Coercivity of high-frequency scattering problems

Valery Smyshlyaev

Department of Mathematics, University College London

Joint work with: Euan Spence (Bath), Ilia Kamotski (UCL); Comm Pure Appl Math 2015.

Also with: Ivan Graham (Bath), Simon Chandler-Wilde (Reading) Spence, Chandler-Wilde, Graham, S, Comm Pure Appl Math 2011.

Durham, 12 July 2016

Summary

- $\blacktriangleright \sim$ 1960's 1980's: tremendous interest in rigorous aspects of scattering/ diffraction:
 - decay at $t
 ightarrow \infty$ of wave equation

$$\frac{\partial^2 w}{\partial t^2} - c^2 \Delta w = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► asymptotics as $k \to \infty$ of Helmholtz equation $\Delta u + k^2 u = 0$
- (related in subtle way)

Summary

- $\blacktriangleright \sim$ 1960's 1980's: tremendous interest in rigorous aspects of scattering/ diffraction:
 - decay at $t o \infty$ of wave equation

$$\frac{\partial^2 w}{\partial t^2} - c^2 \Delta w = 0$$

► asymptotics as $k \to \infty$ of Helmholtz equation $\Delta u + k^2 u = 0$

- (related in subtle way)
- $\blacktriangleright \sim 2000{\rm 's}$ present: interest in Numerical Analysis of Helmholtz for $k\gg 1$
 - e.g. "hybrid asymptotic-numerical methods"
 - This talk: boundary integral equations
 - One analysis question: prove relevant operator is coercive
 - Surprise (?) appears that for coercivity need stronger results than those obtained classically (at least in the context of one classic tool – Morawetz multipliers)

Obstacle scattering problem: acoustically soft/ TE Maxwell (2d) perfectly conducting boundary

$$\begin{split} \int u^{i} &= e^{ikx \cdot \hat{a}} & \qquad \qquad \Delta u^{s} + k^{2}u^{s} = 0 \\ \int u^{s} & \text{ in } \Omega_{\text{ext}} := \mathbb{R}^{d} \setminus \Omega_{\text{int}} \\ & \Gamma \\ & \Omega_{\text{int}} & \qquad \qquad u^{s} + u^{i} = 0 \text{ on } \Gamma \end{split}$$

k > 0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Radiation conditions:

$$\frac{\partial u^{s}}{\partial r} - iku^{s} = o\left(r^{-\frac{d-1}{2}}\right) \text{ as } r \to \infty.$$

 \implies Uniqueness and existence.

Boundary integral equations

Green's Integral Representation:

$$u^{s}(x) = \int_{\Gamma} \left(\frac{\partial \Phi_{k}}{\partial n(y)}(x, y) u^{s}(y) - \Phi_{k}(x, y) \frac{\partial u^{s}}{\partial n}(y) \right) ds(y), \quad x \in \Omega_{\mathsf{ext}}$$

where

$$\Phi_k(x,y) := \begin{cases} \frac{i}{4} H_0^{(1)}(k|x-y|) & (d=2) \\ \\ \frac{e^{ik|x-y|}}{4\pi|x-y|} & (d=3) \end{cases}$$

Hence boundary integral equations for $v := \frac{\partial u}{\partial n}$: Single layer:

$$S_k v(x) := \int_{\Gamma} \Phi_k(x, y) v(y) ds(y) = u^i(x)$$

(uniqueness fails for k² = interior Dirichlet eigenvalues)
(Adjoint) double layer:

$$\left(\frac{1}{2}I+D'_k\right)v(x):=\frac{1}{2}v(x)+\int_{\Gamma}\frac{\partial\Phi_k}{\partial n(x)}(x,y)v(y)\,ds(y)=\frac{\partial u^i}{\partial n}(x)$$

(uniqueness fails for $k^2 =$ interior Neumann eigenvalues) $= \sqrt{2} \sqrt{2}$

Combined boundary integral equations

Try a *combination* of a double layer and of a single layer:

(Double Layer) $-i\eta \times$ (Single Layer)

with a 'coupling constant' $\eta \sim k \ (k \gg 1)$. I.e. let

$$A_k = \frac{1}{2}I + D'_k - i\eta S_k.$$

$$A_k\left(\frac{\partial u}{\partial n}\right) = f \quad \left(f = \frac{\partial u^i}{\partial n}(x) - i\eta u^i(x)\right)$$

At high frequencies (k ≫ 1) kernel of A_k highly oscillatory (and non-linear) in k.

$$A_k\left(\frac{\partial u}{\partial n}\right) = f$$

For a fixed k, η > 0: A_k : L²(Γ) → L²(Γ) bounded and invertible and ∂u/∂n ∈ L²(Γ) if Γ is Lipschitz (Nečas)

• Q. What do we want to know about A_k ?

- 1. bound on $||A_k||$ (explicit in k)
- 2. bound on $||A_k^{-1}||$ (explicit in k)

3. coercivity: $\exists \gamma > 0$ such that

$$|(A_k\phi,\phi)_{L^2(\Gamma)}| \ge \gamma ||\phi||^2_{L^2(\Gamma)}, \quad \forall \phi \in L^2(\Gamma)$$

 $(\gamma \text{ explicit in } k)$

$$A_k\left(\frac{\partial u}{\partial n}\right) = f$$

For a fixed k, η > 0: A_k : L²(Γ) → L²(Γ) bounded and invertible and ∂u/∂n ∈ L²(Γ) if Γ is Lipschitz (Nečas)

• Q. What do we want to know about A_k ?

- 1. bound on $||A_k||$ (explicit in k) \leftarrow relatively easy
- 2. bound on $||A_k^{-1}||$ (explicit in k)

3. coercivity: $\exists \gamma > 0$ such that

$$|(A_k\phi,\phi)_{L^2(\Gamma)}| \geq \gamma ||\phi||^2_{L^2(\Gamma)}, \quad \forall \phi \in L^2(\Gamma)$$

 $(\gamma \text{ explicit in } k)$

$$A_k\left(\frac{\partial u}{\partial n}\right) = f$$

- For a fixed k, η > 0: A_k : L²(Γ) → L²(Γ) bounded and invertible and ∂u/∂n ∈ L²(Γ) if Γ is Lipschitz (Nečas)
- Q. What do we want to know about A_k ?
 - 1. bound on $||A_k||$ (explicit in k) \leftarrow relatively easy
 - bound on ||A_k⁻¹|| (explicit in k) ← much harder (but still not enough!)
 - 3. coercivity: $\exists \gamma > 0$ such that

$$|(A_k\phi,\phi)_{L^2(\Gamma)}| \geq \gamma ||\phi||^2_{L^2(\Gamma)}, \quad \forall \phi \in L^2(\Gamma)$$

 $(\gamma \text{ explicit in } k)$

$$A_k\left(\frac{\partial u}{\partial n}\right) = f$$

- For a fixed k, η > 0: A_k : L²(Γ) → L²(Γ) bounded and invertible and ∂u/∂n ∈ L²(Γ) if Γ is Lipschitz (Nečas)
- Q. What do we want to know about A_k ?
 - 1. bound on $||A_k||$ (explicit in k) \leftarrow relatively easy
 - bound on ||A_k⁻¹|| (explicit in k) ← much harder (but still not enough!)
 - 3. coercivity: $\exists \gamma > 0$ such that

$$|(A_k\phi,\phi)_{L^2(\Gamma)}| \ge \gamma ||\phi||^2_{L^2(\Gamma)}, \quad \forall \phi \in L^2(\Gamma)$$

 $(\gamma \text{ explicit in } k) \leftarrow \text{ even harder!}$

Why is bounding $||A_k^{-1}||$ not enough?

$$A_k v = f \qquad \left(v = \frac{\partial u}{\partial n}\right)$$

Solving numerically using Galerkin method: choose $S_N \subset L^2(\Gamma)$ (*N*-dimensional subspace), find $v_N \in S_N$ such that

$$(A_k v_N, \phi_N)_{L^2(\Gamma)} = (f, \phi_N)_{L^2(\Gamma)}, \quad \forall \phi_N \in \mathcal{S}_N$$

Want "quasi-optimality": (Lax-Milgramm + Cea's Lemma):

$$\|\mathbf{v} - \mathbf{v}_{\mathsf{N}}\|_{L^{2}(\Gamma)} \leq C(k) \inf_{\phi_{\mathsf{N}} \in \mathcal{S}_{\mathsf{N}}} \|\mathbf{v} - \phi_{\mathsf{N}}\|_{L^{2}(\Gamma)} \tag{(*)}$$

-in some sense "numerical well-posedness"

•
$$C(k) = ||A_k||/\gamma_k$$
 : Bound on $||A_k^{-1}||$ can't give (*) for important S_N

Plan

Multiplier Methods

Multiplier methods

Helmholtz equation

$$\Delta u + k^2 u = 0,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where u(x), $x \in D \subset \mathbb{R}^3$, k > 0

Multiplier methods

Helmholtz equation

$$\int_{D} \overline{M} \left(\Delta u + k^2 u \right) = 0,$$

where $u(x), \ x \in D \subset \mathbb{R}^3, \ k > 0$

integrate by parts

$$\overline{M}\Delta u = \nabla \cdot (\overline{M}\nabla u) - \nabla \overline{M} \cdot \nabla u$$

get

$$\int_{\partial D} \overline{M} \frac{\partial u}{\partial n} - \int_{D} \nabla \overline{M} \cdot \nabla u + k^{2} \int_{D} \overline{M} u = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some famous (and not so famous) multipliers

$$\int_{D}\overline{M}\left(\Delta u^{s}+k^{2}u^{s}\right)=0,$$

radiation condition for u^s :

$$\therefore \frac{\partial u^{s}}{\partial r} - iku^{s} = o\left(r^{-\frac{d-1}{2}}\right), \ d = 2,3$$
$$u^{s}(x) \sim \frac{e^{ikr}}{r^{\frac{d-1}{2}}}f(\hat{x}) \quad \text{as} \quad r = |x| \to \infty$$

Some famous (and not so famous) multipliers

$$\int_{D}\overline{M}\left(\Delta u^{s}+k^{2}u^{s}\right)=0,$$

radiation condition for u^s :

$$\therefore \frac{\partial u^{s}}{\partial r} - iku^{s} = o\left(r^{-\frac{d-1}{2}}\right), \ d = 2,3$$

$$u^{s}(x)\sim rac{e^{\mathrm{i}kr}}{r^{rac{d-1}{2}}}f(\hat{x}) \quad ext{ as } \quad r=|x|
ightarrow\infty$$

• Green (1828), $M = u^{s}$

▶ Rellich (1940), e.g. $M = r \frac{\partial u^s}{\partial r} = x \cdot \nabla u^s$

▶ Morawetz (1968), e.g. $M = r \frac{\partial u^s}{\partial r} - i kr u^s + \frac{d-1}{2} u^s$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Classic (high frequency) scattering/ diffraction theory

Enormous interest from 1960's onwards, e.g.,

- ▶ USA Keller, Lax, Philips, Morawetz (@ Courant), Melrose...
- USSR/ Russia Fock, Buslaev, Babich, Vainberg...

3 main problems

- 1. Wave equation: behaviour as $t
 ightarrow \infty$
- 2. Wave equation: propagation of singularities
- 3. Helmholtz: behaviour as $k \to \infty$
- related in subtle way: "1+2=3" [Vainberg, 1975]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Key concept: (non-)trapping

► as k → ∞ Helmholtz in trapping domains has "almost eigenvalues/eigenfunctions" (resonances)

Key concept: (non-)trapping

- ► as k → ∞ Helmholtz in trapping domains has "almost eigenvalues/eigenfunctions" (resonances)
- Classic theory can be translated into results about A_k^{-1} .
- Expect that
 - 1. For Ω_{ext} certain trapping domains

$$\|A_{k_n}^{-1}\| \gtrsim e^{\alpha k_n}, \quad 0 < k_1 < k_2 < ... \text{ some } \alpha > 0$$

2. If Ω_{ext} is non-trapping then

$$\|A_k^{-1}\| \lesssim 1, \quad \forall k \ge k_0$$

Find

- 1. Proved
- 2. Proved for star-shaped domains [Chandler-Wilde, Monk 2008] using Rellich $\left(M = \frac{\partial u}{\partial r}\right)$ (N.B. needed extra work to deal with ∞)

$$A_k\left(\frac{\partial u}{\partial n}\right) = f$$

- ► Spaces: $A_k : L^2(\Gamma) \to L^2(\Gamma)$ bounded and invertible and $\partial u / \partial n \in L^2(\Gamma)$ if Γ is Lipschitz
- Q. What do we want to know about A_k ?
 - 1. bound on $||A_k||$ (explicit in k) \leftarrow relatively easy
 - bound on ||A_k⁻¹|| (explicit in k) ← use classic high-frequency scattering theory
 - 3. coercivity: $\exists \gamma > 0$ such that

$$|(A_k\phi,\phi)_{L^2(\Gamma)}| \ge \gamma \|\phi\|_{L^2(\Gamma)}^2, \quad \forall \phi \in L^2(\Gamma)$$

 $(\gamma \text{ explicit in } k) \leftarrow \text{why}?$

Quasi-optimality

$$\|\boldsymbol{v} - \boldsymbol{v}_N\|_{L^2(\Gamma)} \le C(k) \inf_{\phi_N \in \mathcal{S}_N} \|\boldsymbol{v} - \phi_N\|_{L^2(\Gamma)} \qquad (\star$$

▶ Want to establish (with explicit k dependence of C) for

1. S_N piecewise polynomials

2. $S_{N,k}$ "hybrid" subspace incorporating asymptotics of $v = \frac{\partial u^s}{\partial n}$

- For 1. need N = O(k^{d-1}) as k → ∞, possibility of 2. giving N = O(1).
- ▶ k-explicit (★) for 1. classic problem, solved by [Melenk, 2011] (needs bound on ||A_k⁻¹||)
- ► Coercivity (+bound on ||A_k|| easy) gives (*) for 1. and 2. k-explicit.

Coercivity

$\exists \gamma > \mathbf{0} \text{ such that}$

$|(A_k\phi,\phi)_{L^2(\Gamma)}| \ge \gamma \|\phi\|_{L^2(\Gamma)}^2, \quad \forall \phi \in L^2(\Gamma)$

Not obvious will hold – standard approach to formulations of Helmholtz: prove

 $operator_k = coercive + compact_k$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► Coercivity for circle (2d) and sphere (3d) ∀k ≥ k₀, γ = 1 [Domínguez, Graham, Smyshlyaev, 2007] (Fourier analysis)

Two Coercivity Results using Morawetz Multipliers

Result 1. Ω_{int} Lipschitz star-shaped, a specially constructed "star-combined" \mathscr{A}_k is coercive $\forall k, \gamma = \mathcal{O}(1)$. [Spence, Chandler-Wilde, Graham, S., *Comm Pure Appl Math* 2011]

Result 2. Ω_{int} smooth convex, the classical combined A_k is coercive $\forall k \ge k_0$, $\eta > \eta_0 k, \ \gamma = \frac{1}{2} - \varepsilon$ [Spence, I.Kamotski, S. Comm Pure Appl Math 2015]

(N.B. 1. is first quasi-optimality result for 2nd kind integral equations on $L^2(\Gamma)$ for Γ Lipschitz, even for Laplace (k = 0)

Two Coercivity Results using Morawetz Multipliers

Result 1. Ω_{int} Lipschitz star-shaped, a specially constructed "star-combined" \mathscr{A}_k is coercive $\forall k, \gamma = \mathcal{O}(1)$. [Spence, Chandler-Wilde, Graham, S., *Comm Pure Appl Math* 2011]

Result 2. Ω_{int} smooth convex, the classical combined A_k is coercive $\forall k \ge k_0$, $\eta > \eta_0 k, \ \gamma = \frac{1}{2} - \varepsilon$ [Spence, I.Kamotski, S. Comm Pure Appl Math 2015]

(N.B. 1. is first quasi-optimality result for 2nd kind integral equations on $L^2(\Gamma)$ for Γ Lipschitz, even for Laplace (k = 0)

How?

Morawetz - 1

Morawetz & Ludwig (1968): take as a multiplier

$$Mu := \mathbf{x} \cdot \nabla u - \mathrm{i} kr u + \frac{d-1}{2}u,$$

Then (the Morawetz-Ludwig identity):

$$2\mathsf{R}e\left(\overline{Mu}(\Delta u+k^2u)\right) =$$

 $\nabla \cdot \left[2\mathsf{R}e\left(\overline{Mu}\nabla u\right) + \left(k^{2}|u|^{2} - |\nabla u|^{2}\right)\mathbf{x} \right] - \left(\left|\nabla u\right|^{2} - \left|u_{r}\right|^{2}\right) - \left|u_{r} - \mathrm{i}ku\right|^{2}.\mathsf{A}$ corollary:

$$\int_{\partial D} \left[2\operatorname{Re}\left(\overline{Mu}\frac{\partial u}{\partial \nu}\right) + \left(k^{2}|u|^{2} - |\nabla u|^{2}\right) \mathbf{x} \cdot \nu \right] ds =$$
$$\int_{D} \left[2\operatorname{Re}\left(\overline{Mu}(\Delta u + k^{2}u)\right) + \left(|\nabla u|^{2} - |u_{r}|^{2}\right) + |u_{r} - \mathrm{i}ku|^{2} \right] dx$$

Let Ω_{in} star-shaped $\Leftrightarrow x \cdot n \ge \beta > 0$ $(n = -\nu)$. Take $D = \Omega_{ext} \cap B(0, R)$, let $R \to \infty$, use radition conditions. $\implies k$ -uniform bounds for D-t-N; error bounds for GO/ GTD, etc.

Morawetz - 1

"Star-combined" BIE (Spence, Chandler-Wilde, Graham, S., Comm Pure Appl Math 2011): In the Morawetz identity, choose $u = S_k \phi$. Take $D = (\Omega_{ext} \cap B(0, R)) \cup \Omega_{int}$, let $R \to \infty$. Then, for

$$\mathcal{A}_{k} := (\mathbf{x} \cdot \mathbf{n}) \left(\frac{1}{2}I + D_{k}^{\prime} \right) + \mathbf{x} \cdot \nabla_{\Gamma} S_{k} - i\eta S_{k}, \quad \eta := kr + i \frac{d-1}{2}$$
$$\mathcal{A}_{k} \left(\frac{\partial u}{\partial n} \right) = f \quad \left(f = \mathbf{x} \cdot \nabla u^{i}(x) - i \eta(x) u^{i}(x) \right)$$

Coercivity: $\forall k \geq 0$,

$$\mathsf{Re}\left(\mathcal{A}_k\phi,\phi
ight)\geq \gamma\|\phi\|_{L^2}^2, \ \ \gamma=rac{1}{2}\mathsf{ess}\inf_{x\in\Gamma}(x\cdot n(x))>0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Classical combined (Spence, I. Kamotski, S., *Comm Pure Appl Math 2015*)

Try as a multiplier, with appropriate vector field Z(x), and scalar functions $\alpha(x)$ and $\beta(x)$:

$$Mu := \mathbf{Z}(\mathbf{x}) \cdot \nabla u - ik\beta(\mathbf{x})u + \alpha(\mathbf{x})u.$$

Then the following Morawetz-type identity holds:

$$2\operatorname{Re}\left(\overline{Mu}\left(\Delta+k^{2}\right)u\right) = \nabla \cdot \left[2\operatorname{Re}\left(\overline{Mu}\,\nabla u\right)+\left(k^{2}|u|^{2}-|\nabla u|^{2}\right)\mathbf{Z}\right]+\left(2\alpha-\nabla\cdot\mathbf{Z}\right)\left(k^{2}|u|^{2}-|\nabla u|^{2}\right)\right.\\\left.-2\operatorname{Re}\left(\partial_{i}Z_{j}\partial_{i}u\overline{\partial_{j}u}\right)-2\operatorname{Re}\left(\overline{u}\left(\operatorname{i}k\nabla\beta+\nabla\alpha\right)\cdot\nabla u\right)\right)$$

For wave equation Morawetz needed:

- ► Z(x), $x \in \Omega_{ext}$
- $\Re\left(\partial_j Z_i \,\xi_i \,\overline{\xi_j}\right) \geq 0, \ \xi \in \mathbb{C}^d,$
- Z.n > 0 on Γ ,

•
$$Z(x) \rightarrow c x$$
 as $|x| \rightarrow \infty$

(almost enough for $||A_k^{-1}||$ bound)

have for Ω_{ext} non-trapping in 2-d

For coercivity of A_k we need:

- ► Z(x), $x \in \Omega_{\text{ext}} \cup \Omega_{\text{int}}$
- $\blacktriangleright \ \Re \left(\partial_j Z_i \, \xi_i \, \overline{\xi_j} \right) \geq \frac{\theta |\xi|^2}{\xi_i}, \ \xi \in \mathbb{C}^d,$
- Z= n on Γ,

•
$$Z(x) \rightarrow c x$$
 as $|x| \rightarrow \infty$

have for Ω_{int} smooth convex in 2 & 3-d

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

...non-trapping?

Summary

- $\blacktriangleright \sim$ 1960's 1980's: tremendous interest in rigorous aspects of scattering:
 - decay at $t \to \infty$ of wave equation $\frac{\partial}{\partial t}$

$$\frac{\partial^2 w}{\partial t^2} - c^2 \Delta w = 0$$

► asymptotics as $k \to \infty$ of Helmholtz equation $\Delta u + k^2 u = 0$

- (related in subtle way)
- $\blacktriangleright \sim 2000{\rm 's}$ present: interest in Numerical Analysis of Helmholtz for $k\gg 1$
 - e.g. "hybrid asymptotic-numerical methods"
 - This talk: boundary integral equations
 - Analysis question: prove relevant operator is coercive
 - Surprise (?) appears that for coercivity need stronger results than those obtained classically (at least in the context of one classic tool – Morawetz multipliers)