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Summary

I ∼ 1960’s - 1980’s: tremendous interest in rigorous aspects of
scattering/ diffraction:

I decay at t →∞ of wave equation
∂2w

∂t2
− c2∆w = 0

I asymptotics as k →∞ of Helmholtz equation ∆u + k2u = 0

I (related in subtle way)

I ∼ 2000’s - present: interest in Numerical Analysis of Helmholtz for
k � 1

I e.g. “hybrid asymptotic-numerical methods”

I This talk: boundary integral equations

I One analysis question: prove relevant operator is coercive

I Surprise (?) – appears that for coercivity need stronger results than
those obtained classically (at least in the context of one classic tool –
Morawetz multipliers)
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Obstacle scattering problem: acoustically soft/ TE
Maxwell (2d) perfectly conducting boundary

Ωint

;
∆us + k2us = 0

us
;ui = eikx·â

Γ

us + ui = 0 on Γ

in Ωext := Rd \ Ωint

k > 0

Radiation conditions:

∂us

∂r
− ikus = o

(
r −

d−1
2

)
as r →∞.

=⇒ Uniqueness and existence.



Boundary integral equations
I Green’s Integral Representation:

us(x) =

∫
Γ

(
∂Φk

∂n(y)
(x , y)us(y) − Φk(x , y)

∂us

∂n
(y)

)
ds(y), x ∈ Ωext

where

Φk(x , y) :=


i

4
H

(1)
0 (k |x − y |) (d = 2)

eik|x−y |

4π|x − y |
(d = 3)

Hence boundary integral equations for v := ∂u
∂n :

I Single layer:

Skv(x) :=

∫
Γ

Φk(x , y)v(y) ds(y) = ui (x)

(uniqueness fails for k2 = interior Dirichlet eigenvalues)
I (Adjoint) double layer:(

1

2
I + D ′k

)
v(x) :=

1

2
v(x) +

∫
Γ

∂Φk

∂n(x)
(x , y)v(y) ds(y) =

∂ui

∂n
(x)

(uniqueness fails for k2 = interior Neumann eigenvalues)



Combined boundary integral equations

Try a combination of a double layer and of a single layer:

(Double Layer) − iη × (Single Layer)

with a ‘coupling constant’ η ∼ k (k � 1).
I.e. let

Ak =
1

2
I + D ′k − i ηSk .

I ; ‘Combined’ boundary integral equation:

Ak

(
∂u

∂n

)
= f

(
f =

∂ui

∂n
(x) − i η ui (x)

)

I At high frequencies (k � 1) kernel of Ak highly oscillatory (and
non-linear) in k .



The operator Ak

Ak

(
∂u

∂n

)
= f

I For a fixed k, η > 0: Ak : L2(Γ)→ L2(Γ) bounded and invertible
and

∂u/∂n ∈ L2(Γ) if Γ is Lipschitz (Nečas)

I Q. What do we want to know about Ak?

1. bound on ‖Ak‖ (explicit in k)

←− relatively easy

2. bound on ‖A−1
k ‖ (explicit in k)

←− much harder (but still not
enough!)

3. coercivity: ∃γ> 0 such that

|(Akφ, φ)L2(Γ)| ≥ γ‖φ‖
2
L2(Γ), ∀φ ∈ L2(Γ)

(γ explicit in k)

←− even harder!
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Why is bounding ‖A−1
k ‖ not enough?

Akv = f

(
v =

∂u

∂n

)
I Solving numerically using Galerkin method: choose SN ⊂ L2(Γ)

(N-dimensional subspace), find vN ∈ SN such that

(AkvN , φN)L2(Γ) = (f , φN)L2(Γ), ∀φN ∈ SN

I Want “quasi-optimality”: (Lax-Milgramm + Cea’s Lemma) :

‖v − vN‖L2(Γ) ≤ C (k) inf
φN∈SN

‖v − φN‖L2(Γ) (?)

–in some sense “numerical well-posedness”

I C (k) = ‖Ak‖/γk ∴ Bound on ‖A−1
k ‖ can’t give (?) for important

SN



Plan

Multiplier Methods



Multiplier methods

Helmholtz equation

∫
D

M

(

∆u + k2u

)

= 0,

where u(x), x ∈ D ⊂ R3, k > 0

integrate by parts

M∆u = ∇ · (M∇u)−∇M · ∇u

get ∫
∂D

M
∂u

∂n
−
∫
D

∇M · ∇u + k2

∫
D

M u = 0
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Some famous (and not so famous) multipliers

∫
D

M

(
∆us + k2us

)
= 0,

radiation condition for us :

∴
∂us

∂r
− ikus = o

(
r−

d−1
2

)
, d = 2, 3

us(x) ∼ eikr

r
d−1

2

f (x̂) as r = |x | → ∞

I Green (1828), M = us

I Rellich (1940), e.g. M = r
∂us

∂r
= x · ∇us

I Morawetz (1968), e.g. M = r
∂us

∂r
− ikrus +

d − 1

2
us
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Classic (high frequency) scattering/ diffraction theory

I Enormous interest from 1960’s onwards, e.g.,

I USA – Keller, Lax, Philips, Morawetz (@ Courant), Melrose...

I USSR/ Russia - Fock, Buslaev, Babich, Vainberg...

I 3 main problems

1. Wave equation: behaviour as t →∞

2. Wave equation: propagation of singularities

3. Helmholtz: behaviour as k →∞

I related in subtle way: “1+2=3” [Vainberg, 1975]



Key concept: (non-)trapping

I as k →∞ Helmholtz in trapping domains has “almost
eigenvalues/eigenfunctions” (resonances)

I Classic theory can be translated into results about A−1
k .

I Expect that

1. For Ωext certain trapping domains

‖A−1
kn
‖ & eαkn , 0 < k1 < k2 < ... some α > 0

2. If Ωext is non-trapping then

‖A−1
k ‖ . 1, ∀k ≥ k0

I Find

1. Proved
2. Proved for star-shaped domains [Chandler-Wilde, Monk 2008] using

Rellich

(
M =

∂u

∂r

)
(N.B. needed extra work to deal with ∞)
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The operator Ak

Ak

(
∂u

∂n

)
= f

I Spaces: Ak : L2(Γ)→ L2(Γ) bounded and invertible and
∂u/∂n ∈ L2(Γ) if Γ is Lipschitz

I Q. What do we want to know about Ak?

1. bound on ‖Ak‖ (explicit in k) ←− relatively easy

2. bound on ‖A−1
k ‖ (explicit in k) ←− use classic high-frequency

scattering theory

3. coercivity: ∃γ> 0 such that

|(Akφ, φ)L2(Γ)| ≥ γ‖φ‖
2
L2(Γ), ∀φ ∈ L2(Γ)

(γ explicit in k) ←− why?



Quasi-optimality

‖v − vN‖L2(Γ) ≤ C (k) inf
φN∈SN

‖v − φN‖L2(Γ) (?)

I Want to establish (with explicit k dependence of C ) for

1. SN piecewise polynomials

2. SN,k “hybrid” subspace incorporating asymptotics of v =
∂us

∂n

I For 1. need N = O(kd−1) as k →∞,
possibility of 2. giving N = O(1).

I k-explicit (?) for 1. – classic problem, solved by [Melenk, 2011]
(needs bound on ‖A−1

k ‖)

I Coercivity (+bound on ‖Ak‖ – easy) gives (?) for 1. and 2.
k-explicit.



Coercivity

∃γ > 0 such that

|(Akφ, φ)L2(Γ)| ≥ γ‖φ‖2
L2(Γ), ∀φ ∈ L2(Γ)

I Not obvious will hold – standard approach to formulations of
Helmholtz: prove

operatork = coercive + compactk

I Coercivity for circle (2d) and sphere (3d) ∀k ≥ k0, γ = 1
[Doḿınguez, Graham, Smyshlyaev, 2007] (Fourier analysis)



Two Coercivity Results using Morawetz Multipliers

Result 1. Ωint Lipschitz star-shaped, a specially constructed “star-combined”
Ak is coercive ∀k , γ = O(1). [Spence, Chandler-Wilde, Graham, S.,
Comm Pure Appl Math 2011]

Result 2. Ωint smooth convex, the classical combined Ak is coercive ∀k ≥ k0,
η > η0k , γ = 1

2 − ε [Spence, I.Kamotski, S. Comm Pure Appl
Math 2015 ]

(N.B. 1. is first quasi-optimality result for 2nd kind integral equations on
L2(Γ) for Γ Lipschitz, even for Laplace (k = 0 )

How?

I Ak arose from
∂us

∂n
− iηus on Γ

I M = r
∂us

∂r
− ikrus +

d − 1

2
us ; star-shaped coercivity 1.

I M = Z (x) · ∇us − iη(x)us + α(x)us ; smooth convex coercivity 2.
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Morawetz - 1
Morawetz & Ludwig (1968): take as a multiplier

Mu := x · ∇u − ikru +
d − 1

2
u,

Then (the Morawetz-Ludwig identity):

2Re
(
Mu(∆u + k2u)

)
=

∇·
[
2Re

(
Mu∇u

)
+
(
k2|u|2 − |∇u|2

)
x
]
−
(
|∇u|2 − |ur |2

)
−|ur − iku|2 .A

corollary: ∫
∂D

[
2Re

(
Mu

∂u

∂ν

)
+
(
k2|u|2 − |∇u|2

)
x · ν

]
ds =

∫
D

[
2Re

(
Mu(∆u + k2u)

)
+
(
|∇u|2 − |ur |2

)
+ |ur − iku|2

]
dx

Let Ωin star-shaped ⇔ x · n ≥ β > 0 (n = −ν). Take
D = Ωext ∩ B(0,R), let R →∞, use radition conditions. =⇒ k-uniform
bounds for D-t-N; error bounds for GO/ GTD, etc.



Morawetz - 1

“Star-combined” BIE (Spence, Chandler-Wilde, Graham, S., Comm Pure
Appl Math 2011):
In the Morawetz identity, choose u = Skφ. Take
D = (Ωext ∩ B(0,R)) ∪ Ωint , let R →∞. Then, for

Ak := (x · n)

(
1

2
I + D ′k

)
+ x · ∇ΓSk − iηSk , η := kr + i

d − 1

2
.

Ak

(
∂u

∂n

)
= f

(
f = x · ∇ui (x) − i η(x) ui (x)

)
Coercivity: ∀k ≥ 0,

Re (Akφ, φ) ≥ γ‖φ‖2
L2 , γ =

1

2
ess inf

x∈Γ
(x · n(x)) > 0.



Classical combined (Spence, I. Kamotski, S., Comm Pure
Appl Math 2015)

Try as a multiplier, with appropriate vector field Z(x), and scalar
functions α(x) and β(x):

Mu := Z(x) · ∇u − ikβ(x)u + α(x)u.

Then the following Morawetz-type identity holds:

2Re
(
Mu (∆ + k2)u

)
=

∇ ·
[
2Re

(
Mu∇u

)
+
(
k2|u|2 − |∇u|2

)
Z
]
+(

2α−∇ · Z
)(
k2|u|2 − |∇u|2

)
- 2 Re

(
∂iZj∂iu∂ju

)
− 2Re (u (ik∇β +∇α) · ∇u)



For wave equation Morawetz
needed:

I Z (x), x ∈ Ωext

I <
(
∂jZi ξi ξj

)
≥ 0, ξ ∈ Cd ,

I Z .n > 0 on Γ,

I Z (x)→ c x as |x | → ∞

(almost enough for ‖A−1
k ‖ bound)

have for Ωext non-trapping
in 2-d

For coercivity of Ak we need:

I Z (x), x ∈ Ωext ∪ Ωint

I <
(
∂jZi ξi ξj

)
≥ θ|ξ|2, ξ ∈ Cd ,

I Z= n on Γ,

I Z (x)→ c x as |x | → ∞

have for Ωint smooth convex
in 2 & 3-d

...non-trapping?
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