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Motivation: the spin Hall effect of light

I Causes a linearly polarized beam of light (wavelength λ) in a
gradient index medium (smoothly varying refractive index
n(x), λ� scale of variation of the medium) to split into its
constituent circularly polarized parts:

I Splitting ∆ ∝ light wavelength λ

I Experimental verification: K. Bliokh et al. ‘Geometrodynamics
of spinning light’ Nature Photonics 2008



Ray optics doesn’t explain spin Hall effect of light

I Effect appears in the regime: wavelength λ� scale of
variation of the medium

I Ray optics for a beam: center of mass q(t) and averaged
wavevector p(t) of a beam satisfy classical equations:

q̇(t) = p̂(t)

ṗ(t) = ∇n(q(t))

I Polarization independent, cannot explain spin Hall effect of
light



Corrected ray optics equations

I Resolution: corrected ray equations, include an anomalous
velocity proportional to λ:

q̇(t) = p̂(t) + λṗ(t)×Fσ(p(t))

ṗ(t) = ∇n(q(t))

where σ = ± denotes the handedness of the polarization.

Fσ(p) := ∇p × 〈eσ(p)|i∇peσ(p)〉

= σ
p
|p|3

is the Berry curvature associated with each circular
polarization state eσ.



Ray optics limit analogous to the semiclassical limit of
quantum mechanics

I Semiclassical limit of Schrödinger’s equation with potential
W (q):

I seek wavepacket solutions, wavelength � scale of variation of
potential

I center of mass and average wavevector of a wavepacket follow
classical trajectories of H = 1

2 |p|
2 + W (q)

I justify by ‘WKB ansatz’:

ψ(x , t) = e iφ(x,t)/~a(x , t) + O(~)

I Ray optics limit of Maxwell’s equations in isotropic
gradient-index media:

I wavelength � scale of variation of refractive index n(q)
I center of mass and average wavevector of a beam follow

classical trajectories of H = |p| − n(q)
I justify by ‘ray optics ansatz’:

E (x , t) = e iφ(x,t)/λ
∑
σ∈±

aσ(x , t)eσ(∇φ) + O(λ)



Ray optics with polarization analogous to semiclassical
quantum mechanics in a crystal

I Beam polarization vector e(p) must be transverse to the
wavevector: p · e(p) = 0.

I Analogous to semiclassical quantum mechanics with a
periodic background V (x):

− 1

2
∆x → −

1

2
∆x + V (x),

∀v ∈ Λ : V (x + v) = V (x)

Wavepacket solutions modulated Bloch waves associated with
a Bloch band En(p), with role of wavevector played by
pseudo-momentum.

I 3-fold degeneracy of polarization condition at p = 0 =⇒
Berry curvature =⇒ spin Hall effect of light.

I Bloch bands En(p) may be degenerate =⇒ Berry curvature
=⇒ anomalous velocity



Outline of talk

I ‘Semiclassical wavepacket’ asymptotic solutions of
Schrödinger’s equation with a periodic background and
describe range of validity of the asymptotics

I Corrections to the asymptotics which describe anomalous
velocity due to Berry curvature (analogous to the spin Hall
effect of light)

I Landau-Zener Bloch band crossing interactions

I Ongoing work/future directions



Model: electron dynamics in crystals

I Electrons in solids under the influence of an external potential
which is slowly-varying relative to the lattice constant can be
modelled as wavepackets which are localized relative to the
varying potential but also spread over a few lattice periods

1

1Solid State Physics, Ashcroft and Mermin (1976).



Model: electron dynamics in crystals

I Non-dimensionalized model Schrödinger equation:

i∂tψ
ε = −1

2
∆xψ

ε + U(x , εx)ψε

where two-scale potential U is periodic with respect to the
lattice of ions Λ in its first argument:

∀v ∈ Λ,U(x + v ,X ) = U(x ,X )

I Focus on simpler case:

U(x , εx) = V (x) + W (εx)

I We consider the limit ε� 1: the external potential W (εx)
slowly varying on the scale of the lattice period



Recap: spectral theory of periodic operators

I Recall the spectral theory of the operator with periodic
potential obtained by taking ε = 0 (no applied field):

h := −1

2
∆x + V (x)

∀v ∈ Λ,V (x + v) = V (x)

I Bloch’s theorem: suffices to study the eigenvalue problem on
a single cell with p-pseudo-periodic boundary conditions:

hΦ(x ; p) = E (p)Φ(x ; p)

∀v ∈ Λ,Φ(x + v) = e ip·vΦ(x ; p)

symmetry of boundary condition =⇒ we may restrict p to a
primitive cell of the reciprocal lattice: first Brillouin zone B

I Fixed p, known as pseudo-momentum, self-adjoint elliptic
eigenvalue problem =⇒ discrete real spectrum:

E1(p) ≤ E2(p) ≤ ... ≤ En(p) ≤ ...



Spectral theory of periodic operators

I Maps p ∈ B → En(p) ∈ R are the Bloch band dispersion
functions

I The set of ‘Bloch waves’ are a basis (in L2(Rd)) of
eigenfunctions of h = −1

2∆x + V (x):{
Φn(x ; p) := e ip·xχn(x ; p), n ∈ N,p ∈ B

}
χn(x ; p) satisfies another self-adjoint elliptic eigenvalue
problem with periodic boundary conditions on a single cell

I The spectrum of h is then the union of real intervals swept
out by the Bloch band dispersion functions En(p)



Semiclassical re-scaling

Our model is:

i∂tψ
ε = −1

2
∆xψ

ε + V (x)ψε + W (εx)ψε

It will be convenient to work with the ‘semiclassical re-scaling’:

x ′ := εx , t ′ := εt,

ψε′(x ′, t ′) := ψε(x , t).

After dropping the primes we obtain:

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + V
(x
ε

)
ψε + W (x)ψε



Theorem (Carles-Sparber 2008, Hagedorn 1980)

Let (p(t),q(t)) denote classical trajectories generated by the
Bloch band Hamiltonian H = En(p) + W (q), and assume the
band En is isolated at each p(t):

∀t ≥ 0,En−1(p(t)) < En(p(t)) < En+1(p(t)).

Then there exists a solution ψε(x , t) of the PDE:

iε∂tψ
ε = −ε2 1

2
∆xψ

ε + V
(x
ε

)
ψε + W (x)ψε

which is asymptotic as ε ↓ 0 to a ‘semiclassical wavepacket’ up to
‘Ehrenfest time’ t ∼ ln 1/ε:

ψε(x , t) =

ε−d/4e iS(t)/εe−ip(t)·q(t)/εa

(
x − q(t)

ε1/2
, t

)
e ip(t)·x/εχn

(x
ε

; p(t)
)

+ OL2x (Rd )(ε
1/2eCt).



Precise interpretation of functions (q(t),p(t))

Writing the solution in terms of the multiscale variables:

ψε(x , t) = ψ̃ε(y , z , t)
∣∣∣
y= x−q(t)

ε1/2
,z= x

ε

+ OL2x (Rd )(ε
1/2)

q(t),p(t) nothing but the center of mass and expected
pseudo-momentum of the wavepacket, to leading order in ε1/2:

Qε(t) :=

∫
Rd

x |ψ̃ε(y , z , t)|2
y= x−q(t)

ε1/2
,z= x

ε

dx

= q(t) + O(ε1/2)

Pε(t) :=

∫
Rd

ψ̃ε(y , z , t)(−iε1/2∇y )ψ̃ε(y , z , t)
∣∣∣
y= x−q(t)

ε1/2
,z= x

ε

dx

= p(t) + O(ε1/2)



O(ε) corrections to dynamics of observables

I Expect correction to equations of motion of center of mass
and expected pseudo-momentum due to Berry curvature of
Bloch band ∝ wavelength ε, analogous to the spin Hall effect
of light2

2M. C. Chang and Q. Niu, ‘Berry phase, hyperorbits,
and the Hofstader’s Spectrum’ Phys. Rev. Lett. 199 Phys. Rev. Lett. 1995.



Theorem (Watson-Weinstein-Lu 2016)

1) The observables Qε(t) and Pε(t), the center of mass and
average pseudo-momentum, satisfy the equations of motion:

Q̇ε
(t) = ∇PεEn(Pε(t)) + εC 1[aε](t)

− εṖε
(t)×Fn(Pε(t)) + O(ε3/2)

Ṗε
(t) = −∇QεW (Qε(t)) + εC 2[aε](t) + O(ε3/2)

where Fn(Pε) is the Berry curvature of the Bloch band.
C 1[aε](t),C 2[aε](t) describe coupling to the wavepacket envelope
aε(y , t), which satisfies:

i∂ta
ε(y , t) = −1

2
∇y · ∇Pε∇PεEn(Pε(t)) · ∇ya

ε(y , t)

+
1

2
y · ∇Qε∇QεW (Qε(t)) · yaε(y , t) + OL2y (Rd )(ε

1/2)



Theorem (Watson-Weinstein-Lu 2016 continued)

2) After an appropriate change of variables, the coupled dynamics
of Qε(t),Pε(t), aε(y , t) can be derived from the ε-dependent
Hamiltonian:

Hε := En(Pε) + W (Qε) + ε∇QεW (Qε)An(Pε)

+ ε
1

2

∫
Rd

∇yaε(y , t) · ∇Pε∇PεEn(Pε) · ∇ya
ε(y , t) dy

+ ε
1

2

∫
Rd

yaε(y , t) · ∇Qε∇QεW (Qε) · yaε(y , t) dy + O(ε3/2)

where An(Pε) is the n-th band Berry connection. The equations
of motion can then be written:

Q̇ε
= ∇PεHε

Ṗε
= −∇QεHε

i∂ta
ε =

δH
δaε



Gaussian reduction of envelope equation

I The equation satisfied by the wavepacket envelope:

i∂ta
ε(y , t) = −1

2
∇y · ∇Pε∇PεEn(Pε(t)) · ∇ya

ε(y , t)

+
1

2
y · ∇Qε∇QεW (Qε(t)) · yaε(y , t)

has basis of exact solutions: e.g. time-dependent Gaussians3:

aε(y , t) =
1

[detAε(t)]1/2
exp

(
−1

2
y · Bε(t)Aε−1(t)y

)
Ȧε(t) = i∇Pε∇PεEn(Pε)Bε(t)

Ḃε(t) = i∇Qε∇QεW (Qε)Aε(t)

3Raising and lowering operators for semiclassical wave packets,
G. A. Hagedorn, Annals of Physics 1998.



Numerical simulation: ε = 0, decoupled system
Study coupling of observables to
wave-field:

I One-dimensional: d = 1

I Uniform background:
V
(
x
ε

)
= 0

I Gaussian envelope

I Applied potential
W (Q) = 1

6Q
3 + 1

2Q
2
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Numerical simulation: ε 6= 0, coupled system

Simulation of full coupled
system:

I Wave-field coupling has
destabilizing effect on
periodic orbits

I Wavepacket may escape
potential well to Qε = −∞
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Band crossing dynamics in d = 1

I Would like to relax the ‘isolated band’ assumption:

∀t ≥ 0,En−1(p(t)) < En(p(t)) < En+1(p(t))

4

I At crossings the Bloch band functions: p → En(p) are not
smooth in general. In d = 1 there exists a ‘smooth choice’ of
bands in a neighborhood of the crossing: E+(p),E−(p).

4Topologically protected states in one-dimensional continuous systems and Dirac points,
C. L. Fefferman, J. P. Lee-Thorp, M. I. Weinstein, PNAS 2014.



Theorem (Watson-Weinstein 2016)

Let E+(p),E−(p) denote smooth band functions in a neighborhood
of a crossing point p∗. Let (q+(t), p+(t)) denote a classical
trajectory of the +-band Hamiltonian E+(p) + W (q) which passes
through the crossing point at t = 0: p+(0) = p∗, ∂qW (q+(0)) 6= 0.
Then, if ψε(x , t) solves the PDE on the interval t ∈ [−T ,T ] and is
associated with the +-band at t = −T :

ψε(x ,−T ) =

ε−1/4e ip+(−T )(x−q+(−T ))/εa+

(
x − q+(−T )

ε1/2
,−T

)
χ+

(x
ε

; p+(−T )
)

then at t = T , the wavepacket remains to leading order associated
with the +-band:

ψε(x ,T ) =

ε−1/4e iS(T )/εe ip+(T )(x−q+(T ))/εa+

(
x − q+(T )

ε1/2
,T

)
χ+

(x
ε

; p+(T )
)

+ OL2x (R)(ε
1/2)



Theorem (Watson-Weinstein 2016 continued)

At the crossing time t = 0, a wavepacket associated with E− is
excited whose observables (q−(t), p−(t)) follow a classical
trajectory of the band Hamiltonian E−(p) +W (q) with initial data:

q−(0) = q+(0)

p−(0) = p+(0) = p∗.

This wavepacket has magnitude (in L2x(R)) proportional to ε1/2.



Remarks on band crossing result

I Proof is by matched asymptotic expansion: error in
single-band approximation blows up as t → 0, resolution by
making more general ansatz for asymptotic solution which
includes contributions from the band E− =⇒ excited wave

I Since ∂pE+(p∗) = −∂pE−(p∗), the wavepacket ‘excited’ at
the crossing has opposite group velocity. Call this a ‘reflected
wave’

I Our result can be seen as an analog of those obtained by
Hagedorn5 in the context of Born-Oppenheimer approximation
of molecular dynamics

5Molecular propagation through electron energy level crossings,
Hagedorn G., Memoirs of the American Mathematical Society (1994).



Recap of talk

I ‘Semiclassical wavepacket’ asymptotic solutions of
Schrödinger’s equation with a periodic background

I Corrections to the asymptotics which describe anomalous
velocity due to Berry curvature (analogous to the spin Hall
effect of light) and particle-field coupling between physical
observables and the shape of the wavepacket envelope

I Landau-Zener Bloch band crossing interactions

I Ongoing work/future directions



Ongoing work

I Rigorous derivation of spin Hall effect for circularly polarized
‘ray optics wavepackets’



Ongoing work
I Important non-separable example in d = 2:

U(x , εx) = Vh,e(x) + κ(k · εx)Vh,o(x)

where Vh,e(x),Vh,o(x) have symmetry of a honeycomb lattice
Λh, and satisfy:

Vh,e(−x) = Vh,e(x),Vh,o(−x) = −Vh,o(x)

and κ(ζ) models a domain wall along the line k · x = 0:

lim
ζ→−∞

κ(ζ) = −κ∞ < 0, κ(0) = 0, lim
ζ→∞

κ(ζ) = κ∞ > 0



I System shown to support robust edge states by Fefferman,
Lee-Thorp and Weinstein ‘Edge states in honeycomb
structures’, Arxiv 1506:06111

I Study semiclassical wavepackets localized near to the edge:
anomalous velocity due to Berry curvature along the edge



Future directions

I Spin Hall effect in anisotropic media, biaxial crystals:
dispersion surfaces conically degenerate along optic axis

I Crossing result in higher dimensions: ‘smooth bands’
E+(p),E−(p) in a neighborhood of the crossing may not exist

I Metamaterials: how can we generalize results when features
vary over scale of the wavelength?6

6X. Yin, Z. Ye, Y. Wang,
X. Zhang ‘Photonic spin Hall effect at metasurfaces’ Science 2013.



Thanks for listening!


