

The solution of the Gevrey smoothing conjecture for the fully nonlinear homogeneous Boltzmann equation

Dirk Hundertmark joint work with Jean-Marie Barbaroux, Tobias Ried, Semjon Vugalter

supported by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173 and the Alfried Krupp von Bohlen und Halbach Foundation

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

Homogeneous Boltzmann equation

Boltzmann collision operator, singular angular collision kernel, Maxwell's weak formulation, weak solutions

Gevrey spaces

fractional heat equation, Gevrey spaces

Gevrey smoothing for the homogeneous Boltzmann equation (Maxwellian molecules) main results, strategy of the proof

Commutator estimates estimates in Fourier space, a Gronwall argument, the impossible imbedding L² → L[∞]: extracting L[∞] bounds from L² bounds

Conclusion

The induction scheme

- The Boltzmann equation is one of the most important PDEs in kinetic theory, describing the dynamics of dilute gases
- In the *spatially homogeneous* setting, the time evolution of the distribution function $f : \mathbb{R}_+ \times \mathbb{R}^d \to [0, \infty)$ is governed by

 $\partial_t f = Q(f, f)$

Boltzmann bilinear operator for Maxwellian molecules

$$Q(g, f) = \int_{\mathbb{R}^d} \int_{\mathrm{S}^{d-1}} \underbrace{b(\cos\theta)}_{v_*} \left(g(v_*')f(v') - g(v_*)f(v) \right) \, \mathrm{d}\sigma \mathrm{d}v_*$$

angular collision cross-section

■ Elastic collisions ⇒ conservation of energy and momentum

$$|v' + v'_* = v + v_*$$

 $|v'|^2 + |v'_*|^2 = |v|^2 + |v_*|^2$

Non-Maxwellian case: would have the term |v - v_{*}|^γb(cos θ), instead of b(cos θ).

- The Boltzmann equation is one of the most important PDEs in kinetic theory, describing the dynamics of dilute gases
- In the spatially homogeneous setting, the time evolution of the distribution function f : ℝ₊ × ℝ^d → [0,∞) is governed by

 $\partial_t f = Q(f, f)$

Boltzmann bilinear operator for Maxwellian molecules

$$Q(g, f) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} \underbrace{b(\cos\theta)}_{\text{training}} \left(g(v'_*)f(v') - g(v_*)f(v) \right) \, \mathrm{d}\sigma \mathrm{d}v_*$$

angular collision cross-section

Elastic collisions \Rightarrow conservation of energy and momentum

$$v' + v'_{*} = v + v_{*}$$

 $|v'|^{2} + |v'_{*}|^{2} = |v|^{2} + |v_{*}|^{2}$

Non-Maxwellian case: would have the term $|v - v_*|^{\gamma} b(\cos \theta)$, instead of $b(\cos \theta)$.

- The Boltzmann equation is one of the most important PDEs in kinetic theory, describing the dynamics of dilute gases
- In the *spatially homogeneous* setting, the time evolution of the distribution function $f : \mathbb{R}_+ \times \mathbb{R}^d \to [0, \infty)$ is governed by

 $\partial_t f = Q(f, f)$

Boltzmann bilinear operator for Maxwellian molecules

$$Q(g, f) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} \underbrace{b(\cos \theta)}_{\text{angular collision cross-section}} \left(g(v'_*) f(v') - g(v_*) f(v) \right) \, \mathrm{d}\sigma \mathrm{d}v_*$$

■ Elastic collisions ⇒ conservation of energy and momentum

$$v' + v'_* = v + v_*$$

 $|v'|^2 + |v'_*|^2 = |v|^2 + |v_*|^2$

Non-Maxwellian case: would have the term $|v - v_*|^{\gamma} b(\cos \theta)$, instead of $b(\cos \theta)$.

- The Boltzmann equation is one of the most important PDEs in kinetic theory, describing the dynamics of dilute gases
- In the spatially homogeneous setting, the time evolution of the distribution function f : ℝ₊ × ℝ^d → [0,∞) is governed by

 $\partial_t f = Q(f, f)$

Boltzmann bilinear operator for Maxwellian molecules

$$Q(g, f) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} \underbrace{b(\cos \theta)}_{\text{angular collision cross-section}} \left(g(v'_*) f(v') - g(v_*) f(v) \right) \, \mathrm{d}\sigma \mathrm{d}v_*$$

■ Elastic collisions ⇒ conservation of energy and momentum

$$m{v}' + m{v}'_* = m{v} + m{v}_*$$

 $|m{v}'|^2 + |m{v}'_*|^2 = |m{v}|^2 + |m{v}_*|^2$

Non-Maxwellian case: would have the term $|v - v_*|^{\gamma} b(\cos \theta)$, instead of $b(\cos \theta)$.

More precisely

$$Q(g, f) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} b(\cos \theta) \left(g(v'_*) f(v') - g(v_*) f(v) \right) \, \mathrm{d}\sigma \mathrm{d}v_*$$

with the parametrization

$$v' := \frac{v - v_*}{2} + \frac{|v - v_*|}{2}\sigma$$
$$v'_* := \frac{v - v_*}{2} - \frac{|v - v_*|}{2}\sigma$$
$$\cos\theta = \frac{v - v_*}{|v - v_*|} \cdot \sigma$$

3

More precisely

$$Q(g, f) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} b(\cos \theta) \left(g(v'_*) f(v') - g(v_*) f(v) \right) \, \mathrm{d}\sigma \mathrm{d}v_*$$

with the parametrization

$$v' := \frac{v - v_*}{2} + \frac{|v - v_*|}{2}\sigma$$
$$v'_* := \frac{v - v_*}{2} - \frac{|v - v_*|}{2}\sigma$$
$$\cos\theta = \frac{v - v_*}{|v - v_*|} \cdot \sigma$$

Convenient and important: By replacing *b* with a symmetrized version, if necessary, we can w.lo.g. assume $0 \le \theta \le \frac{\pi}{2}$.

Does Q(g, f) have a regularising effect on (weak) solutions?

Definition (Weak Solution)

- $f \in \mathcal{C}(\mathbb{R}_+; \mathcal{D}'(\mathbb{R}^d)) \cap L^{\infty}(\mathbb{R}_+; L_2^1(\mathbb{R}^d) \cap L \log L(\mathbb{R}^d)),$ $f \ge 0, f(0, \cdot) = f_0$
- mass is conserved: $\int_{\mathbb{R}^d} f \, \mathrm{d}v = \int_{\mathbb{R}^d} f_0 \, \mathrm{d}v$
- kinetic energy is conserved: $\int_{\mathbb{R}^d} f v^2 dv = \int_{\mathbb{R}^d} f_0 v^2 dv$
- entropy is increasing: $H(f) = \int_{\mathbb{R}^d} f \log f \, \mathrm{d}v \le \int_{\mathbb{R}^d} f_0 \log f_0 \, \mathrm{d}v$
- For all $\varphi \in \mathcal{C}^1(\mathbb{R}_+; \mathcal{C}_0^{\infty}(\mathbb{R}^d))$ and for all $t \ge 0$ one has $\langle f(t, \cdot), \varphi(t, v) \rangle - \langle f_0, \varphi(0, \cdot) \rangle - \int_0^t \langle f(\tau, \cdot) \partial_\tau \varphi(\tau, \cdot) \rangle \, \mathrm{d}\tau = \int_0^t \langle Q(f, f)(\tau, \cdot), \varphi(\tau, \cdot) \rangle \, \mathrm{d}\tau$

Here $\langle f, g \rangle := \int_{\mathbb{R}^d} \overline{f(x)} g(x) \, \mathrm{d}x$ is the usual L^2 scalar product.

Does Q(g, f) have a regularising effect on (weak) solutions?

Definition (Weak Solution)

- $f \in \mathcal{C}(\mathbb{R}_+; \mathcal{D}'(\mathbb{R}^d)) \cap L^{\infty}(\mathbb{R}_+; L_2^1(\mathbb{R}^d) \cap L \log L(\mathbb{R}^d)),$ $f \ge 0, f(0, \cdot) = f_0$
- mass is conserved: $\int_{\mathbb{R}^d} f \, \mathrm{d}v = \int_{\mathbb{R}^d} f_0 \, \mathrm{d}v$
- kinetic energy is conserved: $\int_{\mathbb{R}^d} f v^2 dv = \int_{\mathbb{R}^d} f_0 v^2 dv$
- entropy is increasing: $H(f) = \int_{\mathbb{R}^d} f \log f \, \mathrm{d}v \le \int_{\mathbb{R}^d} f_0 \log f_0 \, \mathrm{d}v$
- For all $\varphi \in C^1(\mathbb{R}_+; C_0^{\infty}(\mathbb{R}^d))$ and for all $t \ge 0$ one has $\langle f(t, \cdot), \varphi(t, v) \rangle \langle f_0, \varphi(0, \cdot) \rangle \int_0^t \langle f(\tau, \cdot) \partial_\tau \varphi(\tau, \cdot) \rangle \, \mathrm{d}\tau = \int_0^t \langle Q(f, f)(\tau, \cdot), \varphi(\tau, \cdot) \rangle \, \mathrm{d}\tau$

Here $\langle f, g \rangle := \int_{\mathbb{R}^d} \overline{f(x)} g(x) \, \mathrm{d}x$ is the usual L^2 scalar product.

Does Q(g, f) have a regularising effect on (weak) solutions?

Definition (Weak Solution)

- $f \in \mathcal{C}(\mathbb{R}_+; \mathcal{D}'(\mathbb{R}^d)) \cap L^{\infty}(\mathbb{R}_+; L_2^1(\mathbb{R}^d) \cap L \log L(\mathbb{R}^d)),$ $f \ge 0, f(0, \cdot) = f_0$
- mass is conserved: $\int_{\mathbb{R}^d} f \, \mathrm{d}v = \int_{\mathbb{R}^d} f_0 \, \mathrm{d}v$
- kinetic energy is conserved: $\int_{\mathbb{R}^d} f v^2 dv = \int_{\mathbb{R}^d} f_0 v^2 dv$
- entropy is increasing: $H(f) = \int_{\mathbb{R}^d} f \log f \, \mathrm{d}v \le \int_{\mathbb{R}^d} f_0 \log f_0 \, \mathrm{d}v$
- For all $\varphi \in C^1(\mathbb{R}_+; C_0^{\infty}(\mathbb{R}^d))$ and for all $t \ge 0$ one has $\langle f(t, \cdot), \varphi(t, v) \rangle \langle f_0, \varphi(0, \cdot) \rangle \int_0^t \langle f(\tau, \cdot) \partial_\tau \varphi(\tau, \cdot) \rangle \, d\tau = \int_0^t \langle Q(f, f)(\tau, \cdot), \varphi(\tau, \cdot) \rangle \, d\tau$

Here $\langle f, g \rangle := \int_{\mathbb{R}^d} \overline{f(x)} g(x) \, \mathrm{d}x$ is the usual L^2 scalar product.

and

$$\begin{split} \langle Q(f,f)(\tau,\cdot),\varphi(\tau,\cdot)\rangle &= \frac{1}{2} \int_{\mathbb{R}^{2d}} \int_{\mathbb{S}^{d-1}} b(\frac{\nu-\nu_*}{|\nu-\nu_*|}\cdot\sigma) f(\nu_*) f(\nu) \\ & \left(\varphi(\nu') + \varphi(\nu'_*) - \varphi(\nu) + \varphi(\nu_*)\right) \, \mathrm{d}\sigma \mathrm{d}\nu \mathrm{d}\nu_* \end{split}$$

Existence and Uniqueness of weak solutions: Arkeryd, Mischler, Goudon, Toscani, Villani, Wennberg,...

and

$$\begin{split} \langle Q(f,f)(\tau,\cdot),\varphi(\tau,\cdot)\rangle &= \frac{1}{2} \int_{\mathbb{R}^{2d}} \int_{\mathbb{S}^{d-1}} b(\frac{\nu-\nu_*}{|\nu-\nu_*|}\cdot\sigma) f(\nu_*) f(\nu) \\ & \left(\varphi(\nu') + \varphi(\nu'_*) - \varphi(\nu) + \varphi(\nu_*)\right) \, \mathrm{d}\sigma \mathrm{d}\nu \mathrm{d}\nu_* \end{split}$$

Existence and Uniqueness of weak solutions: Arkeryd, Mischler, Goudon, Toscani, Villani, Wennberg,...

Absence of Smoothing in the Grad Cut-off Case

Simplification: Grad's angular cut-off assumption

$$\int_{\mathbb{S}^{d-1}} b(\cos\theta) \,\mathrm{d}\sigma = a < \infty$$

Then one can split the collision operator

$$Q(g, f) = \underbrace{Q^+(g, f)}_{\text{gain}} - \underbrace{Q^-(g, f)}_{\text{loss}} = Q^+(g, f) - f(Lg)$$

where $Lg = a \int_{\mathbb{R}^d} g(v) \, \mathrm{d}v$.

Duhamel Formula

$$f(t, v) = e^{-\int_0^t Lf(\tau, v) d\tau} f_0(v) + \int_0^t e^{-\int_s^t Lf(\tau, v) d\tau} \underbrace{Q^+(f, f)}_{\text{smoothing}}(s, v) ds$$

Absence of Smoothing in the Grad Cut-off Case

Simplification: Grad's angular cut-off assumption

$$\int_{\mathbb{S}^{d-1}} b(\cos\theta) \,\mathrm{d}\sigma = a < \infty$$

Then one can split the collision operator

$$Q(g, f) = \underbrace{Q^+(g, f)}_{gain} - \underbrace{Q^-(g, f)}_{loss} = Q^+(g, f) - f(Lg)$$

where
$$Lg = a \int_{\mathbb{R}^d} g(v) \, \mathrm{d} v$$
.

Duhamel Formula

$$f(t, v) = e^{-\int_0^t Lf(\tau, v) d\tau} f_0(v) + \int_0^t e^{-\int_s^t Lf(\tau, v) d\tau} \underbrace{Q^+(f, f)}_{\text{smoothing}}(s, v) ds$$

Absence of Smoothing in the Grad Cut-off Case

Simplification: Grad's angular cut-off assumption

$$\int_{\mathbb{S}^{d-1}} b(\cos \theta) \, \mathrm{d}\sigma = a < \infty$$

Then one can split the collision operator

$$Q(g, f) = \underbrace{Q^+(g, f)}_{\text{gain}} - \underbrace{Q^-(g, f)}_{\text{loss}} = Q^+(g, f) - f(Lg)$$

where
$$Lg = a \int_{\mathbb{R}^d} g(v) \, \mathrm{d} v$$
.

Duhamel Formula

$$f(t, \mathbf{v}) = e^{-\int_0^t Lf(\tau, \mathbf{v}) \, \mathrm{d}\tau} f_0(\mathbf{v}) + \int_0^t e^{-\int_s^t Lf(\tau, \mathbf{v}) \, \mathrm{d}\tau} \underbrace{\mathbf{Q}^+(f, f)}_{\text{smoothing}}(s, \mathbf{v}) \, \mathrm{d}s$$

\Rightarrow Propagation of regularity and singularities!

The situation is totally different if the angular collision kernel has a non-integrable singularity for small collision angles (*grazing collisions*)
 We will consider the following type of singularity

$$\sin^{d-2} heta \, b(\cos heta) \sim rac{\kappa}{ heta^{1+2
u}} \quad heta o 0$$

- Additional assumption: $\int_0^{\frac{\pi}{2}} \sin^{d-2} \theta (1 \cos \theta) b(\cos \theta) d\theta = m_b < \infty$. I.e., *b* is not too bad away from $\cos \theta = 1$. (Finite momentum transfer)
- As soon as one has long-range interactions between the particles, *b* will have a singularity at 1.

- The situation is totally different if the angular collision kernel has a non-integrable singularity for small collision angles (grazing collisions)
- We will consider the following type of singularity

$$\sin^{d-2} \theta \, b(\cos \theta) \sim rac{\kappa}{\theta^{1+2
u}} \quad heta o 0$$

- Additional assumption: $\int_0^{\frac{\pi}{2}} \sin^{d-2} \theta (1 \cos \theta) b(\cos \theta) d\theta = m_b < \infty$. I.e., *b* is not too bad away from $\cos \theta = 1$. (Finite momentum transfer)
- As soon as one has long-range interactions between the particles, *b* will have a singularity at 1.

- The situation is totally different if the angular collision kernel has a non-integrable singularity for small collision angles (grazing collisions)
- We will consider the following type of singularity

$$\sin^{d-2} \theta \, b(\cos \theta) \sim rac{\kappa}{\theta^{1+2
u}} \quad heta o 0$$

- Additional assumption: $\int_0^{\frac{\pi}{2}} \sin^{d-2} \theta (1 \cos \theta) b(\cos \theta) d\theta = m_b < \infty$. I.e., *b* is not too bad away from $\cos \theta = 1$. (Finite momentum transfer)
- As soon as one has long-range interactions between the particles, *b* will have a singularity at 1.

- The situation is totally different if the angular collision kernel has a non-integrable singularity for small collision angles (grazing collisions)
- We will consider the following type of singularity

$$\sin^{d-2}\theta \, b(\cos\theta) \sim rac{\kappa}{\theta^{1+2
u}} \quad heta o 0$$

- Additional assumption: $\int_{0}^{\frac{\pi}{2}} \sin^{d-2} \theta (1 \cos \theta) b(\cos \theta) d\theta = m_b < \infty$. I.e., *b* is not too bad away from $\cos \theta = 1$. (Finite momentum transfer)
- As soon as one has long-range interactions between the particles, *b* will have a singularity at 1.

Observation: Q(g, f) behaves like a singular integral operator with a leading term similar to a fractional Laplacian $(-\Delta)^{\nu}$.

Quantitatively, this is expressed by the coercivity,

$$\langle f, -Q(g, f) \rangle \geq c_g \langle f, (-\Delta)^{\nu} f \rangle - I.o.t$$

E.g., Alexandre, Desvillettes, Villani, Wennberg. In terms of compactness properties already earlier in some work of Lions.

Intermezzo: Fractional Heat Equation

• Fractional heat equation ($\nu > 0$)

$$\begin{cases} \partial_t u + (-\Delta)^{\nu} u = 0 \\ u|_{t=0} = u_0 \in L^1(\mathbb{R}^d) \end{cases}$$

in Fourier space

$$\widehat{u}(t,\xi) = \mathrm{e}^{-t|\xi|^{2\nu}} \widehat{u_0}(\xi) \quad \text{with} \quad \widehat{u_0} \in L^{\infty}(\mathbb{R}^d),$$

so there exists a finite constant M > 0 such that

$$\sup_{t>0} \sup_{\xi \in \mathbb{R}^d} e^{t|\xi|^{2\nu}} |\widehat{u}(t,\xi)| \le M < \infty.$$

Intermezzo: Fractional Heat Equation

• Fractional heat equation ($\nu > 0$)

$$\begin{cases} \partial_t u + (-\Delta)^{\nu} u = 0\\ u|_{t=0} = u_0 \in L^1(\mathbb{R}^d) \end{cases}$$

in Fourier space

$$\widehat{u}(t,\xi) = \mathrm{e}^{-t|\xi|^{2\nu}} \widehat{u_0}(\xi) \quad \text{with} \quad \widehat{u_0} \in L^{\infty}(\mathbb{R}^d),$$

so there exists a finite constant M > 0 such that

$$\sup_{t>0}\sup_{\xi\in\mathbb{R}^d}\mathrm{e}^{t|\xi|^{2\nu}}|\widehat{u}(t,\xi)|\leq M<\infty.$$

Gevrey Spaces

Gevrey Spaces Let $\alpha > 0$. $f \in C^{\infty}(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ belongs to the Gevrey class $G^{\alpha}(\mathbb{R}^d)$, if there exists ϵ_0 , M > 0 such that

$$\left| \xi \mapsto \mathrm{e}^{\epsilon_0 \langle \tilde{\zeta} \rangle^{\frac{1}{n}}} | \hat{f}(\xi) | \right\|_{L^2(\mathbb{R}^d)} \leq M < \infty. \qquad \left(\langle \xi \rangle = \sqrt{1 + |\xi|^2} \right)$$

- $\alpha = 1$ real analytic functions C^{ω}
- $0 < \alpha < 1$ ultra-analytic functions
- $\alpha > 1$ Gevrey- α functions

Gevrey spaces interpolate between C^{∞} and C^{ω} Heat equation $\partial_t u + (-\Delta)^{\nu} u = 0$ with initial condition in $L^1(\mathbb{R}^d)$ \Rightarrow solution $u(t) \in G^{\frac{1}{2\nu}}(\mathbb{R}^d)$ for t > 0 (and not better).

Gevrey Spaces

Gevrey Spaces Let $\alpha > 0$. $f \in C^{\infty}(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ belongs to the Gevrey class $G^{\alpha}(\mathbb{R}^d)$, if there exists ϵ_0 , M > 0 such that

$$\left| \xi \mapsto \mathrm{e}^{\epsilon_0 \langle \tilde{\zeta} \rangle^{\frac{1}{\alpha}}} | \hat{f}(\xi) | \right\|_{L^2(\mathbb{R}^d)} \leq M < \infty. \qquad \left(\langle \xi \rangle = \sqrt{1 + |\xi|^2} \right)$$

- $\alpha = 1$ real analytic functions C^{ω}
- $0 < \alpha < 1$ ultra-analytic functions
- $\alpha > 1$ Gevrey- α functions

Gevrey spaces interpolate between C^{∞} and C^{ω} Heat equation $\partial_t u + (-\Delta)^{\nu} u = 0$ with initial condition in $L^1(\mathbb{R}^d)$ \Rightarrow solution $u(t) \in G^{\frac{1}{2\nu}}(\mathbb{R}^d)$ for t > 0 (and not better).

Gevrey Spaces

Gevrey Spaces Let $\alpha > 0$. $f \in C^{\infty}(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ belongs to the Gevrey class $G^{\alpha}(\mathbb{R}^d)$, if there exists ϵ_0 , M > 0 such that

$$\left| \xi \mapsto \mathrm{e}^{\epsilon_0 \langle \tilde{\zeta} \rangle^{\frac{1}{n}}} | \hat{f}(\xi) | \right\|_{L^2(\mathbb{R}^d)} \leq M < \infty. \qquad \left(\langle \xi \rangle = \sqrt{1 + |\xi|^2} \right)$$

- $\alpha = 1$ real analytic functions C^{ω}
- $0 < \alpha < 1$ ultra-analytic functions
- $\alpha > 1$ Gevrey- α functions

Gevrey spaces interpolate between C^{∞} and C^{ω} Heat equation $\partial_t u + (-\Delta)^{\nu} u = 0$ with initial condition in $L^1(\mathbb{R}^d)$ \Rightarrow solution $u(t) \in G^{\frac{1}{2\nu}}(\mathbb{R}^d)$ for t > 0 (and not better).

Any weak solution of the non-cutoff homogeneous Boltzmann equation with a singular cross section kernel of order v and with initial datum in $L_2^1(\mathbb{R}^d) \cap L\log L(\mathbb{R}^d)$, i.e., finite mass, energy and entropy, belongs to the Gevrey class $G^{\frac{1}{2v}}(\mathbb{R}^d)$ for strictly positive times.

That is, the homogeneous non-cutoff Boltzmann equation for Maxwellian molecules enjoys the same smoothing properties as the fractional heat equation.

In particular, if $\nu \geq \frac{1}{2}$ the solution should become instantaneously analytic.

Since $\nu < 1$ can be very close to 1, one might even have nearly Gaussian decay of \hat{f} .

Any weak solution of the non-cutoff homogeneous Boltzmann equation with a singular cross section kernel of order v and with initial datum in $L_2^1(\mathbb{R}^d) \cap L\log L(\mathbb{R}^d)$, i.e., finite mass, energy and entropy, belongs to the Gevrey class $G^{\frac{1}{2v}}(\mathbb{R}^d)$ for strictly positive times.

That is, the homogeneous non-cutoff Boltzmann equation for Maxwellian molecules enjoys the same smoothing properties as the fractional heat equation.

In particular, if $\nu \geq \frac{1}{2}$ the solution should become instantaneously analytic.

Since $\nu < 1$ can be very close to 1, one might even have nearly Gaussian decay of \hat{f} .

Any weak solution of the non-cutoff homogeneous Boltzmann equation with a singular cross section kernel of order v and with initial datum in $L_2^1(\mathbb{R}^d) \cap L\log L(\mathbb{R}^d)$, i.e., finite mass, energy and entropy, belongs to the Gevrey class $G^{\frac{1}{2v}}(\mathbb{R}^d)$ for strictly positive times.

That is, the homogeneous non-cutoff Boltzmann equation for Maxwellian molecules enjoys the same smoothing properties as the fractional heat equation.

In particular, if $\nu \geq \frac{1}{2}$ the solution should become instantaneously analytic.

Since $\nu < 1$ can be very close to 1, one might even have nearly Gaussian decay of \hat{f} .

Any weak solution of the non-cutoff homogeneous Boltzmann equation with a singular cross section kernel of order v and with initial datum in $L_2^1(\mathbb{R}^d) \cap L\log L(\mathbb{R}^d)$, i.e., finite mass, energy and entropy, belongs to the Gevrey class $G^{\frac{1}{2v}}(\mathbb{R}^d)$ for strictly positive times.

That is, the homogeneous non-cutoff Boltzmann equation for Maxwellian molecules enjoys the same smoothing properties as the fractional heat equation.

In particular, if $\nu \geq \frac{1}{2}$ the solution should become instantaneously analytic.

Since $\nu < 1$ can be very close to 1, one might even have nearly Gaussian decay of \hat{f} .

Known results

- Existence of Gevrey regular solutions for nice, in particular, Gevrey, initial conditions (Ukai 1984)
- Propagation of Gevrey regularity (Desvillettes-Furioli-Terraneo 2009).
- H[∞] smoothing (Alexandre-El Safadi 2004, Morimoto-Ukai-Xu-Yang 2009)
- Several results for the linearized Boltzmann equation (Morimoto-et-al 2009, Xu, Lerner-Morimoto-Pravda-Starov-Xu 2014 (radially symmetric)).
- Similar results for the Kac equation, under some higher moments assumption (Lekrine-Xu 2009, Glangetas-Najeme 2013)

Theorem 1 [Barbaroux, 43 £, Ried, Vugalter (2015)] Let $d \ge 2$. Let *f* be a weak solution of the Cauchy problem

$$\begin{cases} \partial_t f = Q(f, f) \\ f|_{t=0} = f_0 \end{cases}$$
(1)

with initial datum $0 \leq f_0 \in L \log L(\mathbb{R}^d) \cap L_2^1(\mathbb{R}^d)$.

Then, for all
$$0 < \alpha \le \min\left\{\frac{\log(5/3)}{\log 2}, \nu\right\}$$
, $f(t, \cdot) \in G^{\frac{1}{2\alpha}}(\mathbb{R}^d)$

for all t > 0.

In particular, since $\frac{\log(5/3)}{\log 2} \simeq 0.73696$, the weak solution is *real analytic* if $v = \frac{1}{2}$ and *ultra-analytic* if $v > \frac{1}{2}$ in *any dimension*.

Theorem 1 [Barbaroux, 43 £, Ried, Vugalter (2015)] Let $d \ge 2$. Let *f* be a weak solution of the Cauchy problem

$$\begin{cases} \partial_t f = Q(f, f) \\ f|_{t=0} = f_0 \end{cases}$$
(1)

with initial datum $0 \leq f_0 \in L \log L(\mathbb{R}^d) \cap L_2^1(\mathbb{R}^d)$.

Then, for all
$$0 < \alpha \le \min\left\{\frac{\log(5/3)}{\log 2}, \nu\right\}$$
,
 $f(t, \cdot) \in G^{\frac{1}{2\alpha}}(\mathbb{R}^d)$

for all t > 0.

In particular, since $\frac{\log(5/3)}{\log 2} \simeq 0.73696$, the weak solution is *real analytic* if $\nu = \frac{1}{2}$ and *ultra-analytic* if $\nu > \frac{1}{2}$ in *any dimension*.

Under slightly stronger assumptions on the kernel *b* (bounded on $[0, 1 - \delta] \ \forall \delta > 0$) we can improve this to

Theorem 2 [Barbaroux, 43 £, Ried, Vugalter (2015)] For initial conditions $f_0 \ge 0$, $f_0 \in L \log L(\mathbb{R}^d) \cap L^1_m(\mathbb{R}^d)$ with an integer

$$m \geq \max\left(2, \frac{2^{\nu}-1}{2-2^{\nu}}\right)$$
,

any weak solution of the Cauchy problem (1) belongs to the Gevrey class $G^{\frac{1}{2\nu}}(\mathbb{R}^d)$ for strictly positive times.

For $\nu \leq \log(9/5) / \log(2) \simeq 0$, 847996 we have m = 2 and the theorem does not require anything except the physically reasonable assumptions of finite mass, energy, and entropy. If $\log(9/5) / \log(2) < \nu < 1$ and $f_0 \in L \log L \cap L_2^1$, then we can still conclude that the solution is in $G^{\frac{\log 2}{2\log(9/5)}}$, in particular it is ultra-analytic.

Under slightly stronger assumptions on the kernel *b* (bounded on $[0, 1 - \delta] \ \forall \delta > 0$) we can improve this to

Theorem 2 [Barbaroux, 43 £, Ried, Vugalter (2015)] For initial conditions $f_0 \ge 0$, $f_0 \in L \log L(\mathbb{R}^d) \cap L^1_m(\mathbb{R}^d)$ with an integer

$$m \geq \max\left(2, \frac{2^{\nu}-1}{2-2^{\nu}}\right)$$
,

any weak solution of the Cauchy problem (1) belongs to the Gevrey class $G^{\frac{1}{2\nu}}(\mathbb{R}^d)$ for strictly positive times.

For $\nu \leq \log(9/5)/\log(2) \simeq 0,847996$ we have m = 2 and the theorem does not require anything except the physically reasonable assumptions of finite mass, energy, and entropy.

If $\log(9/5)/\log(2) < \nu < 1$ and $f_0 \in L \log L \cap L_2^1$, then we can still conclude that the solution is in $G^{\frac{\log 2}{2\log(9/5)}}$, in particular it is ultra-analytic.

Under slightly stronger assumptions on the kernel *b* (bounded on $[0, 1 - \delta] \ \forall \delta > 0$) we can improve this to

Theorem 2 [Barbaroux, 43 £, Ried, Vugalter (2015)] For initial conditions $f_0 \ge 0$, $f_0 \in L \log L(\mathbb{R}^d) \cap L^1_m(\mathbb{R}^d)$ with an integer

$$m \geq \max\left(2, \frac{2^{\nu}-1}{2-2^{\nu}}\right)$$
,

any weak solution of the Cauchy problem (1) belongs to the Gevrey class $G^{\frac{1}{2\nu}}(\mathbb{R}^d)$ for strictly positive times.

For $\nu \leq \log(9/5)/\log(2) \simeq 0,847996$ we have m = 2 and the theorem does not require anything except the physically reasonable assumptions of finite mass, energy, and entropy.

If $\log(9/5)/\log(2) < \nu < 1$ and $f_0 \in L \log L \cap L_2^1$, then we can still conclude that the solution is in $G^{\frac{\log 2}{2\log(9/5)}}$, in particular it is ultra-analytic.

- By known H^{∞} -smoothing result we can assume $f_0 \in L^2(\mathbb{R}^d)$.
- Take growing weights $G(\eta) = e^{\beta t \langle \eta \rangle^{2\alpha}}$ and cutoff $\mathbb{1}_{\Lambda}(\eta) := \mathbb{1}_{|\eta| \leq \Lambda}$ and set

$$G_{\Lambda}(t,\eta) := G(t,\eta)\mathbb{1}_{\Lambda}(\eta)$$

- Need to control the Fourier multiplier $\|G_{\Lambda}(t, D_{v})f(t, \cdot)\|_{L^{2}}$ as $\Lambda \to \infty$.
- Take $\varphi(t, \cdot) := G_{\Lambda}(t, D_v) f(t, \cdot)$ as a test function in the weak formulation.

$$\begin{split} &\frac{1}{2} \|G_{\Lambda}(t,D_{\nu})f(t,\cdot)\|_{L^{2}}^{2} - \frac{1}{2} \int_{0}^{t} \left\langle f(\tau,\cdot), \left(\partial_{\tau}G_{\Lambda}^{2}(\tau,D_{\nu})\right) f(\tau,\cdot) \right\rangle \, \mathrm{d}\tau \\ &= \frac{1}{2} \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} + \int_{0}^{t} \left\langle Q(f,f)(\tau,\cdot), G_{\Lambda}^{2}(\tau,D_{\nu})f(\tau,\cdot) \right\rangle \, \mathrm{d}\tau. \end{split}$$

- By known H^{∞} -smoothing result we can assume $f_0 \in L^2(\mathbb{R}^d)$.
- Take growing weights $G(\eta) = e^{\beta t \langle \eta \rangle^{2\alpha}}$ and cutoff $\mathbb{1}_{\Lambda}(\eta) := \mathbb{1}_{|\eta| \leq \Lambda}$ and set

$$G_{\Lambda}(t,\eta) := G(t,\eta) \mathbb{1}_{\Lambda}(\eta)$$

- Need to control the Fourier multiplier $\|G_{\Lambda}(t, D_{V})f(t, \cdot)\|_{L^{2}}$ as $\Lambda \to \infty$.
- Take $\varphi(t, \cdot) := G_{\Lambda}(t, D_v) f(t, \cdot)$ as a test function in the weak formulation.

$$\begin{split} &\frac{1}{2} \|G_{\Lambda}(t,D_{\nu})f(t,\cdot)\|_{L^{2}}^{2} - \frac{1}{2} \int_{0}^{t} \left\langle f(\tau,\cdot), \left(\partial_{\tau}G_{\Lambda}^{2}(\tau,D_{\nu})\right) f(\tau,\cdot) \right\rangle \, \mathrm{d}\tau \\ &= \frac{1}{2} \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} + \int_{0}^{t} \left\langle Q(f,f)(\tau,\cdot), G_{\Lambda}^{2}(\tau,D_{\nu})f(\tau,\cdot) \right\rangle \, \mathrm{d}\tau. \end{split}$$

- By known H^{∞} -smoothing result we can assume $f_0 \in L^2(\mathbb{R}^d)$.
- Take growing weights $G(\eta) = e^{\beta t \langle \eta \rangle^{2\alpha}}$ and cutoff $\mathbb{1}_{\Lambda}(\eta) := \mathbb{1}_{|\eta| \leq \Lambda}$ and set

$$G_{\Lambda}(t,\eta) := G(t,\eta) \mathbb{1}_{\Lambda}(\eta)$$

- Need to control the Fourier multiplier $\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}$ as $\Lambda \to \infty$.
- Take $\varphi(t, \cdot) := G_{\Lambda}(t, D_v) f(t, \cdot)$ as a test function in the weak formulation.

$$\begin{split} &\frac{1}{2} \|G_{\Lambda}(t,D_{\nu})f(t,\cdot)\|_{L^{2}}^{2} - \frac{1}{2} \int_{0}^{t} \left\langle f(\tau,\cdot), \left(\partial_{\tau}G_{\Lambda}^{2}(\tau,D_{\nu})\right) f(\tau,\cdot) \right\rangle \, \mathrm{d}\tau \\ &= \frac{1}{2} \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} + \int_{0}^{t} \left\langle Q(f,f)(\tau,\cdot), G_{\Lambda}^{2}(\tau,D_{\nu})f(\tau,\cdot) \right\rangle \, \mathrm{d}\tau. \end{split}$$

- By known H^{∞} -smoothing result we can assume $f_0 \in L^2(\mathbb{R}^d)$.
- Take growing weights $G(\eta) = e^{\beta t \langle \eta \rangle^{2\alpha}}$ and cutoff $\mathbb{1}_{\Lambda}(\eta) := \mathbb{1}_{|\eta| \leq \Lambda}$ and set

$$G_{\Lambda}(t,\eta) := G(t,\eta) \mathbb{1}_{\Lambda}(\eta)$$

- Need to control the Fourier multiplier $\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}$ as $\Lambda \to \infty$.
- Take φ(t, ·) := G_Λ(t, D_v)f(t, ·) as a test function in the weak formulation.

$$\begin{split} &\frac{1}{2} \|G_{\Lambda}(t,D_{\nu})f(t,\cdot)\|_{L^{2}}^{2} - \frac{1}{2} \int_{0}^{t} \left\langle f(\tau,\cdot), \left(\partial_{\tau}G_{\Lambda}^{2}(\tau,D_{\nu})\right)f(\tau,\cdot)\right\rangle \, \mathrm{d}\tau \\ &= \frac{1}{2} \|\mathbbm{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} + \int_{0}^{t} \left\langle Q(f,f)(\tau,\cdot), G_{\Lambda}^{2}(\tau,D_{\nu})f(\tau,\cdot)\right\rangle \, \mathrm{d}\tau. \end{split}$$

 Want to use the sub-elliptic estimate (coercivity) by Alexandre, Desvillettes, Villani, Wennberg [ADVW00]

$$-\langle \mathcal{Q}(f, \mathcal{G}_{\Lambda} f), \mathcal{G}_{\Lambda} f\rangle \geq C_{f_0} \|\mathcal{G}_{\Lambda} f\|_{H^{\nu}}^2 - C \|f_0\|_{L^1_2} \|\mathcal{G}_{\Lambda} f\|_{L^2}^2$$

 Want to use the sub-elliptic estimate (coercivity) by Alexandre, Desvillettes, Villani, Wennberg [ADVW00]

$$-\langle Q(f, G_{\Lambda}f), G_{\Lambda}f \rangle \geq C_{f_0} \|G_{\Lambda}f\|_{H^{\nu}}^2 - C \|f_0\|_{L^1_2} \|G_{\Lambda}f\|_{L^2}^2.$$

 \Rightarrow Need good estimates on the commutator

$$\langle G_{\Lambda} Q(f,f) - Q(f,G_{\Lambda}f),G_{\Lambda}f \rangle$$

What if there were no commutator?

In this case,

$$\begin{aligned} &\frac{1}{2} \|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} - \frac{1}{2} \int_{0}^{t} \left\langle f(\tau, \cdot), \left(\partial_{\tau} G_{\Lambda}^{2}(\tau, D_{\nu})\right) f(\tau, \cdot) \right\rangle d\tau \\ &\leq \frac{1}{2} \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} - C_{f_{0}} \int_{0}^{t} \|G_{\Lambda}f(\tau, \cdot)\|_{H^{\nu}}^{2} d\tau + C \|f_{0}\|_{L^{1}_{2}} \int_{0}^{t} \|G_{\Lambda}f(\tau, \cdot)\|_{L^{2}}^{2} d\tau. \end{aligned}$$

Note

$$\partial_{\tau} G_{\Lambda}^{2}(\tau,\eta) = \partial_{\tau} e^{2\beta\tau\langle\eta\rangle^{2\alpha}} \mathbb{1}_{\Lambda}(\eta) = 2\beta\langle\eta\rangle^{2\alpha} G_{\Lambda}^{2}(\tau,\eta)$$

SO

$$\int_0^t \left\langle f(\tau, \cdot), \left(\partial_\tau G_{\Lambda}^2(\tau, D_v)\right) f(\tau, \cdot) \right\rangle \, \mathrm{d}\tau \leq 2\beta \int_0^t \|G_{\Lambda} f(\tau, \cdot)\|_{H^\alpha} \, \mathrm{d}\tau$$

which, since $\nu \ge \alpha$, is controlled by the H^{ν} norm, just choose β small enough.

What if there were no commutator?

In this case,

$$\begin{aligned} &\frac{1}{2} \|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} - \frac{1}{2} \int_{0}^{t} \left\langle f(\tau, \cdot), \left(\partial_{\tau} G_{\Lambda}^{2}(\tau, D_{\nu})\right) f(\tau, \cdot) \right\rangle \, \mathrm{d}\tau \\ &\leq \frac{1}{2} \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} - C_{f_{0}} \int_{0}^{t} \|G_{\Lambda}f(\tau, \cdot)\|_{H^{\nu}}^{2} \, \mathrm{d}\tau + C \|f_{0}\|_{L^{1}_{2}} \int_{0}^{t} \|G_{\Lambda}f(\tau, \cdot)\|_{L^{2}}^{2} \, \mathrm{d}\tau. \end{aligned}$$

Note

$$\partial_{\tau} G_{\Lambda}^{2}(\tau,\eta) = \partial_{\tau} e^{2\beta\tau\langle\eta\rangle^{2\alpha}} \mathbb{1}_{\Lambda}(\eta) = 2\beta\langle\eta\rangle^{2\alpha} G_{\Lambda}^{2}(\tau,\eta)$$

SO

$$\int_0^t \left\langle f(\tau, \cdot), \left(\partial_\tau G_{\Lambda}^2(\tau, D_V)\right) f(\tau, \cdot) \right\rangle \, \mathrm{d}\tau \leq 2\beta \int_0^t \|G_{\Lambda} f(\tau, \cdot)\|_{H^{\alpha}} \, \mathrm{d}\tau$$

which, since $\nu \ge \alpha$, is controlled by the H^{ν} norm, just choose β small enough.

What if there were no commutator?

In this case,

$$\begin{aligned} &\frac{1}{2} \|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} - \frac{1}{2} \int_{0}^{t} \left\langle f(\tau, \cdot), \left(\partial_{\tau} G_{\Lambda}^{2}(\tau, D_{\nu})\right) f(\tau, \cdot) \right\rangle \, \mathrm{d}\tau \\ &\leq \frac{1}{2} \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} - C_{f_{0}} \int_{0}^{t} \|G_{\Lambda}f(\tau, \cdot)\|_{H^{\nu}}^{2} \, \mathrm{d}\tau + C \|f_{0}\|_{L^{1}_{2}} \int_{0}^{t} \|G_{\Lambda}f(\tau, \cdot)\|_{L^{2}}^{2} \, \mathrm{d}\tau. \end{aligned}$$

Note

$$\partial_{\tau} G_{\Lambda}^{2}(\tau,\eta) = \partial_{\tau} e^{2\beta\tau\langle\eta\rangle^{2\alpha}} \mathbb{1}_{\Lambda}(\eta) = 2\beta\langle\eta\rangle^{2\alpha} G_{\Lambda}^{2}(\tau,\eta)$$

SO

$$\int_0^t \left\langle f(\tau, \cdot), \left(\partial_\tau G_{\Lambda}^2(\tau, D_{\nu})\right) f(\tau, \cdot) \right\rangle \, \mathrm{d}\tau \leq 2\beta \int_0^t \|G_{\Lambda} f(\tau, \cdot)\|_{H^{\alpha}} \, \mathrm{d}\tau$$

which, since $\nu \ge \alpha$, is controlled by the H^{ν} norm, just choose β small enough.

.

Thus

$$\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} + 2C\|f_{0}\|_{L^{1}_{2}}\int_{0}^{t}\|G_{\Lambda}f(\tau, \cdot)\|_{L^{2}}^{2} d\tau.$$

with Gronwall's bound we conclude

$$\|G_{\Lambda}(t, D_{v})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\Lambda}(D_{v})f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

Taking $\Lambda \to \infty$

$$\|G(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \lim_{\Lambda \to \infty} \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} e^{2Ct} = \|f_{0}\|_{L^{2}}^{2} e^{2Ct}$$

i.e, have Gevrey smoothing.

.

Thus

$$\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} + 2C\|f_{0}\|_{L^{1}_{2}}\int_{0}^{t}\|G_{\Lambda}f(\tau, \cdot)\|_{L^{2}}^{2} d\tau.$$

with Gronwall's bound we conclude

$$\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

Taking $\Lambda \to \infty$

$$\|G(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \lim_{\Lambda \to \infty} \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} e^{2Ct} = \|f_{0}\|_{L^{2}}^{2} e^{2Ct}$$

i.e, have Gevrey smoothing.

Thus

$$\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} + 2C\|f_{0}\|_{L^{1}_{2}}\int_{0}^{t}\|G_{\Lambda}f(\tau, \cdot)\|_{L^{2}}^{2} d\tau.$$

with Gronwall's bound we conclude

$$\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

Taking $\Lambda \to \infty$

$$\|G(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \lim_{\Lambda \to \infty} \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2}e^{2Ct} = \|f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

i.e, have Gevrey smoothing.

Thus

$$\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2} + 2C\|f_{0}\|_{L^{1}_{2}}\int_{0}^{t}\|G_{\Lambda}f(\tau, \cdot)\|_{L^{2}}^{2} d\tau.$$

with Gronwall's bound we conclude

$$\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

Taking $\Lambda \to \infty$

$$\|G(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \lim_{\Lambda \to \infty} \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2}e^{2Ct} = \|f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

i.e, have Gevrey smoothing.

Bound on the commutator

By Bobylev's identity

$\begin{aligned} |\langle Q(f, G_{\Lambda}f) - G_{\Lambda}Q(f, f), G_{\Lambda}f \rangle| \\ &\leq \int_{\mathbb{R}^{d}} \mathrm{d}\eta \int_{\mathbb{S}^{d-1}} \mathrm{d}\sigma \, b\left(\frac{\eta}{|\eta|} \cdot \sigma\right) |\widehat{f}(\eta^{-})| \, |\widehat{f}(\eta^{+})| |G(\eta^{+}) - G(\eta)|G_{\Lambda}(\eta)|\widehat{f}(\eta)| \end{aligned}$

• Here
$$\eta^{\pm} = \frac{1}{2}(\eta \pm |\eta|\sigma)$$

• Note $|\eta|^2 = |\eta^-|^2 + |\eta^+|^2$, because of the support assumption on *b*:

$$0 \leq |\eta^-| \leq |\eta^+|$$
 and $rac{|\eta|^2}{2} \leq |\eta^+|^2 \leq |\eta|^2.$

• $b\left(\frac{\eta}{|\eta|} \cdot \sigma\right)$ has a non-integrable blow up when σ points into the direction of η , i.e., when η^+ is close to η , but then $G(\eta^+) - G(\eta)$ should be small (keep fingers crossed....).

Bound on the commutator

By Bobylev's identity

$\begin{aligned} |\langle Q(f, G_{\Lambda}f) - G_{\Lambda}Q(f, f), G_{\Lambda}f \rangle| \\ &\leq \int_{\mathbb{R}^d} \mathrm{d}\eta \int_{\mathbb{S}^{d-1}} \mathrm{d}\sigma \, b\left(\frac{\eta}{|\eta|} \cdot \sigma\right) |\widehat{f}(\eta^-)| \, |\widehat{f}(\eta^+)| |G(\eta^+) - G(\eta)|G_{\Lambda}(\eta)|\widehat{f}(\eta)| \end{aligned}$

$$0 \leq |\eta^-| \leq |\eta^+|$$
 and $rac{|\eta|^2}{2} \leq |\eta^+|^2 \leq |\eta|^2.$

• $b\left(\frac{\eta}{|\eta|} \cdot \sigma\right)$ has a non-integrable blow up when σ points into the direction of η , i.e., when η^+ is close to η , but then $G(\eta^+) - G(\eta)$ should be small (keep fingers crossed....).

Bound on the commutator

By Bobylev's identity

$\begin{aligned} |\langle Q(f, G_{\Lambda}f) - G_{\Lambda}Q(f, f), G_{\Lambda}f \rangle| \\ &\leq \int_{\mathbb{R}^d} \mathrm{d}\eta \int_{\mathbb{S}^{d-1}} \mathrm{d}\sigma \, b\left(\frac{\eta}{|\eta|} \cdot \sigma\right) |\widehat{f}(\eta^-)| \, |\widehat{f}(\eta^+)| |G(\eta^+) - G(\eta)|G_{\Lambda}(\eta)|\widehat{f}(\eta)| \end{aligned}$

• Here
$$\eta^{\pm} = \frac{1}{2}(\eta \pm |\eta|\sigma)$$

• Note $|\eta|^2 = |\eta^-|^2 + |\eta^+|^2$, because of the support assumption on *b*:

$$0 \le |\eta^-| \le |\eta^+|$$
 and $\frac{|\eta|^2}{2} \le |\eta^+|^2 \le |\eta|^2$.

• $b\left(\frac{\eta}{|\eta|} \cdot \sigma\right)$ has a non-integrable blow up when σ points into the direction of η , i.e., when η^+ is close to η , but then $G(\eta^+) - G(\eta)$ should be small (keep fingers crossed....).

Bound on
$$G(\eta^+) - G(\eta)$$

Let $\widetilde{G}(s) := e^{\beta t(1+s)^{\alpha/2}}$, $s = |\eta|^2$, and $s_+ := |\eta^+|^2$, $s_- := |\eta^-|^2$.
Then $s = s_+ + s_-$ and
 $0 \le G(\eta) - G(\eta^+) = \widetilde{G}(s) - \widetilde{G}(s_+) = \int_{s_+}^s \frac{d}{dr} e^{\beta t(1+r)^{\alpha} dr}$

$$\leq 2lphaeta t(1+s^+)^{lpha-1}(s-s^+)e^{eta t(1+s)^{lpha}}$$

since $s/2 \leq s_+ \leq s$

$$\leq 2^{2-lpha}lphaeta t(1+s)^{lpha-1}(s-s_+)e^{eta t(1+s)^{lpha}}$$

since $(1 + s)^{lpha} = (1 + s_{-} + s_{+})^{lpha} \le (1 + s_{-})^{lpha} + (1 + s_{+})^{lpha}$ (subadditivity)

$$\leq 4\alpha\beta t(1+s)^{\alpha}(1-\frac{s_{+}}{s})e^{\beta t(1+s_{+})^{\alpha}}e^{\beta t(1+s_{-})^{\alpha}}$$
$$= 4\alpha\beta t\langle\eta\rangle^{2\alpha}(1-\frac{|\eta^{+}|^{2}}{|\eta|^{2}})G(\eta^{+})G(\eta^{-})$$

Bound on
$$G(\eta^+) - G(\eta)$$

Let $\widetilde{G}(s) := e^{\beta t(1+s)^{\alpha/2}}$, $s = |\eta|^2$, and $s_+ := |\eta^+|^2$, $s_- := |\eta^-|^2$.
Then $s = s_+ + s_-$ and
 $0 \le G(\eta) - G(\eta^+) = \widetilde{G}(s) - \widetilde{G}(s_+) = \int_{s_-}^s \frac{d}{dr} e^{\beta t(1+r)^{\alpha} dr}$

$$\leq 2\alpha\beta t(1+s^+)^{\alpha-1}(s-s^+)e^{\beta t(1+s)^{\alpha}}$$

since $s/2 \leq s_+ \leq s$

$$\leq 2^{2-\alpha}\alpha\beta t(1+s)^{\alpha-1}(s-s_+)e^{\beta t(1+s)^{\alpha}}$$

since $(1 + s)^{\alpha} = (1 + s_{-} + s_{+})^{\alpha} \le (1 + s_{-})^{\alpha} + (1 + s_{+})^{\alpha}$ (subadditivity)

$$\leq 4\alpha\beta t(1+s)^{\alpha}(1-\frac{s_{+}}{s})e^{\beta t(1+s_{+})^{\alpha}}e^{\beta t(1+s_{-})}$$
$$= 4\alpha\beta t\langle\eta\rangle^{2\alpha}(1-\frac{|\eta^{+}|^{2}}{|\eta|^{2}})G(\eta^{+})G(\eta^{-})$$

Bound on
$$G(\eta^+) - G(\eta)$$

Let $\widetilde{G}(s) := e^{\beta t(1+s)^{\alpha/2}}$, $s = |\eta|^2$, and $s_+ := |\eta^+|^2$, $s_- := |\eta^-|^2$.
Then $s = s_+ + s_-$ and
 $0 \le G(\eta) - G(\eta^+) = \widetilde{G}(s) - \widetilde{G}(s_+) = \int_{s_+}^s \frac{d}{dr} e^{\beta t(1+r)^{\alpha} dr}$

$$\leq 2\alpha\beta t(1+s^+)^{\alpha-1}(s-s^+)e^{\beta t(1+s)^{\alpha}}$$

since $s/2 \leq s_+ \leq s$

$$\leq 2^{2-\alpha} \alpha \beta t (1+s)^{\alpha-1} (s-s_{+}) e^{\beta t (1+s)^{\alpha}}$$
since $(1+s)^{\alpha} = (1+s_{-}+s_{+})^{\alpha} \leq (1+s_{-})^{\alpha} + (1+s_{+})^{\alpha}$ (subadditivity)
$$\leq 4\alpha \beta t (1+s)^{\alpha} (1-\frac{s_{+}}{s}) e^{\beta t (1+s_{+})^{\alpha}} e^{\beta t (1+s_{-})^{\alpha}}$$

$$= 4\alpha \beta t \langle \eta \rangle^{2\alpha} (1-\frac{|\eta^{+}|^{2}}{|\eta|^{2}}) G(\eta^{+}) G(\eta^{-})$$

Bound on commutator II

So we get

$$\begin{aligned} |\langle Q(f, G_{\Lambda} f) - G_{\Lambda} Q(f, f), G_{\Lambda} f \rangle| \\ &\leq 2\alpha \beta t \int_{\mathbb{R}^{d}} d\eta \int_{\mathbb{S}^{d-1}} d\sigma \, b\left(\frac{\eta}{|\eta|} \cdot \sigma\right) \left(1 - \frac{|\eta^{+}|^{2}}{|\eta|^{2}}\right) G(\eta^{-}) |\widehat{f}(\eta^{-})| \\ &\times G_{\Lambda}(\eta^{+}) |\widehat{f}(\eta^{+})| \, G_{\Lambda}(\eta) |\widehat{f}(\eta)| \, \langle \eta^{+} \rangle^{2\alpha} \end{aligned}$$

Good news: The term $\left(1 - \frac{|\eta^+|^2}{|\eta|^2}\right)$ kills the singularity of *b*.

Bound on commutator II

So we get

$$\begin{aligned} |\langle Q(f, G_{\Lambda} f) - G_{\Lambda} Q(f, f), G_{\Lambda} f \rangle| \\ &\leq 2\alpha \beta t \int_{\mathbb{R}^{d}} d\eta \int_{\mathbb{S}^{d-1}} d\sigma \, b\left(\frac{\eta}{|\eta|} \cdot \sigma\right) \left(1 - \frac{|\eta^{+}|^{2}}{|\eta|^{2}}\right) G(\eta^{-}) |\widehat{f}(\eta^{-})| \\ &\times G_{\Lambda}(\eta^{+}) |\widehat{f}(\eta^{+})| \, G_{\Lambda}(\eta) |\widehat{f}(\eta)| \, \langle \eta^{+} \rangle^{2\alpha} \end{aligned}$$

Good news: The term (1 - (η/η)²) kills the singularity of *b*.
 Bad news: The term G(η⁻)(f(η⁻)) is potentially very strongly growing.

Bound on commutator II

So we get

$$\begin{aligned} |\langle Q(f, G_{\Lambda} f) - G_{\Lambda} Q(f, f), G_{\Lambda} f \rangle| \\ &\leq 2\alpha \beta t \int_{\mathbb{R}^{d}} \mathrm{d}\eta \int_{\mathbb{S}^{d-1}} \mathrm{d}\sigma \, b\left(\frac{\eta}{|\eta|} \cdot \sigma\right) \left(1 - \frac{|\eta^{+}|^{2}}{|\eta|^{2}}\right) G(\eta^{-}) |\widehat{f}(\eta^{-})| \\ &\times G_{\Lambda}(\eta^{+}) |\widehat{f}(\eta^{+})| \, G_{\Lambda}(\eta) |\widehat{f}(\eta)| \, \langle \eta^{+} \rangle^{2\alpha} \end{aligned}$$

Good news: The term (1 - (η/|)²) kills the singularity of *b*.
 Bad news: The term G(η⁻)|f(η⁻)| is potentially very strongly growing.

If we had 0 \leq *t* \leq *T* (which we can always assume) and if $G(\eta^-)|\widehat{f}(\eta^-)| \leq M$

for some maybe large constant M, then one could conclude

By simply choosing β small enough we would conclude as before (without commutator) that

$$\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

from the Gronwall argument and we would be done.

If we had 0 \leq *t* \leq *T* (which we can always assume) and if $G(\eta^-)|\widehat{f}(\eta^-)| \leq M$

for some maybe large constant M, then one could conclude

By simply choosing β small enough we would conclude as before (without commutator) that

$$\|G_{\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

from the Gronwall argument and we would be done.

You have to assume Gevrey in order to deduce Gevrey!

Even worse, the norms are incompatible: Need Gevrey on an L^{∞} level in order to conclude Gevrey on an L^2 level.

You have to assume Gevrey in order to deduce Gevrey!

Even worse, the norms are incompatible: Need Gevrey on an L^{∞} level in order to conclude Gevrey on an L^2 level.

Why is H^{∞} smoothing so much simpler?

If one assumes that the weight is polynomial, i.e., G is replaced by

$$\textit{M}_{\Lambda}(\textit{t}, \eta) := \textit{e}^{\beta t \log < \eta >} \mathbb{1}_{\Lambda}(\eta)$$

then a similar calculation gives

$$H(\eta) - H(\eta^+) \lesssim \beta t 2^{\beta t} \left(1 - \frac{|\eta^+|^2}{|\eta|^2}\right) H(\eta^+)$$

(no $H(\eta^-)$ term) and the commutation error is bounded by $|\langle Q(f, H_{\Lambda}f) - H_{\Lambda}Q(f, f), H_{\Lambda}f \rangle|$ $\lesssim \beta t 2^{\beta t} \int_{\mathbb{R}^d} d\eta \int_{\mathbb{S}^{d-1}} d\sigma b \left(\frac{\eta}{|\eta|} \cdot \sigma\right) \left(1 - \frac{|\eta^+|^2}{|\eta|^2}\right) |\widehat{f}(\eta^-)|$ $\times H_{\Lambda}(\eta^+) |\widehat{f}(\eta^+)| H_{\Lambda}(\eta) |\widehat{f}(\eta)| \langle \eta^+ \rangle^{2\alpha}$

So there is no growing weight on the bad term $|\hat{f}(\eta^{-})|$, which can be simply controlled by

$$|\hat{f}(\eta^{-})| \le ||f||_1 = 1.$$

Why is H^{∞} smoothing so much simpler?

Then

 $\begin{aligned} |\langle \boldsymbol{Q}(\boldsymbol{f},\boldsymbol{H}_{\Lambda}\boldsymbol{f})-\boldsymbol{H}_{\Lambda}\boldsymbol{Q}(\boldsymbol{f},\boldsymbol{f}),\boldsymbol{H}_{\Lambda}\boldsymbol{f}\rangle|\\ \lesssim \beta t 2^{\beta t} \|\boldsymbol{H}_{\Lambda}\boldsymbol{f}\|_{L^{2}}\end{aligned}$

and, as before, Gronwall applies to get

$$\|f\|_{H^{\beta}} = \lim_{\Lambda \to \infty} \|H_{\Lambda}f\|_{L^{2}}^{2} \le \|f_{0}\|_{L^{2}} e^{A(\beta,t)}$$

thus $f \in H^{\beta}$ for all $\beta > 0$.

The way out

Main observation: We always have $|\eta^-|^2 \le |\eta|^2/2 \le \Lambda^2/2!$

so the uniform bound above on the 'bad term' $G(\eta^{-})|\hat{f}(\eta^{-})|$ is only needed on the ball of radius $\Lambda/\sqrt{2}$.

The way out

Main observation: We always have $|\eta^-|^2 \le |\eta|^2/2 \le \Lambda^2/2!$

so the uniform bound above on the 'bad term' $G(\eta^{-})|\hat{f}(\eta^{-})|$ is only needed on the ball of radius $\Lambda/\sqrt{2}$.

So if

$$\sup_{|\zeta|\leq\Lambda} G(\zeta)|\widehat{f}(\zeta)|\leq M,$$

then the Gronwall argument, with Λ replaced by $\sqrt{2}\Lambda$ yields

$$\|G_{\sqrt{2}\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\sqrt{2}\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2}e^{2Ct} \leq \|f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

and maybe this enables an inductive procedure?

Possible catch: Need to get uniform bounds from L^2 bounds. This is usually impossible ;-)

Possible good news: Need to get this uniform bounds only on smaller balls, in between Λ and $\sqrt{2}\Lambda$. Can assume that \hat{f} is nice, at least $\hat{f} \in C^2$ since $f \in L_2^1$.

So if

$$\sup_{|\zeta|\leq\Lambda} G(\zeta)|\widehat{f}(\zeta)|\leq M,$$

then the Gronwall argument, with Λ replaced by $\sqrt{2}\Lambda$ yields

$$\|G_{\sqrt{2}\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\sqrt{2}\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2}e^{2Ct} \leq \|f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

and maybe this enables an inductive procedure?

Possible catch: Need to get uniform bounds from L^2 bounds. This is usually impossible ;-)

Possible good news: Need to get this uniform bounds only on smaller balls, in between Λ and $\sqrt{2}\Lambda$. Can assume that \hat{f} is nice, at least $\hat{f} \in C^2$ since $f \in L_2^1$.

So if

$$\sup_{|\zeta|\leq\Lambda} G(\zeta)|\widehat{f}(\zeta)|\leq M,$$

then the Gronwall argument, with Λ replaced by $\sqrt{2}\Lambda$ yields

$$\|G_{\sqrt{2}\Lambda}(t, D_{\nu})f(t, \cdot)\|_{L^{2}}^{2} \leq \|\mathbb{1}_{\sqrt{2}\Lambda}(D_{\nu})f_{0}\|_{L^{2}}^{2}e^{2Ct} \leq \|f_{0}\|_{L^{2}}^{2}e^{2Ct}$$

and maybe this enables an inductive procedure?

Possible catch: Need to get uniform bounds from L^2 bounds. This is usually impossible ;-)

Possible good news: Need to get this uniform bounds only on smaller balls, in between Λ and $\sqrt{2}\Lambda$. Can assume that \hat{f} is nice, at least $\hat{f} \in C^2$ since $f \in L_2^1$.

Lemma Let $H \in C^m(\mathbb{R}^n)$. Then there exists a constant $L_{m,n} < \infty$ (depending only on $m, n, \|H\|_{L^{\infty}(\mathbb{R}^n)}$ and, $\|D^m H\|_{L^{\infty}(\mathbb{R}^n)}$) such that

$$|H(\mathbf{x})| \leq L_{m,n} \left(\int_{O_{\mathbf{x}}} |H(\xi)|^2 \, \mathrm{d}\xi \right)^{\frac{m}{2m+n}}$$

where Q_x is a cube in \mathbb{R}^n of side length 2, pointing away from *x*, with *x* being one of the corners.

It's proof is easy for m = 1 and much, much trickier for $m \ge 2!$

Proof (for m = 1). In dimension n = 1, use that for $p \ge 1$,

•
$$|H(x)|^{p} - \int_{x}^{x+1} |H(y)|^{p} dy = \int_{x}^{x+1} |H(x)|^{p} - |H(y)|^{p} dy \le p ||H'||_{L^{\infty}(\mathbb{R})} \int_{x}^{x+1} |H(y)|^{p-1} dy$$

• Also $\int_{x}^{x+1} |H(y)|^{p} dy \le ||H||_{L^{\infty}(\mathbb{R})} \int_{x}^{x+1} |H(y)|^{p-1} dy$

Put together, one has

$$|H(x)|^{p} \le (p||H'||_{L^{\infty}(\mathbb{R})} + ||H||_{L^{\infty}(\mathbb{R})}) \int_{x}^{x+1} |H(y)|^{p-1} dy$$

Then iterate in each coordinate direction and choose p = n + 2.

For m > 1: Kolmogorov-Landau inequality are used to improve exponent by using higher derivatives.

Proof (for m = 1). In dimension n = 1, use that for $p \ge 1$,

•
$$|H(x)|^{p} - \int_{x}^{x+1} |H(y)|^{p} dy = \int_{x}^{x+1} |H(x)|^{p} - |H(y)|^{p} dy \le p ||H'||_{L^{\infty}(\mathbb{R})} \int_{x}^{x+1} |H(y)|^{p-1} dy$$

Also \$\int_{x}^{x+1} |H(y)|^{p} dy \le ||H||_{L^{\infty}(\mathbb{R})} \int_{x}^{x+1} |H(y)|^{p-1} dy\$
 Put together, one has

$$|H(x)|^{p} \le (p||H'||_{L^{\infty}(\mathbb{R})} + ||H||_{L^{\infty}(\mathbb{R})}) \int_{x}^{x+1} |H(y)|^{p-1} dy$$

Then iterate in each coordinate direction and choose p = n + 2.

For m > 1: Kolmogorov-Landau inequality are used to improve exponent by using higher derivatives.

Proof (for m = 1). In dimension n = 1, use that for $p \ge 1$,

•
$$|H(x)|^{p} - \int_{x}^{x+1} |H(y)|^{p} dy = \int_{x}^{x+1} |H(x)|^{p} - |H(y)|^{p} dy \le p ||H'||_{L^{\infty}(\mathbb{R})} \int_{x}^{x+1} |H(y)|^{p-1} dy$$

- Also $\int_{X}^{X+1} |H(y)|^{p} dy \le ||H||_{L^{\infty}(\mathbb{R})} \int_{X}^{X+1} |H(y)|^{p-1} dy$
- Put together, one has

$$|H(x)|^{p} \leq (p ||H'||_{L^{\infty}(\mathbb{R})} + ||H||_{L^{\infty}(\mathbb{R})}) \int_{x}^{x+1} |H(y)|^{p-1} dy$$

Then iterate in each coordinate direction and choose p = n + 2.

For m > 1: Kolmogorov-Landau inequality are used to improve exponent by using higher derivatives.

Proof (for m = 1). In dimension n = 1, use that for $p \ge 1$,

•
$$|H(x)|^{p} - \int_{x}^{x+1} |H(y)|^{p} dy = \int_{x}^{x+1} |H(x)|^{p} - |H(y)|^{p} dy \le p ||H'||_{L^{\infty}(\mathbb{R})} \int_{x}^{x+1} |H(y)|^{p-1} dy$$

• Also
$$\int_{X}^{x+1} |H(y)|^p \, \mathrm{d}y \le ||H||_{L^{\infty}(\mathbb{R})} \int_{X}^{x+1} |H(y)|^{p-1} \, \mathrm{d}y$$

Put together, one has

$$|H(x)|^{p} \leq (p||H'||_{L^{\infty}(\mathbb{R})} + ||H||_{L^{\infty}(\mathbb{R})}) \int_{x}^{x+1} |H(y)|^{p-1} dy$$

Then iterate in each coordinate direction and choose p = n + 2.

For m > 1: Kolmogorov-Landau inequality are used to improve exponent by using higher derivatives.

Immediate Consequence

Since
$$\widehat{f} \in \mathcal{C}_{b}^{2}(\mathbb{R}^{d})$$
 and *G* is radially increasing, we get
 $|\widehat{f}(\eta)| \leq L_{2,d} \left(\int_{Q_{\eta}} G(\xi)^{-2} G(\xi)^{2} |\widehat{f}(\xi)|^{2} d\xi \right)^{\frac{2}{4+d}}$

$$\leq L_{2,d} G(\eta)^{-\frac{4}{4+d}} \left(\int_{Q_{\eta}} G(\xi)^{2} |\widehat{f}(\xi)|^{2} d\xi \right)^{\frac{2}{4+d}}$$

and thus

$$\frac{G(\eta)^{\frac{4}{4+d}}|\hat{f}(\eta)| \leq L_{2,d} \|G_{\sqrt{2}\Lambda}f\|_{L^2(\mathbb{R}^d)}^{\frac{4}{4+d}} \quad \text{for all} \quad |\eta| \leq \widetilde{\Lambda} = \frac{1+\sqrt{2}}{2}\Lambda$$

Good news: Uniform control of $G^{\frac{4}{4+d}}|\hat{f}|$ only with the help of $\|G_{\sqrt{2}\Lambda}f\|_{L^2}$. Catch: The exponent $\frac{4}{4+d} < 1$ but the bad term in the commutator estimate contains $G|\hat{f}|...$:-(

Immediate Consequence

Since
$$\widehat{f} \in \mathcal{C}_{b}^{2}(\mathbb{R}^{d})$$
 and G is radially increasing, we get
 $|\widehat{f}(\eta)| \leq L_{2,d} \left(\int_{Q_{\eta}} G(\xi)^{-2} G(\xi)^{2} |\widehat{f}(\xi)|^{2} d\xi \right)^{\frac{2}{4+d}}$

$$\leq L_{2,d} G(\eta)^{-\frac{4}{4+d}} \left(\int_{Q_{\eta}} G(\xi)^{2} |\widehat{f}(\xi)|^{2} d\xi \right)^{\frac{2}{4+d}}$$

and thus

$$\frac{G(\eta)^{\frac{4}{4+d}}|\hat{f}(\eta)| \leq L_{2,d} \|G_{\sqrt{2}\Lambda}f\|_{L^2(\mathbb{R}^d)}^{\frac{4}{4+d}} \quad \text{for all} \quad |\eta| \leq \widetilde{\Lambda} = \frac{1+\sqrt{2}}{2}\Lambda$$

Good news: Uniform control of $G^{\frac{4}{4+d}}|\hat{f}|$ only with the help of $\|G_{\sqrt{2}\Lambda}f\|_{L^2}$.

Catch: The exponent $\frac{4}{4+d} < 1$ but the bad term in the commutator estimate contains $G[\hat{t}|....:$:-(

Immediate Consequence

Since
$$\widehat{f} \in \mathcal{C}_{b}^{2}(\mathbb{R}^{d})$$
 and *G* is radially increasing, we get
 $|\widehat{f}(\eta)| \leq L_{2,d} \left(\int_{Q_{\eta}} G(\xi)^{-2} G(\xi)^{2} |\widehat{f}(\xi)|^{2} d\xi \right)^{\frac{2}{4+d}}$

$$\leq L_{2,d} G(\eta)^{-\frac{4}{4+d}} \left(\int_{Q_{\eta}} G(\xi)^{2} |\widehat{f}(\xi)|^{2} d\xi \right)^{\frac{2}{4+d}}$$

and thus

$$\frac{G(\eta)^{\frac{4}{4+d}}|\hat{f}(\eta)| \leq L_{2,d} \|G_{\sqrt{2}\Lambda}f\|_{L^2(\mathbb{R}^d)}^{\frac{4}{4+d}} \quad \text{for all} \quad |\eta| \leq \widetilde{\Lambda} = \frac{1+\sqrt{2}}{2}\Lambda$$

Good news: Uniform control of $G^{\frac{4}{4+d}}|\hat{f}|$ only with the help of $||G_{\sqrt{2}\Lambda}f||_{L^2}$. Catch: The exponent $\frac{4}{4+d} < 1$ but the bad term in the commutator estimate contains $G|\hat{f}|...$:-(

Improving the subadditivity

Recall the subaddivity

$$(1+s)^{lpha} = (1+s_-+s_+)^{lpha} \le (1+s_-)^{lpha} + (1+s_+)^{lpha}$$

which holds for all s_{-} , $s_{+} \ge 0$, and it is sharp. So it cannot be improved.

But we do NOT need it for all s_- , $s_+ \ge 0$, we only need it for $0 \le s_- \le s_+$ and this gives room for improvement! Indeed,

$$\begin{split} 1+s_{-}+s_{+})^{\alpha} &= s_{-}^{\alpha}(1+\frac{1+s_{+}}{s_{-}})^{\alpha} \\ &= s_{-}^{\alpha}\big[(1+\frac{1+s_{+}}{s_{-}})^{\alpha}-(\frac{1+s_{+}}{s_{-}})^{\alpha}\big]+(1+s_{+})^{\alpha}. \end{split}$$

Recall the subaddivity

$$(1+s)^{lpha} = (1+s_-+s_+)^{lpha} \le (1+s_-)^{lpha} + (1+s_+)^{lpha}$$

which holds for all s_{-} , $s_{+} \ge 0$, and it is sharp. So it cannot be improved.

But we do NOT need it for all s_- , $s_+ \ge 0$, we only need it for $0 \le s_- \le s_+$ and this gives room for improvement! Indeed.

$$egin{aligned} &(1+s_-+s_+)^lpha &= s_-^lpha (1+rac{1+s_+}{s_-})^lpha \ &= s_-^lpha igg[(1+rac{1+s_+}{s_-})^lpha - igg(rac{1+s_+}{s_-}igg)^lphaigg] + (1+s_+)^lpha. \end{aligned}$$

Recall the subaddivity

$$(1+s)^{lpha} = (1+s_-+s_+)^{lpha} \le (1+s_-)^{lpha} + (1+s_+)^{lpha}$$

which holds for all s_{-} , $s_{+} \ge 0$, and it is sharp. So it cannot be improved.

But we do NOT need it for all s_- , $s_+ \ge 0$, we only need it for $0 \le s_- \le s_+$ and this gives room for improvement! Indeed,

$$egin{aligned} (1+s_-+s_+)^lpha &= s_-^lpha (1+rac{1+s_+}{s_-})^lpha \ &= s_-^lpha igg[(1+rac{1+s_+}{s_-})^lpha - igg(rac{1+s_+}{s_-}igg)^lpha igg] + (1+s_+)^lpha. \end{aligned}$$

Now note for $0 < \alpha \le 1$ the map $r \mapsto (1+r)^{\alpha} - r^{\alpha}$ is decreasing, so with $r = (1+s_+)/s_- \ge 1$, one has for all $0 \le s_- \le s_+$

$$egin{aligned} (1+s_-+s_+)^lpha &= s_-^lpha ig[(1+r)^lpha - r^lpha ig] + (1+s_+)^lpha \ &\leq s_-^lpha ig[2^lpha - 1 ig] + (1+s_+)^lpha \ &\leq arepsilon (lpha) (1+s_-)^lpha + (1+s_+)^lpha \end{aligned}$$

with $\varepsilon(\alpha) := 2^{\alpha} - 1 < 1$.

Induction Hypothesis:

$$\operatorname{Hyp}_{\Lambda}(M): \quad \sup_{|\zeta| \leq \Lambda} G(t,\zeta)^{\epsilon(\alpha)} |\widehat{f}(t,\zeta)| \leq M$$

for all $t \in [0, T]$ Step 0: Hyp_A(*M*) is true for some suitably chosen Λ_0 Step 1:

 $\mathrm{Hyp}_{\Lambda}(M) \Rightarrow \|G_{\sqrt{2}\Lambda}f\|_{L^2} \leq C$ via *Gronwall*.

Step 2 ($L^2 \rightarrow L^{\infty}$ *bound*): If $\epsilon(\alpha) = 2^{\alpha} - 1 \leq \frac{4}{4+d}$, then

 $\|G_{\sqrt{2}\Lambda}f\|_{L^2} \leq C \Rightarrow \operatorname{Hyp}_{\widetilde{\Lambda}}(M)$ for intermediate $\widetilde{\Lambda} = \frac{1+\sqrt{2}}{2}\Lambda$

Induction Hypothesis:

$$\operatorname{Hyp}_{\Lambda}(M): \quad \sup_{|\zeta| \leq \Lambda} G(t,\zeta)^{\epsilon(\alpha)} |\widehat{f}(t,\zeta)| \leq M$$

for all $t \in [0, T]$ **Step 0**: Hyp_{Λ}(*M*) is true for some suitably chosen Λ_0 **Step 1**:

 $\mathrm{Hyp}_{\Lambda}(M) \Rightarrow \|G_{\sqrt{2}\Lambda}f\|_{L^2} \leq C$ via *Gronwall*.

Step 2 ($L^2 \rightarrow L^{\infty}$ *bound*): If $\epsilon(\alpha) = 2^{\alpha} - 1 \leq \frac{4}{4+d}$, then

 $\|G_{\sqrt{2}\Lambda}f\|_{L^2} \leq C \Rightarrow \operatorname{Hyp}_{\widetilde{\Lambda}}(M)$ for intermediate $\widetilde{\Lambda} = \frac{1+\sqrt{2}}{2}\Lambda$

Induction Hypothesis:

$$\operatorname{Hyp}_{\Lambda}(M): \quad \sup_{|\zeta| \leq \Lambda} G(t,\zeta)^{\epsilon(\alpha)} |\widehat{f}(t,\zeta)| \leq M$$

for all $t \in [0, T]$ **Step 0**: Hyp_{Λ}(*M*) is true for some suitably chosen Λ_0 **Step 1**:

 $\mathrm{Hyp}_{\Lambda}(M) \Rightarrow \|\mathcal{G}_{\sqrt{2}\Lambda}f\|_{L^{2}} \leq C$ via *Gronwall*.

Step 2 ($L^2 \rightarrow L^{\infty}$ *bound*): If $\epsilon(\alpha) = 2^{\alpha} - 1 \leq \frac{4}{4+d}$, then

 $\|G_{\sqrt{2}\Lambda}f\|_{L^2} \leq C \Rightarrow \operatorname{Hyp}_{\widetilde{\Lambda}}(M)$ for intermediate $\widetilde{\Lambda}$

Induction Hypothesis:

$$\operatorname{Hyp}_{\Lambda}(M): \quad \sup_{|\zeta| \leq \Lambda} G(t,\zeta)^{\epsilon(\alpha)} |\widehat{f}(t,\zeta)| \leq M$$

for all $t \in [0, T]$ Step 0: Hyp_{Λ}(*M*) is true for some suitably chosen Λ_0 Step 1:

 $\operatorname{Hyp}_{\Lambda}(M) \Rightarrow \|G_{\sqrt{2}\Lambda}f\|_{L^{2}} \leq C$ via *Gronwall*.

Step 2 ($L^2 \rightarrow L^{\infty}$ *bound*): If $\epsilon(\alpha) = 2^{\alpha} - 1 \leq \frac{4}{4+d}$, then

 $\|G_{\sqrt{2}\Lambda}f\|_{L^2} \leq C \Rightarrow \operatorname{Hyp}_{\widetilde{\Lambda}}(M)$ for intermediate $\widetilde{\Lambda} = \frac{1+\sqrt{2}}{2}\Lambda$.

So setting
$$\Lambda_n := \left(\frac{1+\sqrt{2}}{2}\right)^n \Lambda_0$$
, we can let $n \to \infty$ and see that

$$\sup_{\zeta \in \mathbb{R}^d} G(t,\zeta)^{\epsilon(\alpha)} |\widehat{f}(t,\zeta)| \le M$$

for all $t \in [0, T]$, which gives the strong decay of $\hat{f}(t, \cdot)$ for arbitrarily small t > 0.

Essential for this to work:

- M does not increase during the induction procedure!
- This can be accomplished by choosing β small enough at the very beginning. Trust me, :-)

So setting
$$\Lambda_n := \left(\frac{1+\sqrt{2}}{2}\right)^n \Lambda_0$$
, we can let $n \to \infty$ and see that

$$\sup_{\zeta \in \mathbb{R}^d} G(t,\zeta)^{\epsilon(\alpha)} |\widehat{f}(t,\zeta)| \le M$$

for all $t \in [0, T]$, which gives the strong decay of $\hat{f}(t, \cdot)$ for arbitrarily small t > 0.

Essential for this to work:

- M does not increase during the induction procedure!
- This can be accomplished by choosing β small enough at the very beginning. Trust me, :-)

So setting
$$\Lambda_n := \left(\frac{1+\sqrt{2}}{2}\right)^n \Lambda_0$$
, we can let $n \to \infty$ and see that

$$\sup_{\zeta \in \mathbb{R}^d} G(t,\zeta)^{\epsilon(\alpha)} |\widehat{f}(t,\zeta)| \le M$$

for all $t \in [0, T]$, which gives the strong decay of $\hat{f}(t, \cdot)$ for arbitrarily small t > 0.

Essential for this to work:

- *M* does not increase during the induction procedure!
- This can be accomplished by choosing β small enough at the very beginning. Trust me, :-)

For some of the nice ;-) details, see

J.-M. Barbaroux, D. Hundertmark, T. Ried, S. Vugalter, **Gevrey smoothing for weak** solutions of the fully nonlinear homogeneous Boltzmann and Kac equations without cutoff for Maxwellian molecules, *October 2015*

References

R. Alexandre, A review of Boltzmann equation with singular kernels, *Kinetic and Related Models* **2** (2009), 551–646. http://dx.doi.org/10.3934/krm.2009.2.551.

R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg, Entropy dissipation and long-range interactions, *Archive for Rational Mechanics and Analysis* **152** (2000), 327–355. http://dx.doi.org/10.1007/s002050000083.

L. Desvillettes, About the use of Fourier transform for the Boltzmann equation, *Rivista di Matematica della Università di Parma (7)* **2*** (2003), 1–99. Available at http://www.rivmat.unipr.it/vols/2003-2s/indice.html.

C. Villani, A review of mathematical topics in collisional kinetic theory, in *Handbook of Mathematical Fluid Dynamics* (S. Friedlander and D. Serre, eds.), **Vol. 1**, Elsevier Science B.V., Amsterdam, 2002, pp. 71–305. http://dx.doi.org/10.1016/S1874-5792(02)80004-0.