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Background: from potential wells to nonlinear graphs

In many problems (BECs, photonics, optics), wave dynamics is modeled with the
nonlinear Schrödinger (Gross–Pitaevskii) equation

iut = −uxx + V(x)u± |u|2pu,

where p > 0 is the nonlinearity power and V(x) : R 7→ R is a confining potential.
The upper sign is defocusing (repelling) and the lower sign is focusing (attractive).

I Double-well potentials such as

V(x; s) =
1
2

(V0(x− s) + V0(x + s)) , s ≥ 0,

where V0 is a single-well potential such as V0(x) = −sech2(x).

I Periodic potentials (lattices)

V(x + L) = V(x), L > 0,

such as V(x) = sin2(x).



Experiments on symmetry-breaking bifurcations

I M.Obertaler’s group in Heidelberg, Germany (BECs)
I Z. Chen’s group at San Francisco, USA (photonics)



Double-well potentials

Stationary solutions u(x, t) = φ(x)e−iωt with ω ∈ R satisfy a stationary Schrödinger
equation with a double-well potential

ωφ = −φxx + V(x; s)φ− |φ|2φ.

Let V0 support exactly one negative eigenvalue of L0 = −∂2
x + V0(x) and s be large.

The operator L = −∂2
x + V(x; s) has two negative eigenvalues with symmetric and

anti-symmetric eigenfunctions. In the focusing case, the bifurcation diagram looks as

A. Sacchetti; E. Kirr; P.G. Kevrekidis; J. Marzuola; M. Weinstein;



Periodic potentials (lattices)

Stationary solutions u(x, t) = φ(x)e−iωt with ω ∈ R satisfy a stationary Schrödinger
equation with a periodic potential

ωφ = −φxx + V(x)φ± |φ|2φ

Spectrum of L = −∂2
x + V(x) for V(x) = V0 sin2(x) and N = 1:

J. Yang; M. Weinstein; T. Dohnal; G. Schneider; V. Konotop; G. Alfimov;



Gap solitons

For V(x) = V0 sin2(x) and the defocusing case, the bifurcation diagram is



Asymptotic reductions in the periodic potentials

The Gross–Pitaevskii equation with a periodic potential can be homogeonized and
reduced to one of the three models with spatially independent coefficients.

I Coupled-mode (Dirac) equations for small-amplitude potentials{
i(at + ax) + b = (|a|2 + 2|b|2)a
i(bt − bx) + a = (2|a|2 + |b|2)b

I Envelope (NLS) equations near band edges

iat + axx + |a|2a = 0

I Lattice (DNLS) equations for large-amplitude potentials

iȧn + α(an+1 + an−1) + |an|2an = 0.



Introduction

Graph models for the dynamics of constrained quantum particles were first suggested
by Pauling and then used by Ruedenberg and Scherr in 1953 to study the spectrum of
aromatic hydrocarbons.

Nowadays graph models are widely used in the modeling of quantum dynamics of
thin graph-like structures (quantum wires, nanotechnology, large molecules, periodic
arrays in solids, photonic crystals...).

I G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs
(AMS, Providence, 2013).

I P. Exner and H. Kovarı́k, Quantum Waveguides, (Springer, Heidelberg, 2015).



Metric Graphs

Graphs are one-dimensional approxi-
mations for constrained dynamics in
which transverse dimensions are small
with respect to longitudinal ones.

A metric graph Γ is given by a set of
edges and vertices, with a metric struc-
ture on each edge. Proper boundary con-
ditions are needed on the vertices to en-
sure that certain differential operators de-
fined on graphs are self-adjoint.

Kirchhoff boundary conditions:
I Functions in each edge have the same value at each vertex.
I Sum of fluxes (signed derivatives of functions) is zero at each vertex.



Example: Y junction graph
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The Laplacian operator on the graph Γ is defined by

∆Ψ =

[
u′′0 (x), x ∈ (−∞, 0),
u′′±(x), x ∈ (0,∞)

]
,

acting on functions in the form

Ψ =

[
u0(x), x ∈ (−∞, 0)
u±(x), x ∈ (0,∞)

]
,

in the domain

D(Γ) =
{

(u0, u+, u−) ∈ H2(R−)× H2(R+)× H2(R+) :
u0(0) = u+(0) = u−(0), u′0(0) = u′+(0) + u′−(0)

}
.



Laplacian on the Y junction graph

Lemma
The operator ∆ : D(Γ)→ L2(Γ) is self-adjoint.

The Kirchhoff boundary conditions are symmetric:

〈Φ,∆Ψ〉 − 〈∆Φ,Ψ〉 =
[
v̄′0u0 − v̄0u′0

]
x=0
−
[
v̄′+u+ − v̄+u′+

]
x=0
−
[
v̄′−u− − v̄−u′−

]
x=0

= 0,

where Φ = (v0, v+, v−) and Ψ = (u0, u+, u−) satisfy the Kirchhoff conditions:{
u0(0) = u+(0) = u−(0),

u′0(0) = u′+(0) + u′−(0).

Moreover, ∆ is self-adjoint under generalized Kirchhoff boundary conditions{
α0u0(0) = α+u+(0) = α−u−(0)

α−1
0 u′0(0) = α−1

+ u′+(0) + α−1
− u′−(0),

where α0, α+, α− are arbitrary nonzero parameters.



NLS on the Y junction graph

So far, α0, α+, α− are arbitrary. Let us connect these parameters with the nonlinear
coefficients of a nonlinear Schrödinger equation defined on the graph Γ:

i∂tu0 + ∂2
x u0 + α2

0|u0|2u0 = 0, x < 0,

i∂tu± + ∂2
x u± + α2

±|u±|2u± = 0, x > 0,

subject to the generalized Kirchhoff boundary conditions at x = 0.

The charge (power) functional

Q =

∫ 0

−∞
|u0|2dx +

∫ +∞

0
|u+|2dx +

∫ +∞

0
|u−|2dx

is constant in time t (related to the gauge symmetry).

The Hamiltonian (energy) functional

E =

∫ 0

−∞

(
|∂xu0|2 −

α2
0

2
|u0|4

)
dx + similar terms for u±,

is constant in time t (related to the time translation symmetry).



NLS on the Y junction graph

The momentum functional

P = i
∫ 0

−∞
(ū0∂xu0 − u0∂xū0) dx + similar terms for u±,

is no longer constant in time t because the spatial translation is broken. As a result,
the solitary wave scatters at the Y junction point with a nonzero reflection coefficient.

Let us consider the constraint

1
α2

0
=

1
α2
+

+
1
α2
−

on the generalized Kirchhoff boundary conditions:{
α0u0(0) = α+u+(0) = α−u−(0)

α−1
0 u′0(0) = α−1

+ u′+(0) + α−1
− u′−(0).

Then, the momentum is decreasing function of time:

dP
dt

= − 2α2
0

α2
+α

2
−
|α+∂xu+(0)− α−∂xu−(0)|2 ≤ 0.
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Reflectionless scattering of solitary waves

If the initial data satisfy the reduction

α+u+(x) = α−u−(x), x ∈ R+,

then, the reduction is invariant with respect to the time evolution of the NLS
equation. In this case, dP

dt = 0 and the spatial translation invariance is restored.

The solitary wave is transmitted through the Y junction without any reflection. In this
case, the Kirchhoff boundary conditions imply{

α0u0(0) = α+u+(0),
α0∂xu0(0) = α+∂xu+(0),

and the function

U(x, t) =

{
α0u0(x, t), x < 0,
α±u±(x, t), x > 0,

satisfies the integrable cubic NLS equation on the infinite line

i∂tU + ∂2
x U + |U|2U = 0, x ∈ R,

where the vertex x = 0 does not appear as an obstacle in the time evolution.
D. Matrasulov; K. Sabirov; H. Uecker; D. Dytukh; J.G. Caputo;



NLS equation on star graphs

I Gnutzmann-Smilansky-Derevyanko, Phys. Rev. A 83 (2011), 033831: a
complex set of resonances after inserting a single nonlinear edge in a linear
quantum graph; rigorous analysis by L.Tentarelli, arXiv:1503.00455.

I Series of papers on star graphs by Adami-Cacciapuoti-Finco-Noja:
Scattering of solitons; Standing waves and stability (2011-2014).

I Recent works by Adami-Serra-Tilli on nonexistence of ground states in
networks with closed cycles (2014-2016). Variational principle and
concentration compactness principle are used.

I Recent papers by Sabirov-Uecker on soliton propagation in fat graphs and
graphs with other boundary conditions (2014-2016).

I Classification of standing waves and computations of the bifurcation diagram on
tadpole graphs by C.Cacciapuoti, D.Finco, D.Noja, Phys. Rev. E 91 (2015),
013206; rigorous results on existence, bifurcations, and stability by D.Noja,
D.P., and G.Shaikhova, Nonlinearity 28 (2015), 2343.

I Further exploration of bifurcation methods for stationary states on bounded and
unbounded graphs: J. Marzuola and D.P., Applied Math. Research Express
2016, 98–145; D.P. and G. Schneider, arXiv:1603.05463 (2016).



NLS equation on a tadpole graph

x
y

-L

L 0

The ring is placed on the interval [−L, L] and the semi-infinite line is [0,∞). The
Laplacian operator on Γ acts on the functions in the form

Ψ =

[
u(x), x ∈ (−L, L)
v(y), y ∈ (0,∞)

]
,

defined in the domain

D(Γ) =
{

(u, v) ∈ H2(−L, L)× H2(0,∞) :
v(0) = u(L) = u(−L), v′(0) = u′(L)− u′(−L)

}
.

The generalized NLS equation is taken in the form:

i∂tΨ + ∂2
x Ψ + (p + 1)|Ψ|2pΨ = 0, x ∈ Γ,

subject to the Kirchhoff boundary conditions at the vertex point.



Existence of standing waves on the tadpole graph


−u′′(x)− (p + 1)|u|2pu = ωu, x ∈ (−L, L) ,
−v′′(y)− (p + 1)|v|2pv = ωv, y ∈ (0,∞) ,
u(L) = u(−L) = v(0) ,
u′(L)− u′(−L) = v′(0) .

Linear spectrum:
I Essential spectrum: σess(−∆) = [0,∞) with resonance at 0.

I Embedded eigenvalues:
{
λn =

(
nπ
L

)2
, n ∈ N

}
⊂ σess(−∆)

The corresponding (normalized) eigenfunctions are:

Υn =
1√
L

(
sin
(nπx

L

)
, 0) n = 1, 2, 3, ...



Bifurcation diagram

The following bifurcation diagram has been computed for p = 1 (Cacciapuoti et al.):

ω

∥Φ∥

λ1 λ2

d

b

a

c

1

The diagram describes the families of sta-
tionary states and their possible relation
with the spectrum of −∆.

The model, although simple, exhibits a surprisingly rich behavior
I branches of standing waves bifurcating from the embedded eigenvalues
I pitchfork bifurcation at threshold ω = 0: edge solitons
I branches of non linearly related standing waves (dashed lines)



Standing waves bifurcating from the zero resonance

Let ω = −ε2 and consider small values of ε. For the solution on the tail of the
tadpole, we can scale

v(y) = ε
1
p φ(z), z = εy,

where φ is a decaying solution of the second-order equation

−φ′′(z) + φ− (p + 1)|φ|2pφ = 0, z > 0.

Let φ0(z) = sech
1
p (pz) be the unique symmetric solitary wave. Then,

φ(z) = φ0(z + a) for unknown parameter a.

Bifurcation problem:
−u′′(x) + ε2u− (p + 1)|u|2pu = 0, x ∈ (−L, L),

u(L) = u(−L) = ε
1
p φ0(a),

u′(L)− u′(−L) = ε
1+ 1

p φ′0(a).

(1)

I Primary branch bifurcating from zero solution (u, v) = (0, 0).
I Higher branches bifurcating from the solutions (u, v) = (un,ω, 0).



Primary branch

Using the scaling transformation

u(x) = ε
1
pψ(z), z = εx,

we can write the bifurcation problem as −ψ
′′(z) + ψ − (p + 1)|ψ|2pψ = 0, z ∈ (−εL, εL),

ψ(εL) = ψ(−εL) = φ0(a),
ψ′(εL)− ψ′(−εL) = φ′0(a).

Construction of positive solution:
I An even solution is defined near the origin: ψ(0) = ψ0, ψ′(0) = 0.
I The continuity boundary condition

φ0(a) = ψ(εL) = ψ0 +
1
2
ψ′′(0)ε2L2 +O(ε4),

hence ψ0 = φ0(a) +O(ε2) is uniquely defined for every a ∈ R.
I The flux boundary condition

φ′0(a) = 2ψ′(εL) = 2ψ′′(0)εL +O(ε3).

where φ′0(0) = 0 and φ′′0 (0) 6= 0. Hence, a = 2εL +O(ε3) is unique.

I The small solution is unique and positive: u = ε
1
p (1 +OC∞(−L,L)(ε

2)).
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Numerical solutions for p = 1
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Figure : Standing wave solutions (u, v) versus x for ω = −1 along the primary branch.



Orbital stability

Recall that NLS has U(1), or phase, symmetry. No stability of equilibrium points Φ
can hold, but stability of equilibrium orbits

{
eiθΦ

}
θ∈R may be attained sometimes.

Definition
We say that eiωtΦ is orbitally stable in a Banach space V if ∀ε > 0 ∃δ > 0 such that
∀u0 ∈ V with ‖u0 − Φ‖V < δ, NLS has a global solution u(t) ∈ V with initial datum
u0 satisfying

inf
θ∈R
‖u(t)− eiθΦ‖V < ε,

for every t ∈ R.



Spectral stability as a way to orbital stability

Linearization of NLS with Ψ = eiωt (Φ(x) + U(x, t) + iW(x, t)) and the separation
of variables U(x, t) = Ũ(x)eλt results in the spectral problem

L+Ũ = −λW̃, L−W̃ = λŨ,

associated with the Schrödinger operators L+ and L−. For the tadpole graph, this
yields two self-adjoint problems

L− :


−U′′(x)− ωU − (p + 1)|u|2pU = λU, x ∈ (−L, L),
−V′′(y)− ωV − (p + 1)|v|2pV = λV, y ∈ (0,∞),
U(L) = U(−L) = V(0),
U′(L)− U′(−L) = V′(0),

and

L+ :


−U′′(x)− ωU − (2p + 1)(p + 1)|u|2pU = λU, x ∈ (−L, L),
−V′′(y)− ωV − (2p + 1)(p + 1)|v|2pV = λV, y ∈ (0,∞),
U(L) = U(−L) = V(0),
U′(L)− U′(−L) = V′(0).

Definition
We say that the standing wave is spectrally stable if no eigenvectors Ũ, W̃ ∈ D(−∆)
exist for an eigenvalue with Re(λ) > 0.



Criteria for spectral stability

Denote the number of negative eigenvalues of L± by n(L±) and assume that L+ is
invertible and Ker(L−) is one-dimensional.

Consider a constrained space associated with the U(1), or phase, symmetry:

L2
c :=

{
U ∈ L2 : 〈U,Φ〉L2 = 0

}
.

Constraint can reduce the number of negative eigenvalues of L+.

The following criteria summarize the results from Shatah–Strauss, Weinstein,
Grillakis, Jones, Kapitula–Kevrekidis–Stanstede, Pelinovsky, etc.

I If n(L+) = 1 and n(L−) = 0, then
I Φ is spectrally and orbitally stable if n(L+|L2

c
) = 0

I Φ is spectrally and orbitally unstable if n(L+|L2
c
) = 1.

I If n(L+|L2
c
)− n(L−) is nonzero, then Φ is unstable.

I If n(L+|L2
c
) + n(L−) is odd, then Φ is unstable.



Stability of the primary branch for ω = −ε2

Recall that
Φ = ε

1
p (ψ(z), φ(z)), z = εx,

where ψ(z) = 1 +O(z2) and φ(z) = φ0(z + a).

I n(L−) = 0 because L−Φ = 0 and Φ is strictly positive.
I n(L+) = 1 according to the asymptotic analysis below.

The spectral problem for L+ with λ = ε2Λ is
−U′′(z) + U(z)− (2p + 1)(p + 1)|ψ(z)|2pU(z) = ΛU(z), z ∈ (−εL, εL),
−V ′′(z) + V(z)− (2p + 1)(p + 1)|φ(z)|2pV(z) = ΛV(z), z ∈ (0,∞),
U(εL) = U(−εL) = V(0),
U′(εL)− U′(−εL) = V ′(0),

The leading-order problem is related to the Schrödinger equation on half-line{
−V ′′(z) + V(z)− (2p + 1)(p + 1)sech2(pz)V(z) = ΛV(z), z ∈ (0,∞),
V ′(0) = 0,

which has only one negative eigenvalue Λ0 < 0.



Stability of the primary branch

I n(L+|L2
c
) = 0 if the slope condition is satisfied

d
dω
‖Φ‖2 < 0

This can be checked directly from asymptotic solutions:

‖u‖2
L2(−L,L) = ε

2
p ‖ψ(ε·)‖2

L2(−L,L) = ε
2
p

(
2L +O(ε2)

)
and

‖v‖2
L2(0,∞) = ε

2
p−1‖φ0‖2

L2(a,∞) = ε
2
p−1
(
‖φ0‖2

L2(0,∞) +O(ε)
)
.

Theorem
For ω = −ε2 with ε > 0 sufficiently small, the primary branch is orbitally stable for
every p ∈ (0, 2) and orbitally unstable for every p ∈ (2,∞).

Conjecture
For p = 1, Φ is expected to be a constrained minimizer of energy for all ω < 0.



Dumbbell Graph

x=−L−2π

x=−L x=L

x=L+2π

Let the line segment be placed on I0 := [−L, L] and the end rings are placed on
I− := [−L− 2π,−L] and I+ := [L, L + 2π]. Then, ∆ acts piecewise on

Ψ =

 u−(x), x ∈ I−,
u0(x), x ∈ I0,

u+(x), x ∈ I+,

 ,
subject to the Kirchhoff boundary conditions at the two junctions{

u+(L + 2π) = u+(L) = u0(L),
u′+(L)− u′+(L + 2π) = u′0(L)

J. Marzuola and D.P., Applied Math. Research Express 2016, 98–145.



Existence of standing waves on the dumbbell graph

Ground state is the standing wave of smallest energy E at a fixed value of Q,

E0 = inf{E(Ψ) : Ψ ∈ E(∆), Q(Ψ) = Q0}.

Euler–Lagrange equation is

−∆Φ− 2|Φ|2Φ = ΛΦ Λ ∈ R , Φ ∈ D(∆).

Linear spectrum of isolated eigenvalues:
I Double eigenvalues {n2}n∈N with eigenfunctions supported in each ring.
I Simple eigenvalues {ω2

n}n∈N with eigenfunctions symmetric on graph.
I Simple eigenvalues {Ω2

n}n∈N with eigenfunctions anti-symmetric on graph.

For both L < π and L ≥ π, we have the following ordering of eigenvalues:

0 < Ω1 < ω1 < 1 < Ω2 < . . .

This ordering gives ordering of bifurcations from the constant solution

Φ(x) = p, Λ = −2p2, Q0 = 2(L + 2π)p2,

which exists for any Q0 > 0.
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Bifurcation diagram
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Figure : The bifurcation diagram for L = 2π (left) and L = π/2 (right).

Theorem
There exist Q∗0 and Q∗∗0 ordered as 0 < Q∗0 < Q∗∗0 <∞ such that the ground state
for Q0 ∈ (0,Q∗0 ) is given by the constant solution, which undertakes

I the symmetry breaking bifurcation at Q∗0 due to Ω1,
I the symmetry preserving bifurcation at Q∗∗0 due to ω1.



Numerical approximations of the ground states
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Figure : Ground states for L = π/2 and Λ = −0.01 (top left), Λ = −0.1 (top right),
Λ = −1.5 (bottom left), and Λ = −10.0 (bottom right). The values at ±L are marked with a
red circle.



Standing waves in the limit of large energy
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Centered − Newton Solver

Loop Centered − Newton Solver
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Figure : The bifurcation diagram for L = 2π (left) and L = π/2 (right).



Standing waves in the limit of large energy

Theorem
In the limit of large negative Λ, there exist two standing wave solutions. One solution
is a positive asymmetric wave localized in the ring:

Φ(x) = |Λ|1/2sech(|Λ|1/2(x− L− π)) + Φ̃(x), Q0 = 2|Λ|1/2 + Q̃0,

and the other solution is a positive symmetric wave localized in the central line
segment:

Φ(x) = |Λ|1/2sech(|Λ|1/2x) + Φ̃(x), Q0 = 2|Λ|1/2 + Q̃0,

where ‖Φ̃‖H2(I−∪I0∪I+) → 0 and |Q̃0| → 0 as Λ→ −∞ in both cases. The positive
symmetric wave is a ground state for Q0 sufficiently large.

Remarks:
I The energy difference between the two solitary waves is exponentially small.
I The asymmetric wave is a local constrained minimizer. It is also orbitally stable.



Numerical approximations in the limit of large energies
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Centered Soliton

Rescaled Sech Profile
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Figure : Comparison of the standing waves (solid line) localized in the central link (left) and in
one of the rings (right) to the rescaled solitary wave profile (dots) for L = π/2 and Λ = −10.0.

Summary on the ground state in the dumbbell graph:
I Λ→ −0 - constant state;
I Λ < 0 decreases - asymmetric state concentrated in a ring;
I Λ→ −∞ - symmetric state concentrated in a central segment.



Periodic Graph

Let the periodic graph Γ consist of the circles of the normalized length 2π and the
horizontal links of the length L. Writing the periodic graph as

Γ = ⊕n∈ZΓn, with Γn = Γn,0 ⊕ Γn,+ ⊕ Γn,−,

we parameterize Γn,0 := [nP, nP + L] and Γn,± := [nP + L, (n + 1)P], where
P = L + π is the graph period.

D.P. and G. Schneider, arXiv: 1603.05463



Conclusion

I We have defined the NLS evolution equations on graphs and considered the role
of Kirchhoff boundary conditions in the energy conservation.

I We have classified ground state solutions for the NLS equation on tadpole,
dumbbell, and periodic graphs.

I We have used various bifurcation methods compared to variational methods
used in the work of R. Adami and others.

I We have analyzed both existence and stability properties of nonlinear bound
states on graphs.

I Nonlinear dynamics of traveling solitary waves on graphs is the next problem
for further analysis.

Thank you!


	Background: from potential wells to nonlinear graphs
	Nonlinear PDEs on metric graphs
	NLS equation on a tadpole graph
	NLS equation on a dumbbell graph
	NLS equation on a periodic graph
	Conclusion

