backslash B_{r_{1}}$. Therefore $u_{2}=u_{1}$ in $B_{r_{2}} \backslash B_{r_{1}}$ and the conclusion follows.

Remark: From \hat{u}, one can compute $u\left(=u_{0}\right)$: which is unique.

Proof cont. and comments

Lemma

Let $\mathrm{d}=2,3, \mathrm{~g} \in \mathrm{H}^{-1}(\Omega)$, A be uniformly elliptic in Ω. $\exists!v_{\delta} \in \mathrm{H}_{0}^{1}(\Omega)$ to

$$
\operatorname{div}\left(s_{\delta} A \nabla v_{\delta}\right)=\mathrm{g} \text { in } \Omega
$$

Moreover,

$$
\left\|v_{\delta}\right\|_{\mathrm{H}^{1}(\Omega)} \leqslant \mathrm{C} \max \{1,1 / \delta\}\|\mathrm{g}\|_{\mathrm{H}^{-1}(\Omega)} .
$$

Proof cont. and comments

Lemma

Let $\mathrm{d}=2,3, \mathrm{~g} \in \mathrm{H}^{-1}(\Omega)$, A be uniformly elliptic in Ω. $\exists!v_{\delta} \in \mathrm{H}_{0}^{1}(\Omega)$ to

$$
\operatorname{div}\left(s_{\delta} A \nabla v_{\delta}\right)=\mathrm{g} \text { in } \Omega
$$

Moreover,

$$
\left\|v_{\delta}\right\|_{\mathrm{H}^{1}(\Omega)} \leqslant \mathrm{C} \max \{1,1 / \delta\}\|\mathrm{g}\|_{\mathrm{H}^{-1}(\Omega)} .
$$

Set $v_{\delta}=u_{\delta}-u_{0}$. Then

$$
\operatorname{div}\left(s_{\delta} A \nabla v_{\delta}\right)=\operatorname{div}\left(s_{\delta} A \nabla u_{\delta}\right)-\operatorname{div}\left(s_{\delta} A \nabla u_{0}\right)=\operatorname{div}\left[\left(s_{0}-s_{\delta}\right) A \nabla u_{0}\right]
$$

It follows that $\left\|v_{\delta}\right\|_{H^{1}(\Omega)} \leqslant C$; hence $\left\|v_{\delta}\right\|_{H^{1}(\Omega)} \leqslant C$. The conclusion follows
from a standard compactness argument.

Proof cont. and comments

Lemma

Let $\mathrm{d}=2,3, \mathrm{~g} \in \mathrm{H}^{-1}(\Omega)$, A be uniformly elliptic in Ω. $\exists!v_{\delta} \in \mathrm{H}_{0}^{1}(\Omega)$ to

$$
\operatorname{div}\left(s_{\delta} A \nabla v_{\delta}\right)=\mathrm{g} \text { in } \Omega
$$

Moreover,

$$
\left\|v_{\delta}\right\|_{\mathrm{H}^{1}(\Omega)} \leqslant \mathrm{C} \max \{1,1 / \delta\}\|\mathrm{g}\|_{\mathrm{H}^{-1}(\Omega)} .
$$

Set $v_{\delta}=u_{\delta}-u_{0}$. Then

$$
\operatorname{div}\left(s_{\delta} A \nabla v_{\delta}\right)=\operatorname{div}\left(s_{\delta} A \nabla u_{\delta}\right)-\operatorname{div}\left(s_{\delta} A \nabla u_{0}\right)=\operatorname{div}\left[\left(s_{0}-s_{\delta}\right) A \nabla u_{0}\right]
$$

It follows that $\left\|v_{\delta}\right\|_{H^{1}(\Omega)} \leqslant C$; hence $\left\|v_{\delta}\right\|_{H^{1}(\Omega)} \leqslant C$. The conclusion follows from a standard compactness argument.

What happens in the general case?

What happens in the general case? Transformations optics

Lemma

Let $\Omega_{1} \subset \subset \Omega_{2} \subset \subset \Omega_{3}$ and $\mathrm{T}: \Omega_{2} \backslash \Omega_{1} \rightarrow \Omega_{3} \backslash \Omega_{2}$. Fix u defined in $\Omega_{2} \backslash \Omega_{1}$ and set $v=u \circ T^{-1}$. We have

$$
\operatorname{div}(\mathrm{a} \nabla u)+\sigma u=\mathrm{f} \text { in } \Omega_{2} \backslash \Omega_{1} \text { iff } \operatorname{div}\left(\mathrm{T}_{*} \mathrm{a} \nabla v\right)+\mathrm{T}_{*} \sigma v=\mathrm{T}_{*} \mathrm{f} \text { in } \Omega_{3} \backslash \Omega_{2} .
$$

If $\mathrm{T}(\mathrm{x})=\mathrm{x}$ on $\partial \Omega_{2}$ then

$$
v=u, \quad \mathrm{~T}_{*} \mathrm{a} \nabla v \cdot \eta_{1}=-\mathrm{a} \nabla u \cdot \eta_{1} \text { on } \partial \Omega_{2} .
$$

$$
T_{*} \mathcal{A}(y)=\frac{\mathrm{DT}(x) \mathcal{A}(x) D T^{\top}(x)}{J(x)}, \quad T_{*} \Sigma(y)=\frac{\Sigma(x)}{J(x)}, \quad \text { and } \quad T_{*} f(y)=\frac{f(x)}{J(x)}
$$

where $x=T^{-1}(y)$ and $J(x)=|\operatorname{det} \mathrm{DT}(x)|$.

What happens in the general case? Transformations optics

Lemma

Let $\Omega_{1} \subset \subset \Omega_{2} \subset \subset \Omega_{3}$ and $\mathrm{T}: \Omega_{2} \backslash \Omega_{1} \rightarrow \Omega_{3} \backslash \Omega_{2}$. Fix u defined in $\Omega_{2} \backslash \Omega_{1}$ and set $v=u \circ T^{-1}$. We have

$$
\operatorname{div}(\mathrm{a} \nabla u)+\sigma u=\mathrm{f} \text { in } \Omega_{2} \backslash \Omega_{1} \text { iff } \operatorname{div}\left(\mathrm{T}_{*} \mathrm{a} \nabla v\right)+\mathrm{T}_{*} \sigma v=\mathrm{T}_{*} \mathrm{f} \text { in } \Omega_{3} \backslash \Omega_{2} .
$$

If $\mathrm{T}(\mathrm{x})=\mathrm{x}$ on $\partial \Omega_{2}$ then

$$
v=u, \quad \mathrm{~T}_{*} \mathrm{a} \nabla v \cdot \eta_{1}=-\mathrm{a} \nabla u \cdot \eta_{1} \text { on } \partial \Omega_{2}
$$

$$
T_{*} \mathcal{A}(y)=\frac{D T(x) \mathcal{A}(x) D T^{\top}(x)}{J(x)}, \quad T_{*} \Sigma(y)=\frac{\Sigma(x)}{J(x)}, \quad \text { and } \quad T_{*} f(y)=\frac{f(x)}{J(x)},
$$

where $x=T^{-1}(y)$ and $J(x)=|\operatorname{det} \mathrm{DT}(x)|$.
Reflecting complementary media: $\mathrm{T}_{*} \mathrm{a}=\mathrm{a}$ and $\mathrm{T}_{*} \sigma=\sigma$ (Ng. TRANS 15).

Some comments

1 Similar facts hold for the Maxwell equations: Ng. 15.
$\sqrt{2}$ The green layer can be thinner (Ng. AIHP 15) but necessary (Ng. 16).

Some comments

1 Similar facts hold for the Maxwell equations: Ng. 15.
$\sqrt{2}$ The green layer can be thinner (Ng. AIHP 15) but necessary (Ng. 16).

Some comments

1 Similar facts hold for the Maxwell equations: Ng. 15.
2 The green layer can be thinner (Ng. AIHP 15) but necessary (Ng. 16).

Theorem (Ng .16)
Let $\mathrm{d}=2$ and $\mathrm{f} \in \mathrm{L}^{2}(\Omega)$ be s.t. supp $\mathrm{f} \cap \mathrm{B}_{\mathrm{r}_{3}}=\emptyset$ where $\mathrm{r}_{3}=\mathrm{r}_{2}^{2} / \mathrm{r}_{1}$. We have

$$
\mathrm{u}_{\delta} \rightarrow \hat{\mathrm{u}} \text { in } \Omega \backslash \mathrm{B}_{\mathrm{r}_{3}} \text { as } \delta \rightarrow 0
$$

where $\hat{\mathrm{u}} \in \mathrm{H}_{0}^{1}(\Omega)$ be s.t. $\Delta \hat{\mathrm{u}}=\mathrm{f}$ in Ω.

Part 4: Cloaking using complementary media

Cloaking using complementary media

I Suggestion: Lai et. al. PRL 09.
Difficulty: Localized resonance + loss of ellipticity.

Figure: Lai et. al. PRL 09.
® Theory confirmed: Ng. AIHP 15, Ng.-L-Nguyen TRANS B 15 (for a class of inspired schemes). Tools : removing localized singularity technique + three sphere inequality +

Cloaking using complementary media

1 Suggestion: Lai et. al. PRL 09.
Difficulty: Localized resonance + loss of ellipticity.

Figure: Lai et. al. PRL 09.

2 Theory confirmed: Ng. AIHP 15, Ng.-L-Nguyen TRANS B 15 (for a class of inspired schemes). Tools : removing localized singularity technique + three sphere inequality + reflecting technique.

Our proposal

Our construction: 2 parts

- The first one is to cancel the effect of the cloaked region.
- The second part is to fill the space which "disappears" from the cancellation.
consider $B_{r_{3}} \backslash B_{r_{2}}$ as the cloaked region in which the medium is
characterised by
- The complementary media in $B_{r_{2}} \backslash B_{r_{1}}$ is given by
- Here is the construction for the second part in B

Our proposal

Our construction: 2 parts

- The first one is to cancel the effect of the cloaked region.
- The second part is to fill the space which "disappears" from the cancellation.
- For the first part, we slightly change the strategy of Lai et. al.'s. We consider $B_{r_{3}} \backslash B_{r_{2}}$ as the cloaked region in which the medium is characterised by

$$
b= \begin{cases}a & \text { in } B_{2 r_{2}} \backslash B_{r_{2}} \\ I & \text { in } B_{r_{3}} \backslash B_{2 r_{2}}\end{cases}
$$

- The complementary media in $\mathrm{B}_{\mathrm{r}_{2}} \backslash \mathrm{~B}_{\mathrm{r}_{1}}$ is given by

$$
-\left(\mathrm{F}^{-1}\right)_{*} \mathrm{~b},
$$

Here $F: B_{r_{2}} \backslash \bar{B}_{r_{1}} \rightarrow B_{r_{3}} \backslash \bar{B}_{r_{2}}$ is the Kelvin's transform w.r.t. $\partial B_{r_{2}}$, i.e., $F(x)=r_{2}^{2} x /|x|^{2}$.

- Here is the construction for the second part in $B_{r_{1}}$

$$
\left(\mathrm{r}_{3}^{2} / \mathrm{r}_{2}^{2}\right)^{\mathrm{d}-2} \mathrm{I}
$$

Mathematics setting

To study the problem correctly, one needs to add some loss to the medium. With the loss, the medium is characterized by $s_{\delta} A$, where
$A=\left\{\begin{array}{cl}b & \text { in } B_{r_{3}} \backslash B_{r_{2}}, \\ F_{*}^{-1} b & \text { in } B_{r_{2}} \backslash B_{r_{1}}, \\ \left(r_{3}^{2} / r_{2}^{2}\right)^{d-2} I & \text { in } B_{r_{1}}, \\ I & \text { otherwise },\end{array}\right.$
and

$$
s_{\delta}=\left\{\begin{array}{cl}
-1+i \delta & \text { in } B_{r_{2}} \backslash B_{r_{1}} \\
1 & \text { otherwise }
\end{array}\right.
$$

Statement of the result

Let Ω be a smooth open subset of $\mathbb{R}^{d}(\mathrm{~d}=2,3)$ such that $\mathrm{B}_{\mathrm{r}_{3}} \subset \subset \Omega$. Given $f \in L^{2}(\Omega)$, let $u_{\delta}, u \in H_{0}^{1}(\Omega)$ be resp. the unique solution to

$$
\begin{equation*}
\operatorname{div}\left(s_{\delta} A \nabla u_{\delta}\right)=\mathrm{f} \text { in } \Omega \tag{0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta u=f \text { in } \Omega \tag{0.2}
\end{equation*}
$$

Theorem (Ng.)

Let $d=2,3, f \in L^{2}(\Omega)$ with supp $f \subset \Omega \backslash B_{r_{3}}$. There exists $m>0$ s.t. if $r_{3}>\mathrm{mr}_{2}$ then

$$
\mathrm{u}_{\delta} \rightarrow \mathrm{u} \text { weakly in } \mathrm{H}^{1}\left(\Omega \backslash \mathrm{~B}_{\mathrm{r}_{3}}\right) \text { as } \delta \rightarrow 0 .
$$

For an observer outside $\mathrm{B}_{\mathrm{r}_{3}}$, the medium in $\mathrm{B}_{\mathrm{r}_{3}}$ looks like I: one has cloaking.

Sketch of the proof

We have

$$
\begin{equation*}
\left\|u_{\delta}\right\|_{\mathrm{H}^{1}(\Omega)} \leqslant C \delta^{-1 / 2}\|f\|_{\mathrm{L}^{2}(\Omega)}^{1 / 2}\left\|u_{\delta}\right\|_{\mathrm{L}^{2}\left(\Omega \backslash \mathrm{~B}_{r_{3}}\right)}^{1 / 2}\left(\sim \delta^{-1 / 2}\right) \tag{0.3}
\end{equation*}
$$

Let $u_{1, \delta}$ be the refl. of u_{δ} through $\partial B_{r_{2}}$ and $u_{2, \delta}$ be the refl. of $u_{1, \delta}$ through $\partial \mathrm{B}_{\mathrm{r}_{3}}$ (by F and G, the Kelvin's transform w.r.t. $\partial \mathrm{B}_{\mathrm{r}_{2}}$ and $\partial \mathrm{B}_{\mathrm{r}_{3}}$). We have

$$
\operatorname{div}\left(\mathrm{b} \nabla \mathrm{u}_{1, \delta}\right)=0 \text { in } \mathrm{B}_{\mathrm{r}_{3}} \backslash \mathrm{~B}_{\mathrm{r}_{2}} \quad \text { and } \quad \Delta \mathrm{u}_{2, \delta}=0 \text { in } \mathrm{B}_{\mathrm{r}_{3}} .
$$

If

$$
\mathfrak{u}_{\delta}-\mathfrak{u}_{1, \delta} \text { would be small on } \partial \mathrm{B}_{r_{3}}
$$

then, $\Delta \widetilde{W}_{\delta}=f+$ lower order term, where $\widetilde{W}_{\delta}=\left\{\begin{array}{cl}u_{\delta} & \text { in } \Omega \backslash B_{r_{3}} \\ u_{2, \delta} & \text { in } B_{r_{3}}\end{array}\right.$. Hence $\widetilde{W}_{\delta} \rightarrow u$. The proof would be complete. This is not true in general !!!

Sketch of the proof

We have

$$
\begin{equation*}
\left\|u_{\delta}\right\|_{\mathrm{H}^{1}(\Omega)} \leqslant C \delta^{-1 / 2}\|f\|_{\mathrm{L}^{2}(\Omega)}^{1 / 2}\left\|u_{\delta}\right\|_{\mathrm{L}^{2}\left(\Omega \backslash \mathrm{~B}_{r_{3}}\right)}^{1 / 2}\left(\sim \delta^{-1 / 2}\right) \tag{0.3}
\end{equation*}
$$

Let $u_{1, \delta}$ be the refl. of u_{δ} through $\partial B_{r_{2}}$ and $u_{2, \delta}$ be the refl. of $u_{1, \delta}$ through $\partial \mathrm{B}_{\mathrm{r}_{3}}$ (by F and G, the Kelvin's transform w.r.t. $\partial \mathrm{B}_{\mathrm{r}_{2}}$ and $\partial \mathrm{B}_{\mathrm{r}_{3}}$). We have

$$
\operatorname{div}\left(\mathrm{b} \nabla \mathrm{u}_{1, \delta}\right)=0 \text { in } \mathrm{B}_{\mathrm{r}_{3}} \backslash \mathrm{~B}_{\mathrm{r}_{2}} \quad \text { and } \quad \Delta \mathrm{u}_{2, \delta}=0 \text { in } \mathrm{B}_{\mathrm{r}_{3}} .
$$

If

$$
\mathfrak{u}_{\delta}-\mathfrak{u}_{1, \delta} \text { would be small on } \partial \mathrm{B}_{r_{3}}
$$

then, $\Delta \widetilde{W}_{\delta}=f+$ lower order term, where $\widetilde{W}_{\delta}=\left\{\begin{array}{cl}u_{\delta} & \text { in } \Omega \backslash B_{r_{3}} \\ u_{2, \delta} & \text { in } B_{r_{3}}\end{array}\right.$. Hence
$\widetilde{W}_{\delta} \rightarrow u$. The proof would be complete. This is not true in general !!!
How to deal with this: three spheres inequality + removing localized singularity technique

Sketch of the proof

We have

$$
\begin{equation*}
\left\|u_{\delta}\right\|_{\mathrm{H}^{1}(\Omega)} \leqslant \mathrm{C} \delta^{-1 / 2}\|f\|_{\mathrm{L}^{2}(\Omega)}^{1 / 2}\left\|u_{\delta}\right\|_{\mathrm{L}^{2}\left(\Omega \backslash \mathrm{~B}_{r_{3}}\right)}^{1 / 2}\left(\sim \delta^{-1 / 2}\right) \tag{0.4}
\end{equation*}
$$

Recall

$$
\operatorname{div}\left(b \nabla u_{1, \delta}\right)=0 \text { in } B_{r_{3}} \backslash B_{r_{2}} \quad \text { and } \quad \Delta u_{2, \delta}=0 \text { in } B_{r_{3}} .
$$

Three spheres inequality, if $\operatorname{div}(A \nabla V)=0$ in $B_{r_{3}}$, then

$$
\|V\|_{L^{2}\left(\partial B_{2 r_{2}}\right)} \leqslant C\|V\|_{L^{2}\left(\partial B_{r_{2}}\right)}^{\alpha}\|V\|_{L^{2}\left(\partial B_{r_{3}}\right)}^{1-\alpha}
$$

Since $u_{\delta}=u_{1, \delta}$ and $\partial_{r} u_{\delta}=(1-i \delta) \partial_{r} u_{1, \delta}$ on $\partial B_{r_{2}}$, it follows that if $r_{3} \gg r_{2}$,

$$
\mathfrak{u}_{\delta}-\mathfrak{u}_{1, \delta} \text { is small on } \partial \mathrm{B}_{2 \mathrm{r}_{2}} \text {. }
$$

Define

$$
W_{\delta}=\left\{\begin{array}{cl}
u_{\delta} & \text { in } \Omega \backslash B_{r_{3}} \\
u_{2, \delta}-\left(u_{1, \delta}-u_{\delta}\right) & \text { in } B_{r_{3}} \backslash B_{2 r_{2}}, \\
u_{2, \delta} & \text { in } B_{2 r_{2}}
\end{array}\right.
$$

Then $\Delta W_{\delta}=f$ in $\Omega \backslash\left(\partial B_{r_{3}} \cup \partial B_{2 r_{2}}\right),\left[W_{\delta}\right]$ and $\left[A \nabla W_{\delta} \cdot v\right]$ are small on $\partial \mathrm{B}_{\mathrm{r}_{3}} \cup \partial \mathrm{~B}_{2 \mathrm{r}_{2}}$ and $W_{\delta}=u_{\delta}$ in $\Omega \backslash \mathrm{B}_{\mathrm{r}_{3}}$. The conclusion follows.

Summary

Negative index materials．
Two interesting examples．

Summary

- Negative index materials.

Two interesting examples

- Superlensing using complementary media

Summary

- Negative index materials.
- Two interesting examples.

> Superlensing using complementary media

Cloaking using complementary media

Summary

- Negative index materials.
- Two interesting examples.
- Superlensing using complementary media

Summary

- Negative index materials.
- Two interesting examples.
- Superlensing using complementary media
- Cloaking using complementary media.

Summary

- Negative index materials.
- Two interesting examples.
- Superlensing using complementary media
- Cloaking using complementary media.

Thank you for your attention!

