Coercivity of high-frequency scattering problems

Valery Smyshlyaev

Department of Mathematics, University College London

Joint work with: Euan Spence (Bath), Ilia Kamotski (UCL); Comm Pure Appl Math 2015.

Also with: Ivan Graham (Bath), Simon Chandler-Wilde (Reading)
Spence, Chandler-Wilde, Graham, S, Comm Pure Appl Math 2011.

Durham, 12 July 2016

Summary

- ~ 1960's - 1980's: tremendous interest in rigorous aspects of scattering/ diffraction:
- decay at $t \rightarrow \infty$ of wave equation $\frac{\partial^{2} w}{\partial t^{2}}-c^{2} \Delta w=0$
- asymptotics as $k \rightarrow \infty$ of Helmholtz equation $\quad \Delta u+k^{2} u=0$
- (related in subtle way)

Summary

- \sim 1960's - 1980's: tremendous interest in rigorous aspects of scattering/ diffraction:
- decay at $t \rightarrow \infty$ of wave equation $\frac{\partial^{2} w}{\partial t^{2}}-c^{2} \Delta w=0$
- asymptotics as $k \rightarrow \infty$ of Helmholtz equation $\Delta u+k^{2} u=0$
- (related in subtle way)
- ~ 2000's - present: interest in Numerical Analysis of Helmholtz for $k \gg 1$
- e.g. "hybrid asymptotic-numerical methods"
- This talk: boundary integral equations
- One analysis question: prove relevant operator is coercive
- Surprise (?) - appears that for coercivity need stronger results than those obtained classically (at least in the context of one classic tool Morawetz multipliers)

Obstacle scattering problem: acoustically soft/ TE Maxwell (2d) perfectly conducting boundary
$\left\{\begin{array}{l}u^{i}=e^{\mathrm{i} k x \cdot \hat{a}} \\ y\end{array}\right.$

Γ
$\Omega_{\text {int }}$
$\Delta u^{s}+k^{2} u^{s}=0$ in $\Omega_{\text {ext }}:=\mathbb{R}^{d} \backslash \Omega_{\text {int }}$

$$
u^{s}+u^{i}=0 \text { on } \Gamma
$$

$$
k>0
$$

Radiation conditions:

$$
\frac{\partial u^{s}}{\partial r}-i k u^{s}=o\left(r^{-\frac{d-1}{2}}\right) \text { as } r \rightarrow \infty
$$

\Longrightarrow Uniqueness and existence.

Boundary integral equations

- Green's Integral Representation:

$$
u^{s}(x)=\int_{\Gamma}\left(\frac{\partial \Phi_{k}}{\partial n(y)}(x, y) u^{s}(y)-\Phi_{k}(x, y) \frac{\partial u^{s}}{\partial n}(y)\right) d s(y), \quad x \in \Omega_{\mathrm{ext}}
$$

where

$$
\Phi_{k}(x, y):=\left\{\begin{array}{cc}
\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|) & (d=2) \\
\frac{e^{\mathrm{i} k|x-y|}}{4 \pi|x-y|} & (d=3)
\end{array}\right.
$$

Hence boundary integral equations for $v:=\frac{\partial u}{\partial n}$:

- Single layer:

$$
S_{k} v(x):=\int_{\Gamma} \Phi_{k}(x, y) v(y) d s(y)=u^{i}(x)
$$

(uniqueness fails for $k^{2}=$ interior Dirichlet eigenvalues)

- (Adjoint) double layer:

$$
\left(\frac{1}{2} I+D_{k}^{\prime}\right) v(x):=\frac{1}{2} v(x)+\int_{\Gamma} \frac{\partial \Phi_{k}}{\partial n(x)}(x, y) v(y) d s(y)=\frac{\partial u^{i}}{\partial n}(x)
$$

(uniqueness fails for $k^{2}=$ interior Neumann eigenvalues)

Combined boundary integral equations

Try a combination of a double layer and of a single layer:

$$
\text { (Double Layer) }-i \eta \times(\text { Single Layer })
$$

with a 'coupling constant' $\eta \sim k(k \gg 1)$.
l.e. let

$$
A_{k}=\frac{1}{2} I+D_{k}^{\prime}-i \eta S_{k} .
$$

- \sim 'Combined' boundary integral equation:

$$
A_{k}\left(\frac{\partial u}{\partial n}\right)=f \quad\left(f=\frac{\partial u^{i}}{\partial n}(x)-i \eta u^{i}(x)\right)
$$

- At high frequencies ($k \gg 1$) kernel of A_{k} highly oscillatory (and non-linear) in k.

The operator A_{k}

$$
A_{k}\left(\frac{\partial u}{\partial n}\right)=f
$$

- For a fixed $k, \eta>0: A_{k}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ bounded and invertible and

$$
\partial u / \partial n \in L^{2}(\Gamma) \text { if } \Gamma \text { is Lipschitz (Nečas) }
$$

- Q. What do we want to know about A_{k} ?

1. bound on $\left\|A_{k}\right\|$ (explicit in k)
2. bound on $\left\|A_{k}^{-1}\right\|$ (explicit in k)
3. coercivity: $\exists \gamma>0$ such that

$$
\left|\left(A_{k} \phi, \phi\right)_{L^{2}(\Gamma)}\right| \geq \gamma\|\phi\|_{L^{2}(\Gamma)}^{2}, \quad \forall \phi \in L^{2}(\Gamma)
$$

(γ explicit in k)

The operator A_{k}

$$
A_{k}\left(\frac{\partial u}{\partial n}\right)=f
$$

- For a fixed $k, \eta>0: A_{k}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ bounded and invertible and

$$
\partial u / \partial n \in L^{2}(\Gamma) \text { if } \Gamma \text { is Lipschitz (Nečas) }
$$

- Q. What do we want to know about A_{k} ?

1. bound on $\left\|A_{k}\right\|$ (explicit in k) \longleftarrow relatively easy
2. bound on $\left\|A_{k}^{-1}\right\|$ (explicit in k)
3. coercivity: $\exists \gamma>0$ such that

$$
\left|\left(A_{k} \phi, \phi\right)_{L^{2}(\Gamma)}\right| \geq \gamma\|\phi\|_{L^{2}(\Gamma)}^{2}, \quad \forall \phi \in L^{2}(\Gamma)
$$

(γ explicit in k)

The operator A_{k}

$$
A_{k}\left(\frac{\partial u}{\partial n}\right)=f
$$

- For a fixed $k, \eta>0: A_{k}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ bounded and invertible and

$$
\partial u / \partial n \in L^{2}(\Gamma) \text { if } \Gamma \text { is Lipschitz (Nečas) }
$$

- Q. What do we want to know about A_{k} ?

1. bound on $\left\|A_{k}\right\|$ (explicit in $\left.k\right) \longleftarrow$ relatively easy
2. bound on $\left\|A_{k}^{-1}\right\|$ (explicit in $\left.k\right) \longleftarrow$ much harder (but still not enough!)
3. coercivity: $\exists \gamma>0$ such that

$$
\left|\left(A_{k} \phi, \phi\right)_{L^{2}(\Gamma)}\right| \geq \gamma\|\phi\|_{L^{2}(\Gamma)}^{2}, \quad \forall \phi \in L^{2}(\Gamma)
$$

(γ explicit in k)

The operator A_{k}

$$
A_{k}\left(\frac{\partial u}{\partial n}\right)=f
$$

- For a fixed $k, \eta>0: A_{k}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ bounded and invertible and

$$
\partial u / \partial n \in L^{2}(\Gamma) \text { if } \Gamma \text { is Lipschitz (Nečas) }
$$

- Q. What do we want to know about A_{k} ?

1. bound on $\left\|A_{k}\right\|$ (explicit in $\left.k\right) \longleftarrow$ relatively easy
2. bound on $\left\|A_{k}^{-1}\right\|$ (explicit in k) \longleftarrow much harder (but still not enough!)
3. coercivity: $\exists \gamma>0$ such that

$$
\left|\left(A_{k} \phi, \phi\right)_{L^{2}(\Gamma)}\right| \geq \gamma\|\phi\|_{L^{2}(\Gamma)}^{2}, \quad \forall \phi \in L^{2}(\Gamma)
$$

$(\gamma$ explicit in $k) \longleftarrow$ even harder!

Why is bounding $\left\|A_{k}^{-1}\right\|$ not enough?

$$
A_{k} v=f \quad\left(v=\frac{\partial u}{\partial n}\right)
$$

- Solving numerically using Galerkin method: choose $\mathcal{S}_{N} \subset L^{2}(\Gamma)$ (N-dimensional subspace), find $v_{N} \in \mathcal{S}_{N}$ such that

$$
\left(A_{k} v_{N}, \phi_{N}\right)_{L^{2}(\Gamma)}=\left(f, \phi_{N}\right)_{L^{2}(\Gamma)}, \quad \forall \phi_{N} \in \mathcal{S}_{N}
$$

- Want "quasi-optimality": (Lax-Milgramm + Cea's Lemma) :

$$
\left\|v-v_{N}\right\|_{L^{2}(\Gamma)} \leq C(k) \inf _{\phi_{N} \in \mathcal{S}_{N}}\left\|v-\phi_{N}\right\|_{L^{2}(\Gamma)}
$$

-in some sense "numerical well-posedness"

- $C(k)=\left\|A_{k}\right\| / \gamma_{k} \therefore$ Bound on $\left\|A_{k}^{-1}\right\|$ can't give (\star) for important \mathcal{S}_{N}

Plan

Multiplier Methods

Multiplier methods

Helmholtz equation

$$
\Delta u+k^{2} u=0,
$$

where $u(x), \quad x \in D \subset \mathbb{R}^{3}, \quad k>0$

Multiplier methods

Helmholtz equation

$$
\int_{D} \bar{M}\left(\Delta u+k^{2} u\right)=0
$$

where $u(x), \quad x \in D \subset \mathbb{R}^{3}, \quad k>0$
integrate by parts

$$
\bar{M} \Delta u=\nabla \cdot(\bar{M} \nabla u)-\nabla \bar{M} \cdot \nabla u
$$

get

$$
\int_{\partial D} \bar{M} \frac{\partial u}{\partial n}-\int_{D} \nabla \bar{M} \cdot \nabla u+k^{2} \int_{D} \bar{M} u=0
$$

Some famous (and not so famous) multipliers

$$
\int_{D} \bar{M}\left(\Delta u^{s}+k^{2} u^{s}\right)=0
$$

radiation condition for u^{s} :

$$
\begin{aligned}
& \therefore \frac{\partial u^{s}}{\partial r}-i k u^{s}=o\left(r^{-\frac{d-1}{2}}\right), d=2,3 \\
& \quad u^{s}(x) \sim \frac{e^{i k r}}{r^{\frac{d-1}{2}}} f(\hat{x}) \quad \text { as } \quad r=|x| \rightarrow \infty
\end{aligned}
$$

Some famous (and not so famous) multipliers

$$
\int_{D} \bar{M}\left(\Delta u^{s}+k^{2} u^{s}\right)=0
$$

radiation condition for u^{s} :

$$
\begin{aligned}
& \therefore \frac{\partial u^{s}}{\partial r}-i k u^{s}=o\left(r^{-\frac{d-1}{2}}\right), d=2,3 \\
& \quad u^{s}(x) \sim \frac{e^{i k r}}{r^{\frac{d-1}{2}}} f(\hat{x}) \quad \text { as } \quad r=|x| \rightarrow \infty
\end{aligned}
$$

- Green (1828), $\quad M=u^{s}$
- Rellich (1940), e.g. $M=r \frac{\partial u^{s}}{\partial r}=x \cdot \nabla u^{s}$
- Morawetz (1968), e.g. $M=r \frac{\partial u^{s}}{\partial r}-i k r u^{s}+\frac{d-1}{2} u^{s}$

Classic (high frequency) scattering/ diffraction theory

- Enormous interest from 1960's onwards, e.g.,
- USA - Keller, Lax, Philips, Morawetz (@ Courant), Melrose...
- USSR/ Russia - Fock, Buslaev, Babich, Vainberg...
- 3 main problems

1. Wave equation: behaviour as $t \rightarrow \infty$
2. Wave equation: propagation of singularities
3. Helmholtz: behaviour as $k \rightarrow \infty$

- related in subtle way: " $1+2=3$ " [Vainberg, 1975]

Key concept: (non-)trapping

- as $k \rightarrow \infty$ Helmholtz in trapping domains has "almost eigenvalues/eigenfunctions" (resonances)

Key concept: (non-)trapping

- as $k \rightarrow \infty$ Helmholtz in trapping domains has "almost eigenvalues/eigenfunctions" (resonances)
- Classic theory can be translated into results about A_{k}^{-1}.
- Expect that

1. For $\Omega_{\text {ext }}$ certain trapping domains

$$
\left\|A_{k_{n}}^{-1}\right\| \gtrsim e^{\alpha k_{n}}, \quad 0<k_{1}<k_{2}<\ldots \text { some } \alpha>0
$$

2. If $\Omega_{\text {ext }}$ is non-trapping then

$$
\left\|A_{k}^{-1}\right\| \lesssim 1, \quad \forall k \geq k_{0}
$$

- Find

1. Proved
2. Proved for star-shaped domains [Chandler-Wilde, Monk 2008] using

Rellich $\left(M=\frac{\partial u}{\partial r}\right)$ (N.B. needed extra work to deal with ∞)

The operator A_{k}

$$
A_{k}\left(\frac{\partial u}{\partial n}\right)=f
$$

- Spaces: $A_{k}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ bounded and invertible and $\partial u / \partial n \in L^{2}(\Gamma)$ if Γ is Lipschitz
- Q. What do we want to know about A_{k} ?

1. bound on $\left\|A_{k}\right\|$ (explicit in $\left.k\right) \longleftarrow$ relatively easy
2. bound on $\left\|A_{k}^{-1}\right\|$ (explicit in k) \longleftarrow use classic high-frequency scattering theory
3. coercivity: $\exists \gamma>0$ such that

$$
\left|\left(A_{k} \phi, \phi\right)_{L^{2}(\Gamma)}\right| \geq \gamma\|\phi\|_{L^{2}(\Gamma)}^{2}, \quad \forall \phi \in L^{2}(\Gamma)
$$

$(\gamma$ explicit in $k) \longleftarrow$ why?

Quasi-optimality

$$
\left\|v-v_{N}\right\|_{L^{2}(\Gamma)} \leq C(k) \inf _{\phi_{N} \in \mathcal{S}_{N}}\left\|v-\phi_{N}\right\|_{L^{2}(\Gamma)}
$$

- Want to establish (with explicit k dependence of C) for

1. \mathcal{S}_{N} piecewise polynomials
2. $\mathcal{S}_{N, k}$ "hybrid" subspace incorporating asymptotics of $v=\frac{\partial u^{s}}{\partial n}$

- For 1. need $N=\mathcal{O}\left(k^{d-1}\right)$ as $k \rightarrow \infty$, possibility of 2. giving $N=\mathcal{O}(1)$.
- k-explicit (\star) for 1. - classic problem, solved by [Melenk, 2011] (needs bound on $\left\|A_{k}^{-1}\right\|$)
- Coercivity (+bound on $\left\|A_{k}\right\|$ - easy) gives (\star) for 1 . and 2. k-explicit.

Coercivity

$\exists \gamma>0$ such that

$$
\left|\left(A_{k} \phi, \phi\right)_{L^{2}(\Gamma)}\right| \geq \gamma\|\phi\|_{L^{2}(\Gamma)}^{2}, \quad \forall \phi \in L^{2}(\Gamma)
$$

- Not obvious will hold - standard approach to formulations of Helmholtz: prove

$$
\text { operator }_{k}=\text { coercive }+ \text { compact }_{k}
$$

- Coercivity for circle (2d) and sphere (3d) $\forall k \geq k_{0}, \gamma=1$ [Domínguez, Graham, Smyshlyaev, 2007] (Fourier analysis)

Two Coercivity Results using Morawetz Multipliers

Result 1. $\Omega_{\text {int }}$ Lipschitz star-shaped, a specially constructed "star-combined" \mathscr{A}_{k} is coercive $\forall k, \gamma=\mathcal{O}(1)$. [Spence, Chandler-Wilde, Graham, S., Comm Pure Appl Math 2011]

Result 2. $\Omega_{\text {int }}$ smooth convex, the classical combined A_{k} is coercive $\forall k \geq k_{0}$, $\eta>\eta_{0} k, \gamma=\frac{1}{2}-\varepsilon \quad$ [Spence, I.Kamotski, S. Comm Pure Appl Math 2015]
(N.B. 1. is first quasi-optimality result for 2nd kind integral equations on $L^{2}(\Gamma)$ for Γ Lipschitz, even for Laplace $(k=0)$

Two Coercivity Results using Morawetz Multipliers

Result 1. $\Omega_{\text {int }}$ Lipschitz star-shaped, a specially constructed "star-combined" \mathscr{A}_{k} is coercive $\forall k, \gamma=\mathcal{O}(1)$. [Spence, Chandler-Wilde, Graham, S., Comm Pure Appl Math 2011]

Result 2. $\Omega_{\text {int }}$ smooth convex, the classical combined A_{k} is coercive $\forall k \geq k_{0}$, $\eta>\eta_{0} k, \gamma=\frac{1}{2}-\varepsilon \quad$ [Spence, I.Kamotski, S. Comm Pure Appl Math 2015]
(N.B. 1. is first quasi-optimality result for 2nd kind integral equations on $L^{2}(\Gamma)$ for Γ Lipschitz, even for Laplace $(k=0)$

How?

- A_{k} arose from $\frac{\partial u^{s}}{\partial n}-i \eta u^{s}$ on 「
- $M=r \frac{\partial u^{s}}{\partial r}-\mathrm{i} k r u^{s}+\frac{d-1}{2} u^{s} \leadsto$ star-shaped coercivity 1 .
- $M=Z(x) \cdot \nabla u^{s}-\mathrm{i} \eta(x) u^{s}+\alpha(x) u^{s} \leadsto$ smooth convex coercivity 2.

Morawetz - 1

Morawetz \& Ludwig (1968): take as a multiplier

$$
M u:=\mathrm{x} \cdot \nabla u-\mathrm{i} k r u+\frac{d-1}{2} u
$$

Then (the Morawetz-Ludwig identity):

$$
2 \operatorname{Re}\left(\overline{M u}\left(\Delta u+k^{2} u\right)\right)=
$$

$\nabla \cdot\left[2 \operatorname{Re}(\overline{M u} \nabla u)+\left(k^{2}|u|^{2}-|\nabla u|^{2}\right) \mathbf{x}\right]-\left(|\nabla u|^{2}-\left|u_{r}\right|^{2}\right)-\left|u_{r}-\mathrm{i} k u\right|^{2} . \mathrm{A}$ corollary:

$$
\begin{gathered}
\int_{\partial D}\left[2 \operatorname{Re}\left(\overline{M u} \frac{\partial u}{\partial \nu}\right)+\left(k^{2}|u|^{2}-|\nabla u|^{2}\right) \mathbf{x} \cdot \nu\right] d s= \\
\int_{D}\left[2 \operatorname{Re}\left(\overline{M u}\left(\Delta u+k^{2} u\right)\right)+\left(|\nabla u|^{2}-\left|u_{r}\right|^{2}\right)+\left|u_{r}-\mathrm{i} k u\right|^{2}\right] d x
\end{gathered}
$$

Let $\Omega_{i n}$ star-shaped $\Leftrightarrow x \cdot n \geq \beta>0(n=-\nu)$. Take $D=\Omega_{\text {ext }} \cap B(0, R)$, let $R \rightarrow \infty$, use radition conditions. $\Longrightarrow k$-uniform bounds for D-t-N; error bounds for GO/ GTD, etc.

Morawetz - 1

"Star-combined" BIE (Spence, Chandler-Wilde, Graham, S., Comm Pure Appl Math 2011):
In the Morawetz identity, choose $u=S_{k} \phi$. Take
$D=\left(\Omega_{\text {ext }} \cap B(0, R)\right) \cup \Omega_{\text {int }}$, let $R \rightarrow \infty$. Then, for

$$
\begin{gathered}
\mathcal{A}_{k}:=(\mathbf{x} \cdot \mathbf{n})\left(\frac{1}{2} I+D_{k}^{\prime}\right)+\mathbf{x} \cdot \nabla_{\Gamma} S_{k}-i \eta S_{k}, \quad \eta:=k r+i \frac{d-1}{2} . \\
\mathcal{A}_{k}\left(\frac{\partial u}{\partial n}\right)=f \quad\left(f=\mathbf{x} \cdot \nabla u^{i}(x)-i \eta(x) u^{i}(x)\right)
\end{gathered}
$$

Coercivity: $\forall k \geq 0$,

$$
\operatorname{Re}\left(\mathcal{A}_{k} \phi, \phi\right) \geq \gamma\|\phi\|_{L^{2}}^{2}, \quad \gamma=\frac{1}{2} \operatorname{ess} \inf _{x \in \Gamma}(x \cdot n(x))>0 .
$$

Classical combined (Spence, I. Kamotski, S., Comm Pure Appl Math 2015)

Try as a multiplier, with appropriate vector field $\mathbf{Z}(\mathbf{x})$, and scalar functions $\alpha(\mathbf{x})$ and $\beta(\mathbf{x})$:

$$
M u:=\mathbf{Z}(\mathbf{x}) \cdot \nabla u-i k \beta(\mathbf{x}) u+\alpha(\mathbf{x}) u .
$$

Then the following Morawetz-type identity holds:

$$
\begin{aligned}
& 2 \operatorname{Re}\left(\overline{M u}\left(\Delta+k^{2}\right) u\right)= \\
& \begin{array}{r}
\nabla \cdot\left[2 \operatorname{Re}(\overline{M u} \nabla u)+\left(k^{2}|u|^{2}-|\nabla u|^{2}\right) \mathbf{Z}\right]+ \\
(2 \alpha-\nabla \cdot \mathbf{Z})\left(k^{2}|u|^{2}-|\nabla u|^{2}\right) \\
\quad-2 \operatorname{Re}\left(\partial_{i} Z_{j} \partial_{i} u \overline{\partial_{j} u}\right)-2 \operatorname{Re}(\bar{u}(i k \nabla \beta+\nabla \alpha) \cdot \nabla u)
\end{array}
\end{aligned}
$$

For wave equation Morawetz needed:

- $Z(x), \quad x \in \Omega_{\text {ext }}$
- $\Re\left(\partial_{j} Z_{i} \xi_{i} \overline{\xi_{j}}\right) \geq 0, \xi \in \mathbb{C}^{d}$,
- Z.n>0 on 「,
- $Z(x) \rightarrow c x$ as $|x| \rightarrow \infty$
(almost enough for $\left\|A_{k}^{-1}\right\|$ bound)
have for $\Omega_{\text {ext }}$ non-trapping in 2-d

For coercivity of A_{k} we need:

- $Z(x), \quad x \in \Omega_{\mathrm{ext}} \cup \Omega_{\mathrm{int}}$
- $\Re\left(\partial_{j} Z_{i} \xi_{i} \bar{\xi}_{j}\right) \geq \theta|\xi|^{2}, \xi \in \mathbb{C}^{d}$,
- $Z=n$ on Γ,
- $Z(x) \rightarrow c x$ as $|x| \rightarrow \infty$
have for $\Omega_{\text {int }}$ smooth convex in $2 \& 3-\mathrm{d}$
...non-trapping?

Summary

- \sim 1960's - 1980's: tremendous interest in rigorous aspects of scattering:
- decay at $t \rightarrow \infty$ of wave equation $\frac{\partial^{2} w}{\partial t^{2}}-c^{2} \Delta w=0$
- asymptotics as $k \rightarrow \infty$ of Helmholtz equation $\Delta u+k^{2} u=0$
- (related in subtle way)
- ~ 2000's - present: interest in Numerical Analysis of Helmholtz for $k \gg 1$
- e.g. "hybrid asymptotic-numerical methods"
- This talk: boundary integral equations
- Analysis question: prove relevant operator is coercive
- Surprise (?) - appears that for coercivity need stronger results than those obtained classically (at least in the context of one classic tool Morawetz multipliers)

