Spectrum generated by waveguides in photonic crystals

Michael Plum
Karlsruhe Institute of Technology

joint work with B.M. Brown (Cardiff), V. Hoang (Houston), M. Radosz (Houston), and I. Wood (Kent)

Motivation

Photonic Crystals

- typically manufactured using periodic crystalline structures
- allow propagation of EM waves only of well-defined frequencies
- band-gap structure of the spectrum

Waveguides

- consider infinite periodic structure with line defect
- line defects can support guided modes which propagate along the defect
- guided modes are confined near defect
- frequencies of guided modes focussed in band gaps

http://researcher.watson.ibm.com

Maxwell Equations

$\operatorname{curl} E=-\frac{\partial B}{\partial t}, \quad \operatorname{curl} H=\frac{\partial D}{\partial t}, \quad \operatorname{div} D=0, \quad \operatorname{div} B=0$.
Assumptions:

- $D=\varepsilon E, \quad B=\mu H$, with $\mu \equiv 1$.
- $\varepsilon=\varepsilon(x, y) \geq c>0$ bounded and independent of z.
- $E(\vec{x}, t)=e^{i \omega t} E(\vec{x})$ and $H(\vec{x}, t)=e^{i \omega t} H(\vec{x})$.

Then
$\operatorname{curl} E=-i \omega H, \quad \frac{1}{\varepsilon} \operatorname{curl} H=i \omega E, \quad \operatorname{div}(\varepsilon E)=0, \quad \operatorname{div} H=0$.
Next, apply curl :

$$
\operatorname{curl} \operatorname{curl} E=\omega^{2} \varepsilon E, \quad \operatorname{div}(\varepsilon E)=0
$$

Reduction to Helmholtz Equation

$$
\begin{equation*}
\operatorname{curl} \operatorname{curl} E=\omega^{2} \varepsilon E, \quad \operatorname{div}(\varepsilon E)=0 \tag{1}
\end{equation*}
$$

Restrict to $\varepsilon=\varepsilon(x, y)$ and to polarized waves $E=(0,0, u)$. Then

$$
\begin{gathered}
\text { curl curl } E=(0,0,-\Delta u), \quad \text { and } \\
0=\operatorname{div}(\varepsilon E)=\varepsilon(x, y) \frac{\partial u}{\partial z} \quad \text { implies } \quad u=u(x, y) .
\end{gathered}
$$

This reduces (1) to

$$
-\Delta u=\omega^{2} \varepsilon u \quad \text { or } \quad-\frac{1}{\varepsilon} \Delta u=\omega^{2} u \quad \text { on } \mathbb{R}^{2} .
$$

Thus we study the spectral problem for

$$
L u=-\frac{1}{\varepsilon} \Delta u \text { in } L_{\varepsilon}^{2}\left(\mathbb{R}^{2}\right)
$$

where

$$
\|u\|_{\varepsilon}^{2}=\int_{\mathbb{R}^{2}} \varepsilon|u|^{2}
$$

Periodic Problem \& Floquet Transform I

Consider the spectral problem for the selfadjoint operator L_{0} acting on $L_{\varepsilon_{0}}^{2}\left(\mathbb{R}^{2}\right)$ given by

$$
L_{0} u=-\frac{1}{\varepsilon_{0}(x, y)} \Delta u \quad \text { with } \quad D\left(L_{0}\right)=H^{2}\left(\mathbb{R}^{2}\right)
$$

where $\varepsilon_{0}(x, y) \geq c>0$ is bounded and 1-periodic in both x and y. Periodicity in the x-direction allows us to apply the Floquet transform:

$$
U_{x}: L_{\varepsilon_{0}}^{2}\left(\mathbb{R}^{2}\right) \rightarrow L_{\varepsilon_{0}}^{2}(\Omega \times[-\pi, \pi])
$$

where $\Omega:=(0,1) \times \mathbb{R}$, given by

$$
\left(U_{x} u\right)\left(x, y, k_{x}\right):=\frac{1}{\sqrt{2 \pi}} \sum_{n \in \mathbb{Z}} e^{i k_{x} n} u(x-n, y)
$$

for $x \in[0,1], y \in \mathbb{R}, k_{x} \in[-\pi, \pi] . \mathrm{U}_{x}$ is an isometric isomorphism.

Periodic Problem \& Floquet Transform II

Floquet transform in the x-direction, gives a family of problems:

$$
-\frac{1}{\varepsilon_{0}} \Delta u=\lambda u \quad \text { in } \Omega:=(0,1) \times \mathbb{R}
$$

with quasiperiodic boundary conditions

$$
\begin{equation*}
u(1, y)=e^{i k_{x}} u(0, y) \quad \text { and } \quad \frac{\partial u}{\partial x}(1, y)=e^{i k_{x}} \frac{\partial u}{\partial x}(0, y) \tag{2}
\end{equation*}
$$

for $k_{x} \in B:=[-\pi, \pi]$.
Let $L_{0}\left(k_{x}\right)$ be the operator acting in $L_{\varepsilon_{0}}^{2}(\Omega)$ given by

$$
L_{0}\left(k_{x}\right) u=-\frac{1}{\varepsilon_{0}(x, y)} \Delta u
$$

subject to the quasi-periodic boundary conditions (2). Then

$$
L_{0}=\int_{B}^{\oplus} L_{0}\left(k_{x}\right) d k_{x} \quad \text { and } \quad \sigma\left(L_{0}\right)=\overline{\bigcup_{k_{x} \in B} \sigma\left(L_{0}\left(k_{x}\right)\right)}
$$

Periodic Problem on Strip

For each k_{x}, due to periodicity in the y-direction, we can take another Floquet transform

$$
\mathrm{U}_{y}: L_{\varepsilon_{0}}^{2}(\Omega) \rightarrow L_{\varepsilon_{0}}^{2}\left([0,1]^{2} \times[-\pi, \pi]\right)
$$

given by

$$
\left(U_{y} u\right)\left(x, y, k_{y}\right):=\frac{1}{\sqrt{2 \pi}} \sum_{n \in \mathbb{Z}} e^{i k_{y} n} u(x, y-n)
$$

for $x, y \in[0,1], k_{y} \in[-\pi, \pi]$, giving a family of operators $L_{0}\left(k_{x}, k_{y}\right)$ on $L_{\varepsilon_{0}}^{2}\left([0,1]^{2}\right)$ subject to qp-bcs in both x and y.
For the spectrum, we have

$$
\sigma\left(L_{0}\left(k_{x}\right)\right)=\overline{\bigcup_{k_{y} \in B} \sigma\left(L_{0}\left(k_{x}, k_{y}\right)\right)}=\bigcup_{n}\left(\bigcup_{k_{y} \in B} \lambda_{n}\left(k_{x}, k_{y}\right)\right) .
$$

Thus the spectrum of the operator $L_{0}\left(k_{x}\right)$ consists of bands.
Any gap in the spectrum of L_{0} comes from gaps in the spectra of all $L_{0}\left(k_{x}, k_{y}\right)$.

Waveguide

On $L_{\varepsilon}^{2}\left(\mathbb{R}^{2}\right)$ consider

- $L u=-\frac{1}{\varepsilon(x, y)} \Delta u$,
- $\varepsilon(x, y)=\varepsilon_{0}(x, y)+\varepsilon_{1}(x, y)>c>0$ bounded,
- ε_{1} supported in $W=\mathbb{R} \times(0,1)$ and 1-periodic in x-direction.

Floquet transform in the x-direction gives family of problems

$$
\begin{equation*}
L\left(k_{x}\right) u:=-\frac{1}{\varepsilon_{0}+\varepsilon_{1}} \Delta u \tag{3}
\end{equation*}
$$

in $L_{\varepsilon}^{2}(\Omega)$ satisfying qp-boundary conditions (2) with $k_{x} \in B$.
The spectrum of the waveguide problem is given by

$$
\sigma(L)=\overline{\bigcup_{k_{x} \in B} \sigma\left(L\left(k_{x}\right)\right)}
$$

Aim

Fix k_{x} and assume $\left(\lambda_{0}, \lambda_{1}\right)$ is a spectral gap for $L_{0}\left(k_{X}\right)$. Investigate $\sigma\left(L\left(k_{x}\right)\right) \cap\left(\lambda_{0}, \lambda_{1}\right)$.

Results

- Spectral gaps in periodic structures:
- Existence: Figotin \& Kuchment '96, Hoang \& Plum \& Wieners '09 (Helmholtz), Filonov '03 (Maxwell)
- Ways of maximizing gap: Cox \& Dobson '99 (Helmholtz)
- For compact perturbations:
- Stability of essential spectrum, creation and estimates on number of gap eigenvalues: Figotin \& Klein '96, '98 (Maxwell)
- For line defects:
- Stability of essential spectrum on the strip, some criteria for existence of eigenvalues: Ammari \& Santosa '04 (Helmholtz)
- Existence of eigenvalues and decay of eigenfunctions away from guide: Kuchment \& Ong '04 (Helmholtz), Miao \& Ma '07, '08, Kuchment \& Ong '10 (Maxwell)

This talk

- Even small perturbations ε_{1} lead to eigenvalues being introduced in the gap.
- Only finitely many eigenvalues are introduced, in particular, additional eigenvalues cannot accumulate at the edges of spectral bands.

Approach: Birman-Schwinger

Consider $L\left(k_{x}\right) u=\lambda u$, i.e.

$$
-\Delta u=\lambda\left(\varepsilon_{0}+\varepsilon_{1}\right) u \quad \text { on } \Omega=(0,1) \times \mathbb{R}
$$

where $\lambda \in\left(\lambda_{0}, \lambda_{1}\right)$ and all functions satisfy qp-boundary conditions in x.
Equivalently,

$$
-\frac{1}{\varepsilon_{0}} \Delta u-\lambda u=\lambda \frac{\varepsilon_{1}}{\varepsilon_{0}} u
$$

λ is an eigenvalue in the gap iff

$$
u=\lambda\left(L_{0}\left(k_{x}\right)-\lambda\right)^{-1}\left(\frac{\varepsilon_{1}}{\varepsilon_{0}} u\right) \neq 0
$$

Approach: Study unperturbed strip resolvent $\left(L_{0}\left(k_{x}\right)-\lambda\right)^{-1}$ acting on functions supported in $[0,1]^{2}$.

Bloch Functions

Consider

$$
L_{0}\left(k_{x}\right) u=-\frac{1}{\varepsilon_{0}} \Delta u=\lambda u
$$

in $L_{\varepsilon_{0}}^{2}(\Omega)$ with qp-boundary conditions in x.
The Floquet transform U_{y} gives problems on $[0,1]^{2}$, parametrised by $k \in B$ with qp-bcs in x and y. Let $\left\{\lambda_{s}(k)\right\}_{s \in \mathbb{N}}$ and $\left\{\psi_{s}(k)\right\}_{s \in \mathbb{N}}$ be the eigenvalues and eigenfunctions,
i.e. $L_{0}\left(k_{x}, k\right) \psi_{s}(k)=\lambda_{s}(k) \psi_{s}(k)$.

Lemma (see Kato)
These are analytic functions in k on B and for each $s \in \mathbb{N}$ they can be continued analytically to a strip in the complex plane

$$
\{z \in \mathbb{C}: \operatorname{Re} z \in(-\pi-\delta, \pi+\delta),|I m z|<\eta\}
$$

containing the interval B.
Proposition
Let $\Sigma=\left\{(s, k) \in \mathbb{N} \times B: \lambda_{s}(k)=\lambda_{1}\right\}$. Then $|\Sigma|$ is finite.

Resolvent Representation

The Bloch functions are complete: for any $r \in L_{\varepsilon_{0}}^{2}(\Omega)$ we have

$$
r(\vec{x})=\frac{1}{\sqrt{2 \pi}} \sum_{s \in \mathbb{N}} \int_{-\pi}^{\pi}\left\langle\mathrm{U}_{y} r(\cdot, k), \psi_{s}(\cdot, k)\right\rangle_{\varepsilon_{0}} \psi_{s}(\vec{x}, k) d k
$$

For any $r \in L_{\varepsilon_{0}}^{2}\left((0,1)^{2}\right)$ let

$$
\begin{aligned}
P_{s}(k, r)(\vec{x}) & :=\left\langle U_{y} r(\cdot, k), \psi_{s}(\cdot, k)\right\rangle_{\varepsilon_{0}} \psi_{s}(\vec{x}, k) \\
& =\frac{1}{\sqrt{2 \pi}}\left\langle r(\cdot), \psi_{s}(\cdot, k)\right\rangle_{\varepsilon_{0}} \psi_{s}(\vec{x}, k) .
\end{aligned}
$$

Then

$$
\left(L_{0}\left(k_{x}\right)-\lambda\right)^{-1} r=\frac{1}{\sqrt{2 \pi}} \sum_{s \in \mathbb{N}} \int_{-\pi}^{\pi}\left(\lambda_{s}(k)-\lambda\right)^{-1} P_{s}(k, r) d k
$$

for λ outside the spectrum of $L_{0}\left(k_{x}\right)$ (hence for $\left.\lambda \in\left(\lambda_{0}, \lambda_{1}\right)\right)$ and $r \in L_{\varepsilon_{0}}^{2}\left((0,1)^{2}\right)$.

Generation of Spectrum

Assumptions:

- $\varepsilon_{1} \geq 0$,
- there exists a ball D such that $\inf _{D} \varepsilon_{1}=\alpha>0$.

Consider

$$
u=\lambda\left(L_{0}\left(k_{x}\right)-\lambda\right)^{-1}\left(\frac{\varepsilon_{1}}{\varepsilon_{0}} u\right) .
$$

Set $v=\sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} u$. Then v is supported in $[0,1]^{2}$ and v satisfies

$$
v=\lambda \sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}}\left(L_{0}\left(k_{x}\right)-\lambda\right)^{-1} \sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} v .
$$

Define A_{λ} on $L_{\varepsilon_{0}}^{2}\left((0,1)^{2}\right)$ by

$$
A_{\lambda} v:=\lambda \sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}}\left(L_{0}\left(k_{x}\right)-\lambda\right)^{-1} \sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} v .
$$

Aim: Find $\lambda \in\left(\lambda_{0}, \lambda_{1}\right)$ such that $1 \in \sigma_{p}\left(A_{\lambda}\right)$.

Properties of A_{λ}

$$
A_{\lambda} v=\lambda \sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}}\left(L_{0}\left(k_{x}\right)-\lambda\right)^{-1} \sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} v
$$

Lemma
For $\lambda \in\left(\lambda_{0}, \lambda_{1}\right), A_{\lambda}: L_{\varepsilon_{0}}^{2}\left((0,1)^{2}\right) \rightarrow L_{\varepsilon_{0}}^{2}\left((0,1)^{2}\right)$ is symmetric and compact.
Set

$$
\kappa_{\max }(\lambda)=\sup _{\|u\| \neq 0} \frac{\left\langle A_{\lambda} u, u\right\rangle_{\varepsilon_{0}}}{\langle u, u\rangle_{\varepsilon_{0}}} .
$$

Lemma

Let $\lambda \in\left(\lambda_{0}, \lambda_{1}\right)$.
(1) $\lambda \mapsto \kappa_{\max }(\lambda)$ is continuous.
(2) $\lambda \mapsto \kappa_{\max }(\lambda)$ is monotonically increasing.

Estimates for $\kappa_{\max }(\lambda)$

$$
\begin{aligned}
\left\langle A_{\lambda} u, u\right\rangle_{\varepsilon_{0}} & =\lambda\left\langle\varepsilon_{0}\left(-\frac{1}{\varepsilon_{0}} \Delta-\lambda\right)^{-1} \sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} u, \sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} u\right\rangle_{L^{2}(\Omega)} \\
& =\frac{\lambda}{2 \pi} \int_{-\pi}^{\pi} \sum_{s \in \mathbb{N}}\left(\lambda_{s}(k)-\lambda\right)^{-1}\left|\left\langle\sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} u, \psi_{s}(\cdot, k)\right\rangle_{\varepsilon_{0}}\right|^{2} d k .
\end{aligned}
$$

Now for λ in $\left(\lambda_{0}, \lambda_{1}\right)$, and $s_{0} \in \mathbb{N}$ such that λ_{1} is the lowest point of the band function $\lambda_{s_{0}}(\cdot)$,

$$
\begin{aligned}
\left\langle A_{\lambda} u, u\right\rangle_{\varepsilon_{0}} & \leq \frac{\lambda}{2 \pi} \int_{-\pi}^{\pi} \sum_{s \geq s_{0}}\left(\lambda_{s}(k)-\lambda\right)^{-1}\left|\left\langle\sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} u, \psi_{s}(\cdot, k)\right\rangle_{\varepsilon_{0}}\right|^{2} d k \\
& \leq \frac{\lambda}{2 \pi\left(\lambda_{1}-\lambda\right)} \int_{-\pi}^{\pi} \sum_{s \geq s_{0}}\left|\left\langle\sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} u, \psi_{s}(\cdot, k)\right\rangle_{\varepsilon_{0}}\right|^{2} d k
\end{aligned}
$$

Upper Estimate for $\kappa_{\max }(\lambda)$

$$
\begin{aligned}
\left\langle A_{\lambda} u, u\right\rangle_{\varepsilon_{0}} & \leq \frac{\lambda}{2 \pi\left(\lambda_{1}-\lambda\right)} \int_{-\pi}^{\pi} \sum_{s \in \mathbb{N}}\left|\left\langle\sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} u, \psi_{s}(\cdot, k)\right\rangle_{\varepsilon_{0}}\right|^{2} d k \\
& \leq \frac{\lambda\left\|\varepsilon_{1}\right\|_{\infty}}{\left(\lambda_{1}-\lambda\right) \inf \varepsilon_{0}}\|u\|_{\varepsilon_{0}}^{2}
\end{aligned}
$$

- If $\left\|\varepsilon_{1}\right\|_{\infty} \leq \frac{\lambda_{1}-\lambda_{0}}{\lambda_{0}} \inf \varepsilon_{0}$, then $\kappa_{\max }\left(\lambda^{\prime}\right)<1$ for some $\lambda^{\prime} \in\left(\lambda_{0}, \lambda_{1}\right)$.
- Given a fixed λ in the gap, the perturbation needs to have a certain size to make $\kappa_{\max }(\lambda) \geq 1$ (a necessary condition for λ being a gap eigenvalue) and the further λ is from λ_{1}, the larger this threshold perturbation has to be.

Lower Estimate for $\kappa_{\max }(\lambda)$

Let $\lambda_{s_{0}}\left(k_{0}\right)=\lambda_{1}>0$. There exist $\delta>0$ and $a>0$ such that

$$
\left|\left\langle\psi_{s_{0}}\left(\cdot, k_{0}\right), \psi_{s_{0}}(\cdot, k)\right\rangle_{L_{\varepsilon_{0}}^{2}(D)}\right|^{2} \geq a \quad \text { for } \quad k \in\left(k_{0}-\delta, k_{0}+\delta\right) .
$$

Choose $u=\sqrt{\frac{\varepsilon_{0}}{\varepsilon_{1}}} \psi_{s_{0}}\left(\cdot, k_{0}\right) \chi_{D}$. Then

$$
\begin{aligned}
\frac{\left\langle A_{\lambda} u, u\right\rangle_{\varepsilon_{0}}}{\|u\|_{\varepsilon_{0}}^{2}} & =\frac{\lambda}{2 \pi\|u\|_{\varepsilon_{0}}^{2}} \int_{-\pi}^{\pi} \sum_{s \in \mathbb{N}}\left(\lambda_{s}(k)-\lambda\right)^{-1}\left|\left\langle\sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} u, \psi_{s}(\cdot, k)\right\rangle_{\varepsilon_{0}}\right|^{2} d k \\
& \geq \frac{a \lambda}{2 \pi\|u\|_{\varepsilon_{0}}^{2}} \int_{k_{0}-\delta}^{k_{0}+\delta} \frac{d k}{\lambda_{s_{0}}(k)-\lambda}-C
\end{aligned}
$$

Moreover, with $\lambda_{s_{0}}(k) \leq \lambda_{1}+\alpha_{n}\left(k-k_{0}\right)^{2}$
$\int_{k_{0}-\delta}^{k_{0}+\delta} \frac{d k}{\lambda_{s_{0}}(k)-\lambda} \geq \frac{2}{\sqrt{\alpha_{n}\left(\lambda_{1}-\lambda\right)}} \arctan \left(\sqrt{\frac{\alpha_{n}}{\lambda_{1}-\lambda}} \delta\right) \rightarrow \infty$ as $\lambda \nearrow \lambda_{1}$
So $\kappa_{\max }(\lambda) \rightarrow+\infty$, as $\lambda \rightarrow \lambda_{1}$.

Result on Generation of Spectrum

Theorem

Assume that $\varepsilon_{1} \geq 0$ and that

$$
\left\|\varepsilon_{1}\right\|_{\infty}<\frac{\left(\lambda_{1}-\lambda_{0}\right) \inf \varepsilon_{0}}{\lambda_{0}}
$$

Then there exists an eigenvalue of the operator $L\left(k_{x}\right)$ in the spectral gap $\left(\lambda_{0}, \lambda_{1}\right)$ of $L_{0}\left(k_{x}\right)$.

Proof
Choose ε_{1} as above. Then $\kappa_{\max }\left(\lambda^{\prime}\right)<1$ for some λ^{\prime} in the gap. By the Intermediate Value Theorem, we find $\lambda \in\left(\lambda^{\prime}, \lambda_{1}\right)$ with $\kappa_{\text {max }}(\lambda)=1$, i.e. λ is an eigenvalue of $L\left(k_{x}\right)$.

Number of Eigenvalues

Let

$$
|\Sigma|=\left|\left\{(s, k): \lambda_{s}(k)=\lambda_{1}\right\}\right|=n .
$$

Non-degeneracy assumption: $\lambda_{s}(\tilde{k}) \geq \lambda_{1}+\alpha|k-\tilde{k}|^{2}$ for $(s, k) \in \Sigma, \tilde{k}$ close to k

Theorem

Let $\varepsilon_{1} \geq 0$ be sufficiently small. Then precisely n eigenvalues are created in the gap.

Outline of proof

- The set $M=\left\{\psi_{s}(\cdot, k):(s, k) \in \Sigma\right\}$ is linearly independent over D.
- $L=\left\{u: \sqrt{\frac{\varepsilon_{1}}{\varepsilon_{0}}} u \perp \psi_{s}(\cdot, k) \quad\right.$ for all $\left.(s, k) \in \Sigma\right\}$ has codimension n.
- $\left\langle A_{\lambda} u, u\right\rangle_{\varepsilon_{0}} \leq C\left\|\varepsilon_{1}\right\|_{\infty}\|u\|_{\varepsilon_{0}}^{2}$ for $u \in L, \lambda \in\left(\lambda_{0}, \lambda_{1}\right)$. Hence $C\left\|\varepsilon_{1}\right\|_{\infty}<1$ implies $\kappa_{n+1}(\lambda)<1$.
- $\left\langle A_{\lambda} u, u\right\rangle_{\varepsilon_{0}} \rightarrow \infty$ as $\lambda \nearrow \lambda_{1}$ for $u \in \operatorname{span} \sqrt{\frac{\varepsilon_{0}}{\varepsilon_{1}}} \chi_{D} M$. Hence $\kappa_{n}(\lambda) \rightarrow \infty$ for $\lambda \rightarrow \lambda_{1}$.

Further results

- All results have an analogue for negative perturbations $\varepsilon_{1} \leq 0$, where the spectrum appears from the lower end of the gap.
- One would expect the result on generation of spectrum also to hold for large perturbations.

Theorem

For any perturbation ε_{1}, the eigenvalues of $L\left(k_{x}\right)$ cannot accumulate at the band edges.

- Results carry over to 3D-Helmholtz equation for slab and line defects (with some regularity assumptions on the band functions).
- For TE-modes, the Maxwell equations reduce to divergence form elliptic operators. We have similar results also for this case, making use of Green's operators.

Spectrum of Waveguide

For the wave-guide problem in the plane described by L, the spectrum arises as

$$
\sigma(L)=\overline{\bigcup_{k_{x} \in B} \sigma\left(L\left(k_{x}\right)\right)}
$$

The eigenvalues depend continuously on the parameter k_{x}, so

- the band spectrum consists of intervals,
- at most finitely many intervals can be introduced into any gap of the spectrum of the unperturbed problem,
- the spectrum does not contain eigenvalues (Hoang-Radosz '14), so light of these frequencies is transmitted through the structure.

Thank you for your attention!

