On the gaps in spectrum of the Maxwell Operator: case of Photonic Crystal Fibres

Ilia Kamotski
UCL

Joint with Shane Cooper (Bath) and Valery Smyshlyaev (UCL)

July 13, 2016

Photonic crystal fibres

Figure: Taken from "Photonic Crystal Fibres" Phillip Russell, Science, 2003

Photonic crystals: Problem Formulation

$$
\begin{aligned}
& \begin{array}{cc}
\nabla \times E=-\mu \frac{\partial H}{\partial t}, & \nabla \times H=\epsilon \frac{\partial E}{\partial t}, \\
\nabla \cdot(\epsilon E)=0, & \nabla \cdot H=0,
\end{array} \\
& \epsilon=\epsilon_{0} \chi_{0}(x)+\epsilon_{1} \chi_{1}(x), \quad \epsilon_{0} \neq \epsilon_{1}, \quad \mu \text { constant } \quad(\mu=1) \\
& E=E\left(x_{1}, x_{2}\right) \exp \left(\mathrm{i}\left(k x_{3}+\omega t\right)\right), \quad H=H\left(x_{1}, x_{2}\right) \exp \left(\mathrm{i}\left(k x_{3}+\omega t\right)\right)
\end{aligned}
$$

If $k=0$ then

$$
\begin{gathered}
-\Delta E_{3}(x)=\epsilon(x) \omega^{2} E_{3}(x), \quad x \in \mathbb{R}^{2}, \\
-\nabla \epsilon(x)^{-1} \nabla H_{3}(x)=\omega^{2} H_{3}(x), \quad x \in \mathbb{R}^{2} .
\end{gathered}
$$

We have spectral problem for

$$
A\left[E_{3}, H_{3}\right]=\int_{\mathbb{R}^{2}}\left|\nabla E_{3}\right|^{2}+\epsilon(x)^{-1}\left|\nabla H_{3}\right|^{2} d x
$$

and

$$
B\left[E_{3}, H_{3}\right]=\int_{\mathbb{R}^{2}} \epsilon(x)\left|E_{3}\right|^{2}+\left|H_{3}\right|^{2} d x
$$

$\mathrm{k}=0$, problem for H_{3}

Gaps due to high-contrast
A.Figotin, P. Kuchment 1993, R.Hempel, K Lienau 2000, V. Zhikov, 2000 and many others.
Spectral problem for

$$
\begin{gathered}
a[u]=\int_{\Omega_{0}}|\nabla u|^{2} d x+t^{2} \int_{\Omega_{1}}|\nabla u|^{2} d x \\
\text { and } \\
b[u]=\int_{\mathbb{R}^{2}}|u|^{2} d x .
\end{gathered}
$$

Gaps appear as $t \rightarrow \infty$. Hight-contrast.

No high contrast in $\epsilon(x), \mu(x)$ for Photonic Crystal Fibers.

Gaps are not expected unless $\epsilon_{1} \ll \epsilon_{2}$ or $\epsilon_{2} \ll \epsilon_{1}$.

$\mathrm{k}=0$, problem for H_{3}

Gaps due to high-contrast

R.Hempel, K Lienau 2000, V. Zhikov, 2000 and many others. Spectral problem for

$$
\begin{gathered}
a[u]=\int_{\Omega_{0}}|\nabla u|^{2} d x+t^{2} \int_{\Omega_{1}}|\nabla u|^{2} d x \\
\text { and } \\
b[u]=\int_{\mathbb{R}^{2}}|u|^{2} d x .
\end{gathered}
$$

Gaps appear as $t \rightarrow \infty$. Hight-contrast.
No high contrast in $\epsilon(x), \mu(x)$ for Photonic Crystal Fibers.

Gaps are not expected unless $\epsilon_{1} \ll \epsilon_{2}$ or $\epsilon_{2} \ll \epsilon_{1}$ for $k=0$.

Figure: From J.M.Pottage, D.M.Bird, T.D.Hedley, T.A.Birks, J.C.Knight and P.St.J. Russell, Optics Express, 2003

Maxwell equations for plane waves in PCF, Oblique incidence (Case of

 PCF): $k \neq 0$

In each phase E_{3} and H_{3} satisfy the following equations

$$
\begin{array}{lll}
\Delta E_{3}+\left(\omega^{2} \epsilon_{1}-k^{2}\right) E_{3}=0, & \Delta H_{3}+\left(\omega^{2} \epsilon_{1}-k^{2}\right) H_{3}=0 & \text { in } \Omega_{1} \\
\Delta E_{3}+\left(\omega^{2} \epsilon_{0}-k^{2}\right) E_{3}=0, & \Delta H_{3}+\left(\omega^{2} \epsilon_{0}-k^{2}\right) H_{3}=0 & \text { in } \Omega_{0}
\end{array}
$$

Maxwell equations for plane waves in PCF, Oblique incidence (Case of

 PCF): $k \neq 0$

In each phase E_{3} and H_{3} satisfy the following equations

$$
\begin{array}{lll}
\Delta E_{3}+\left(\omega^{2} \epsilon_{1}-k^{2}\right) E_{3}=0, & \Delta H_{3}+\left(\omega^{2} \epsilon_{1}-k^{2}\right) H_{3}=0 & \text { in } \Omega_{1} \\
\Delta E_{3}+\left(\omega^{2} \epsilon_{0}-k^{2}\right) E_{3}=0, & \Delta H_{3}+\left(\omega^{2} \epsilon_{0}-k^{2}\right) H_{3}=0 & \text { in } \Omega_{0}
\end{array}
$$

E_{3} and H_{3} coupled across interface $\Gamma=\partial \Omega_{0}$:

$$
\omega\left[\frac{\epsilon}{a} \nabla E_{3} \cdot n\right]=-k\left[\frac{1}{a} \nabla H_{3} \cdot n^{\perp}\right], \quad k\left[\frac{1}{a} \nabla E_{3} \cdot n^{\perp}\right]=\omega\left[\frac{1}{a} \nabla H_{3} \cdot n\right]
$$

where $a=\omega^{2} \epsilon(x)-k^{2}$ discontinuous on Γ.

Weak formulation

$$
\begin{aligned}
& \partial_{1}\left(\frac{\omega \epsilon}{a} \partial_{1} E_{3}\right)+\partial_{2}\left(\frac{\omega \epsilon}{a} \partial_{2} E_{3}\right)+\partial_{1}\left(\frac{k}{a} \partial_{2} H_{3}\right)-\partial_{2}\left(\frac{k}{a} \partial_{1} H_{3}\right)=-\omega \epsilon E_{3}, \\
& -\partial_{1}\left(\frac{k}{a} \partial_{2} E_{3}\right)+\partial_{2}\left(\frac{k}{a} \partial_{1} E_{3}\right)+\partial_{1}\left(\frac{\omega}{a} \partial_{1} H_{3}\right)+\partial_{2}\left(\frac{\omega}{a} \partial_{2} H_{3}\right)=-\omega H_{3},
\end{aligned}
$$

where $a(x)=\omega^{2} \epsilon(x)-k^{2}$.
Find $u=\left(E_{3}, H_{3}\right)$ such that

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} \frac{\omega}{a}\left(\epsilon \nabla u_{1} \cdot \overline{\nabla \phi_{1}}+\nabla u_{2} \cdot \overline{\nabla \phi_{2}}\right)+\frac{k}{a}\left(\left\{u_{2}, \overline{\phi_{1}}\right\}-\left\{u_{1}, \overline{\phi_{2}}\right\}\right) \mathrm{d} x \\
&=\omega \int_{\mathbb{R}^{2}} \epsilon u_{1} \overline{\phi_{1}}+u_{2} \overline{\varphi_{2}} \mathrm{~d} x \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)
\end{aligned}
$$

$\{f, g\}:=f_{x_{2}} g_{x_{1}}-f_{x_{1}} g_{x_{2}}$.
The above form is symmetric, and positive if $k^{2}<\omega^{2} \min \left\{\epsilon_{0}, \epsilon_{1}\right\}$.

Oblique incidence: $k=\omega \kappa$

If $k=\omega \kappa, \kappa \geq 0$ then we have usual spectral problem: Find u such that

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} \frac{1}{\epsilon(x)-\kappa^{2}}\left(\epsilon(x) \nabla u_{1} \cdot \overline{\nabla \phi_{1}}+\nabla u_{2} \cdot \overline{\nabla \phi_{2}}\right)+ \\
& \quad+\int_{\mathbb{R}^{2}} \frac{\kappa}{\epsilon(x)-\kappa^{2}}\left(\left\{u_{2}, \overline{\phi_{1}}\right\}-\left\{u_{1}, \overline{\phi_{2}}\right\}\right) \mathrm{d} x=\omega^{2} \int_{\mathbb{R}^{2}} \epsilon(x) u_{1} \overline{\phi_{1}}+u_{2} \overline{\phi_{2}} \mathrm{~d} x,
\end{aligned}
$$

$$
\forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)
$$

The above form is symmetric, and positive if $\kappa^{2}<\min \left\{\epsilon_{0}, \epsilon_{1}\right\}$.

Anti-resonant reflecting optical waveguide (ARROW)

Assume $\epsilon_{0}>\epsilon_{1}=1$.

Spectral problem

$$
\begin{gathered}
A_{\kappa}(u, \phi)=\lambda B(u, \phi), \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right), \\
\lambda=\left(\epsilon_{0}-\kappa^{2}\right) \omega^{2}
\end{gathered}
$$

$$
A_{\kappa}[u]:=\int_{\Omega_{1}} \kappa \frac{\epsilon_{0}-1}{1-\kappa^{2}}|\partial u|^{2}+\frac{\epsilon_{0}+\kappa}{1+\kappa}|\nabla u|^{2} d x+\int_{\Omega_{0}} \epsilon_{0}\left|\nabla u_{1}\right|^{2}+\left|\nabla u_{2}\right|^{2} d x
$$

where

$$
|\partial u|^{2}=\left|\partial_{x_{1}} u_{1}+\partial_{x_{2}} u_{2}\right|^{2}+\left|\partial_{x_{2}} u_{1}-\partial_{x_{1}} u_{2}\right|^{2}
$$

Scalar product is

$$
B[u]:=\int_{\Omega_{1}}|u|^{2} d x+\int_{\Omega_{0}} \epsilon_{0}\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2} d x
$$

If $\kappa<1$: then A_{κ} is positive.
If $\kappa \rightarrow 1$ then there is high contrast.

Floquet-Bloch decomposition

Periodicity. Floquet transform

$$
x \rightarrow(x, \theta), x \in \square=[-\pi, \pi]^{2}, \theta \in[-1 / 2,1 / 2)^{2}
$$

Find $u \in H_{\theta}^{1}(\square)\left(u(y)=e^{\mathrm{i} \theta \cdot x} v(x), v \square\right.$-periodic $)$ such that

$$
A_{\kappa}(u, \phi)=\lambda B(u, \phi), \quad \forall \phi \in H_{\theta}^{1}(\square)
$$

Spectrum:

$$
0 \leq \lambda_{1}(\kappa, \theta) \leq \lambda_{2}(\kappa, \theta) \leq \ldots \leq \lambda_{n}(\kappa, \theta) \leq \ldots
$$

Behaviour of spectra near $\kappa=1$

Theorem

$$
\lim _{\kappa \nearrow 1} \lambda_{n}(\kappa, \theta)=\lambda_{n}(\theta) .
$$

Here $\lambda_{n}(\theta)$ are eigenvalues of the problem:
Find λ and $u \in V_{\theta}=\left\{u \in H_{\theta}^{1}(\square): \partial u=0\right.$ in $\left.Q_{1}\right\}$ such that

$$
B(u, \phi)=\lambda A(u, \phi), \quad \forall \phi \in V_{\theta},
$$

where

$$
A[u]:=\int_{\square} \epsilon_{0}\left|\nabla u_{1}\right|^{2}+\left|\nabla u_{2}\right|^{2} d x
$$

and

$$
B[u]:=\int_{\square}|u|^{2} d x+\left(\epsilon_{0}-1\right) \int_{Q_{0}}\left|u_{1}\right|^{2} d x .
$$

Lemma

There exists a constant $c>0$ such that for any $u \in H_{\theta}^{1}(\square)$ there is $v \in V_{\theta}$ such that $\|u-v\|_{H^{1}(\square)} \leq c\|\partial u\|_{L_{2}\left(Q_{1}\right)}$.

Limit problem, $\kappa=1$

Find $\lambda \in \mathbb{C}$ and $u \in V_{\theta}=\left\{u \in H_{\theta}^{1}(\square): \partial u=0\right.$ in $\left.Q_{1}\right\}$ such that

$$
B(u, \phi)=\lambda A(u, \phi), \quad \forall \phi \in V_{\theta},
$$

where

$$
A[u]:=\int_{\square}|\nabla u|^{2}+\left(\epsilon_{0}-1\right)\left|\nabla u_{1}\right|^{2} d x,
$$

and

$$
B[u]:=\int_{\square}|u|^{2} d x+\left(\epsilon_{0}-1\right) \int_{Q_{0}}\left|u_{1}\right|^{2} d x .
$$

What can we say about $\lambda_{n}(\theta)$?

Limit problem, $\kappa=1$, First gap

Let

$$
B_{\delta}:=\{x:|x|<\delta\} \subset Q_{0} .
$$

Theorem

$$
\begin{gathered}
\lambda_{2}(\theta)<8 \epsilon_{0} \delta^{-2}\left(1+4 \ln \frac{\pi}{\delta}\right)^{-1} \\
\lambda_{3}(\theta)>\epsilon_{0}^{-1} \Lambda_{2}\left(Q_{0}\right)
\end{gathered}
$$

where $\Lambda_{2}\left(Q_{0}\right)$ is 2nd eigenvalue of Neumann Laplacian in Q_{0}.

Corollary

If $8 \epsilon_{0}^{2} \leq \Lambda_{2}\left(Q_{0}\right) \delta^{2}\left(1+4 \ln \frac{\pi}{\delta}\right)$, then there is a gap.

Limit problem, $\kappa=1$

Find $\lambda \in \mathbb{C}$ and $u \in V_{\theta}=\left\{u \in H_{\theta}^{1}(\square): \partial u=0\right.$ in $\left.Q_{1}\right\}$ such that

$$
B(u, \phi)=\lambda A(u, \phi), \quad \forall \phi \in V_{\theta},
$$

where

$$
A[u]:=\int_{\square}|\nabla u|^{2}+\left(\epsilon_{0}-1\right)\left|\nabla u_{1}\right|^{2} d x,
$$

and

$$
B[u]:=\int_{\square}|u|^{2} d x+\left(\epsilon_{0}-1\right) \int_{Q_{0}}\left|u_{1}\right|^{2} d x .
$$

Toy problem

Find $\lambda \in \mathbb{C}$ and $u \in V_{\theta}=\left\{u \in H_{\theta}^{1}(\square): \partial u=0\right.$ in $\left.Q_{1}\right\}$ such that

$$
B(u, \phi)=\lambda A(u, \phi), \quad \forall \phi \in V_{\theta},
$$

where

$$
A[u]:=\int_{\square}|\nabla u|^{2} d x,
$$

and

$$
B[u]:=\int_{\square}|u|^{2} d x .
$$

Potentials

Let $\theta \neq 0$. Then for any $u \in H_{\theta}^{1}(\square)$ there is $f \in L_{2}(\square)$ such that

$$
u=\partial \Delta_{\theta}^{-1} f
$$

where

$$
\partial=\left(\begin{array}{cc}
\partial_{1} & \partial_{2} \\
\partial_{2} & -\partial_{1}
\end{array}\right)
$$

Then constrain $\partial u=0$ in Q_{1} is equivalent to $f=0$ in Q_{1}. Problem. $\quad \lambda \in \mathbb{C}$ and $f \in L_{2}(\square)$, supp $f \subset \bar{Q}_{0}$ such that

$$
a(f, \phi)=\lambda b(u, \phi), \quad \forall \phi \in L_{2}(\square), \operatorname{supp} \phi \subset \bar{Q}_{0}
$$

where

$$
a(f, \phi):=\langle f, \phi\rangle:=\int_{\square} f \bar{\phi} d x=\int_{Q_{0}} f \bar{\phi} d x
$$

and

$$
b[f]:=-\int_{Q_{0}} \bar{f} \Delta_{\theta}^{-1} f d x
$$

"Small inclusions"

Assume $\overline{Q_{0}} \subset B_{\delta}=\{x:|x|<\delta\}, \delta<\pi$.
Find $\lambda \in \mathbb{C}$ and $f \in L_{2}\left(Q_{0}\right)$ such that

$$
a(f, \phi)=\lambda b(f, \phi), \quad \forall \phi \in L_{2}\left(Q_{0}\right)
$$

where

$$
a(f, f):=\langle f, f\rangle, \quad b(f, f):=\left\langle-\Delta_{\theta}^{-1} f, f\right\rangle .
$$

Aim is to "replace" $-\Delta_{\theta}^{-1} f$ by $-\Delta^{-1} f$, where

$$
\begin{gathered}
\left(-\Delta^{-1} f\right)(x)=-\frac{1}{2 \pi} \int_{Q_{0}} \ln |x-y| f(y) d y \\
\left(-\Delta_{\theta}^{-1} f\right)(x)=\left(-\Delta^{-1} f\right)(x)+\int_{Q_{0}} g_{\theta}(x, y) f(y) d y
\end{gathered}
$$

Then

$$
\left\langle-\Delta_{\theta}^{-1} f, f\right\rangle \approx\left\langle-\Delta^{-1} f, f\right\rangle+g_{\theta}(0,0)\left|\int_{Q_{0}} f(y) d y\right|^{2} .
$$

"Small" inclusions

Lemma

Let $f \in L_{2}(\square)$, supp $f \subset B_{\delta}$ and $\delta<\pi$. Then

$$
\left.\left|\left\langle\left(-\Delta_{\theta}\right)^{-1} f, f\right\rangle-\left\langle(-\Delta)^{-1} f, f\right\rangle-g_{\theta}\right|\langle f, 1\rangle\right|^{2} \left\lvert\,<\frac{3 \delta}{\pi}\left(\left\langle-\Delta^{-1} f, f\right\rangle+g_{\theta}|\langle f, 1\rangle|^{2}\right)\right.,
$$

where $g_{\theta}=g_{\theta}(0,0)>(2 \pi)^{-1} \ln \pi$.
Problem 1. Find $\lambda^{(1)} \in \mathbb{C}$ and $f \in L_{2}\left(Q_{0}\right)$ such that

$$
a^{(1)}(f, \phi)=\lambda^{(1)} b^{(1)}(f, \phi), \quad \forall \phi \in L_{2}\left(Q_{0}\right),
$$

where

$$
\begin{aligned}
a^{(1)}(f, f) & :=\langle f, f\rangle, \quad b^{(1)}(f, f):=\left\langle-\Delta^{-1} f, f\right\rangle+g_{\theta}|\langle f, 1\rangle|^{2} \\
& \lambda_{n}^{(1)}\left(1+\frac{3 \delta}{\pi}\right)^{-1}<\lambda_{n}<\lambda_{n}^{(1)}\left(1-\frac{3 \delta}{\pi}\right)^{-1}
\end{aligned}
$$

Consider $Q_{0}=\delta \Omega$, where $\Omega \subset B_{1}$. After rescaling $x=\delta y$ we obtain the following problem.
Problem 2. Find $\lambda^{(2)} \in \mathbb{C}$ and $f \in L_{2}(\Omega)$ such that

$$
a^{(2)}(f, \phi)=\lambda^{(2)} b^{(2)}(f, \phi), \quad \forall \phi \in L_{2}(\Omega)
$$

where

$$
a^{(2)}(f, f):=\int_{\Omega}|f|^{2} d y, \quad b^{(2)}(f, f):=-\int_{\Omega} \bar{f} \Delta^{-1} f d y+\left(-(2 \pi)^{-1} \ln \delta+g_{\theta}\right)\left|\int_{\Omega} f d y\right|^{2}
$$

and

$$
\lambda_{n}^{(1)}=\delta^{-2} \lambda_{n}^{(2)}
$$

Here

$$
\nu:=-(2 \pi)^{-1} \ln \delta+g_{\theta}
$$

is a big positive parameter.

Small inclusions, second approximation

Consider representation

$$
f(y)=\alpha+h(y)
$$

where $\alpha \in \mathbb{C}$ and $h \in L_{2}(\Omega), \int_{\Omega} h d y=0$.
Problem 3. Find $\lambda^{(3)} \in \mathbb{C}$ and $\alpha \in \mathbb{C}, h \in L_{2}(\Omega), \int_{\Omega} h d y=0$ such that

$$
a^{(3)}(\alpha, h, \beta, \psi)=\lambda b^{(3)}(\alpha, h, \beta, \psi), \quad \forall \phi=\beta+\psi \in L_{2}(\Omega), \int_{\Omega} \psi d y=0
$$

where

$$
a^{(3)}[\alpha, h]:=|\alpha|^{2}|\Omega|+\int_{\Omega}|h|^{2} d y, \quad b^{(3)}[\alpha, h]:=-\int_{\Omega} \overline{(\alpha+h)} \Delta^{-1}(\alpha+h) d y+\nu|\alpha|^{2}|\Omega|^{2},
$$ and

$$
\lambda_{n}^{(2)}=\lambda_{n}^{(3)}
$$

Small inclusions, second approximation

Problem 4. Find $\lambda^{(4)} \in \mathbb{C}$ and $\alpha \in \mathbb{C}, h \in L_{2}(\Omega), \int_{\Omega} h d y=0$ such that

$$
a^{(4)}(\alpha, h, \beta, \psi)=\lambda b^{(4)}(\alpha, h, \beta, \psi), \quad \forall \phi \in L_{2}(\Omega)
$$

where

$$
a^{(4)}[\alpha, h]:=|\alpha|^{2}|\Omega|+\int_{\Omega}|h|^{2} d y, \quad b^{(4)}[\alpha, h]:=-\int_{\Omega} \bar{h} \Delta^{-1} h d y+\nu|\alpha|^{2}|\Omega|^{2}
$$

and

$$
\lambda_{n}^{(4)}\left(1+c \nu^{-1 / 2}\right)^{-1} \leq \lambda_{n}^{(3)} \leq \lambda_{n}^{(4)}\left(1-c \nu^{-1 / 2}\right)^{-1}
$$

Finally

$$
\lambda_{1}^{(4)}=2 \pi|\Omega|^{-1}\left(2 \pi g_{\theta}-\ln \delta\right)^{-1}
$$

and $\lambda_{2}^{(4)}, \lambda_{3}^{(4)}, .$. are eigenvalues of the problem for

$$
a^{(5)}[h]:=\int_{\Omega}|h|^{2} d y, \quad b^{(5)}[h]:=-\int_{\Omega} \bar{h} \Delta^{-1} h d y,
$$

with domain $h \in L_{2}(\Omega), \int_{\Omega} h d y=0$.

Back to PCF

We have similar results for PCF .

$$
\lambda_{1,2}(\theta)=\delta^{-2}\left(2 \pi g_{\theta}-\ln \delta\right)^{-1} \Lambda_{1,2}+O\left(\delta^{-2}\left(2 \pi g_{\theta}-\ln \delta\right)^{-3 / 2}\right)
$$

where $\Lambda_{1,2}$ are some positive numbers, and

$$
\lambda_{n}(\theta)=\Lambda_{n}+O\left(\delta^{-2}\left(2 \pi g_{\theta}-\ln \delta\right)^{-1 / 2}\right), \quad n=3,4 \ldots
$$

where $\Lambda_{3}, \Lambda_{4}, \ldots$ are the eigenvalues of operator generated by quadratic forms

$$
a[f]:=\int_{Q_{0}}|f|^{2} d x+\left(\epsilon_{0}-1\right) \int_{Q_{0}} \bar{f} g r a d \operatorname{div} \Delta^{-1} f d x
$$

and

$$
b[f]:=\int_{Q_{0}} \bar{f} \Delta^{-1} f d x+\left(\epsilon_{0}-1\right) \int_{Q_{0}} \overline{\operatorname{div} \Delta^{-1} f} \operatorname{div} \Delta_{\theta}^{-1} f d x
$$

with domain $f \in L_{2}\left(Q_{0}\right), \int_{Q_{0}} f d x=0$.
Thank you

