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The classical Brascamp–Lieb inequality

The Brascamp–Lieb inequality is a functional inequality with many parameters, designed
to simultaneously generalise many classical inequalities. It takes the form

∫

Rn

m∏

j=1

(fj ◦ Lj )
pj ≤ C

m∏

j=1

(∫

R
nj

fj

)pj

, (BL)

where Lj : R
n → R

nj is a linear surjection and pj ∈ [0, 1] for each 1 ≤ j ≤ m;
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where Lj : R
n → R

nj is a linear surjection and pj ∈ [0, 1] for each 1 ≤ j ≤ m; we refer to
the m-tuple (L, p) := ((Lj), (pj )) of parameters as the Brascamp–Lieb datum.
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where Lj : R
n → R

nj is a linear surjection and pj ∈ [0, 1] for each 1 ≤ j ≤ m; we refer to
the m-tuple (L, p) := ((Lj), (pj )) of parameters as the Brascamp–Lieb datum.

Here the fj ∈ L1(Rnj ) are nonnegative, and we denote by BL(L, p) the best constant
C ≤ ∞ in (BL).
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The Brascamp–Lieb inequality is a functional inequality with many parameters, designed
to simultaneously generalise many classical inequalities. It takes the form

∫

Rn
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j=1

(fj ◦ Lj )
pj ≤ C

m∏

j=1
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R
nj

fj

)pj

, (BL)

where Lj : R
n → R

nj is a linear surjection and pj ∈ [0, 1] for each 1 ≤ j ≤ m; we refer to
the m-tuple (L, p) := ((Lj), (pj )) of parameters as the Brascamp–Lieb datum.

Here the fj ∈ L1(Rnj ) are nonnegative, and we denote by BL(L, p) the best constant
C ≤ ∞ in (BL).

Notice that (BL) is equivalent to

∫

Rn

m∏

j=1

gj ◦ Lj ≤ C
m∏

j=1

‖gj‖Lqj (Rnj ),

where qj = 1/pj ∈ [1,∞].
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Some familiar examples

Hölder’s inequality: If
∑

pj = 1 then

∫

Rn

m∏

j=1

f
pj
j ≤

m∏

j=1
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j=1

f
pj
j ≤
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(∫

Rn

fj

)pj

;

i.e. (BL) with nj = n, Lj = In and
∑

pj = 1.
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Hölder’s inequality: If
∑

pj = 1 then

∫

Rn

m∏

j=1

f
pj
j ≤

m∏

j=1

(∫

Rn

fj

)pj

;

i.e. (BL) with nj = n, Lj = In and
∑

pj = 1.

Young’s convolution inequality: If k ∈ N and p1 + p2 + p3 = 2 then

∫

R2k

f1(x)
p1 f2(x − y)p2 f3(y)

p3dxdy ≤ Cp

(∫

Rk

f1

)p1
(∫

Rk

f2

)p2
(∫

Rk

f3

)p3

;
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Young’s convolution inequality: If k ∈ N and p1 + p2 + p3 = 2 then

∫

R2k

f1(x)
p1 f2(x − y)p2 f3(y)

p3dxdy ≤ Cp

(∫

Rk

f1

)p1
(∫

Rk

f2

)p2
(∫

Rk

f3

)p3

;

i.e. (BL) with n = 2k , n1 = n2 = n3 = k , p1 + p2 + p3 = 2 and

L1(x , y) = x , L2(x , y) = x − y , L3(x , y) = y .
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∫

R2k

f1(x)
p1 f2(x − y)p2 f3(y)

p3dxdy ≤ Cp

(∫

Rk

f1

)p1
(∫

Rk

f2

)p2
(∫

Rk

f3

)p3

;

i.e. (BL) with n = 2k , n1 = n2 = n3 = k , p1 + p2 + p3 = 2 and

L1(x , y) = x , L2(x , y) = x − y , L3(x , y) = y .

(Sharp constant Cp obtained by testing on centred gaussians;
Beckner/Brascamp–Lieb 1975.)

Jonathan Bennett (U. Birmingham) The Brascamp–Lieb inequality in modern harmonic analysis and PDE 15 July 2016 4 / 18



The Loomis–Whitney inequality: For 1 ≤ j ≤ n let πj : R
n → R

n−1 be given by

πj (x) = (x1, . . . , x̂j , · · · , xn).
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The Loomis–Whitney inequality: For 1 ≤ j ≤ n let πj : R
n → R

n−1 be given by

πj (x) = (x1, . . . , x̂j , · · · , xn).

The Loomis–Whitney inequality states that

∫

Rn

n∏

j=1

(fj ◦ πj)
1/(n−1) ≤

n∏

j=1

(∫

Rn−1

fj

)1/(n−1)

;
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The Loomis–Whitney inequality: For 1 ≤ j ≤ n let πj : R
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)1/(n−1)

;

i.e. (BL) with m = n, nj = n − 1, Lj = πj , pj = 1/(n − 1).
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Aside: this is a geometric inequality : If Ω ⊂ R
n and fj = χπj (Ω) then
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i.e. (BL) with m = n, nj = n − 1, Lj = πj , pj = 1/(n − 1).

Aside: this is a geometric inequality : If Ω ⊂ R
n and fj = χπj (Ω) then

|Ω| ≤
n∏

j=1

|πj (Ω)|
1/(n−1),

or

|Ω| ≥
n∏

j=1

|Ω|

|πj (Ω)|
.
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The affine-invariant Loomis–Whitney inequality: For 1 ≤ j ≤ n let
Lj : R

n → R
n−1 be a linear map, and X (Lj) ∈ R

n be the wedge product of the rows
of Lj .
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The affine-invariant Loomis–Whitney inequality: For 1 ≤ j ≤ n let
Lj : R

n → R
n−1 be a linear map, and X (Lj) ∈ R

n be the wedge product of the rows
of Lj .

Then,

∫

Rn

n∏

j=1

(fj ◦ Lj )
1/(n−1) ≤ det(X (L1) · · · X (Ln))

− 1
n−1

n∏

j=1

(∫

Rn−1

fj

)1/(n−1)

;
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− 1
n−1
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j=1

(∫

Rn−1

fj

)1/(n−1)

;

so that for p1 = · · · = pn = 1
n−1

,

BL(L, p) = det(X (L1) · · · X (Ln))
− 1

n−1 .
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n−1 be a linear map, and X (Lj) ∈ R

n be the wedge product of the rows
of Lj .

Then,

∫

Rn

n∏

j=1

(fj ◦ Lj )
1/(n−1) ≤ det(X (L1) · · · X (Ln))

− 1
n−1

n∏

j=1

(∫

Rn−1

fj

)1/(n−1)

;

so that for p1 = · · · = pn = 1
n−1

,

BL(L, p) = det(X (L1) · · · X (Ln))
− 1

n−1 .

Follows from the standard Loomis–Whitney inequality just by changes of variables.
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Lieb’s fundamental theorem
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Lieb’s fundamental theorem

Recall that BL(L, p) denotes the best constant in

∫

Rn

m∏

j=1

(fj ◦ Lj)
pj ≤ C

m∏

j=1

(∫

R
nj

fj

)pj

(BL)
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Lieb’s fundamental theorem

Recall that BL(L, p) denotes the best constant in

∫

Rn

m∏

j=1

(fj ◦ Lj)
pj ≤ C

m∏

j=1

(∫

R
nj

fj

)pj

(BL)

Theorem (Lieb 1990)

For any Brascamp–Lieb datum (L, p) the constant BL(L, p) is exhausted by centred
gaussian inputs; i.e.

fj (x) = e−π〈Aj x,x〉,

where x ∈ R
nj and Aj > 0.
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∫
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(∫
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nj

fj

)pj
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Theorem (Lieb 1990)

For any Brascamp–Lieb datum (L, p) the constant BL(L, p) is exhausted by centred
gaussian inputs; i.e.

fj (x) = e−π〈Aj x,x〉,

where x ∈ R
nj and Aj > 0. Hence

BL(L, p) = sup
A1,...,Am>0




∏m

j=1(detAj )
pj

det
(∑m

j=1 pjL
∗
j AjLj

)




1/2

.
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A1,...,Am>0
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j=1(detAj )
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1/2

.

Even with Lieb’s formula for BL(L, p), it is still far from clear when it is finite...
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When is BL(L,p) < ∞?
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When is BL(L,p) < ∞?

Easy necessary condition 1: by scaling (replacing fj with fj (λ·) for each j and λ > 0),

BL(L, p) < ∞ =⇒
m∑

j=1

pjnj = n.

Jonathan Bennett (U. Birmingham) The Brascamp–Lieb inequality in modern harmonic analysis and PDE 15 July 2016 8 / 18



When is BL(L,p) < ∞?

Easy necessary condition 1: by scaling (replacing fj with fj (λ·) for each j and λ > 0),

BL(L, p) < ∞ =⇒
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Easy necessary condition 2:

BL(L, p) < ∞ =⇒

m⋂
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ker Lj = {0},

since the integrand
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pj on

m⋂

j=1

ker Lj .
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When is BL(L,p) < ∞?

Easy necessary condition 1: by scaling (replacing fj with fj (λ·) for each j and λ > 0),

BL(L, p) < ∞ =⇒
m∑

j=1

pjnj = n.

Easy necessary condition 2:

BL(L, p) < ∞ =⇒

m⋂

j=1

ker Lj = {0},

since the integrand
m∏

j=1

(fj ◦ Lj )
pj ≡

m∏

j=1

fj (0)
pj on

m⋂

j=1

ker Lj .

Theorem (B-Carbery-Christ-Tao 2007)

BL(L, p) < ∞ if and only if
∑m

j=1 pjnj = n
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BL(L, p) < ∞ =⇒
m∑

j=1

pjnj = n.

Easy necessary condition 2:

BL(L, p) < ∞ =⇒

m⋂

j=1

ker Lj = {0},

since the integrand
m∏

j=1

(fj ◦ Lj )
pj ≡

m∏

j=1

fj (0)
pj on

m⋂

j=1

ker Lj .

Theorem (B-Carbery-Christ-Tao 2007)

BL(L, p) < ∞ if and only if
∑m

j=1 pjnj = n and

dimV ≤
m∑

j=1

pj dimLjV for all V ≤ R
n.
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Further structural results
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Further structural results

a description of the data (L, p) for which gaussian extremisers exist
(Carlen–Lieb–Loss, B–Carbery–Christ–Tao);
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Further structural results

a description of the data (L, p) for which gaussian extremisers exist
(Carlen–Lieb–Loss, B–Carbery–Christ–Tao);

the monotonicity of the functional

(f1, . . . , fm) 7→

∫
Rn

∏m

j=1(fj ◦ Lj )
pj

∏m

j=1

(∫
R
nj fj

)pj

as the fj evolve under certain heat equations (..., Carlen–Lieb–Loss,
B–Carbery–Christ–Tao);
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∫
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∏m
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∏m
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(∫
R
nj fj

)pj

as the fj evolve under certain heat equations (..., Carlen–Lieb–Loss,
B–Carbery–Christ–Tao);

...

the continuity of the constant L 7→ BL(L, p) (B–Bez–Cowling–Flock 2016);
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Further structural results

a description of the data (L, p) for which gaussian extremisers exist
(Carlen–Lieb–Loss, B–Carbery–Christ–Tao);

the monotonicity of the functional

(f1, . . . , fm) 7→

∫
Rn

∏m

j=1(fj ◦ Lj )
pj

∏m

j=1

(∫
R
nj fj

)pj

as the fj evolve under certain heat equations (..., Carlen–Lieb–Loss,
B–Carbery–Christ–Tao);

...

the continuity of the constant L 7→ BL(L, p) (B–Bez–Cowling–Flock 2016);

a polynomial time algorithm for determining whether BL(L, p) < ∞ and more
(Garg–Gurvits–Oliveira–Wigderson 2016).
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Part 2: Some recent variants of the Brascamp–Lieb inequality in harmonic analysis, and
links with PDE.

Jonathan Bennett (U. Birmingham) The Brascamp–Lieb inequality in modern harmonic analysis and PDE 15 July 2016 10 / 18



Variant 1: A nonlinear Brascamp–Lieb inequality

The so-called nonlinear Brascamp–Lieb inequality replaces the linear surjections
Lj : R

n → R
nj with local submersions Bj : U → R

nj , defined on a neighbourhood U of a
point x0 ∈ R

n.
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The so-called nonlinear Brascamp–Lieb inequality replaces the linear surjections
Lj : R

n → R
nj with local submersions Bj : U → R

nj , defined on a neighbourhood U of a
point x0 ∈ R

n.

Conjecture (Nonlinear Brascamp–Lieb)

If dBj (x0) = Lj with BL(L, p) < ∞, then provided U is taken sufficiently small,

∫

U

m∏

j=1

(fj ◦ Bj )
pj .

m∏

j=1

(∫

R
nj

fj

)pj

.
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∫
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m∏
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(∫
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nj

fj

)pj

.

This is true for the Loomis–Whitney inequality;
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Variant 1: A nonlinear Brascamp–Lieb inequality

The so-called nonlinear Brascamp–Lieb inequality replaces the linear surjections
Lj : R

n → R
nj with local submersions Bj : U → R

nj , defined on a neighbourhood U of a
point x0 ∈ R

n.

Conjecture (Nonlinear Brascamp–Lieb)

If dBj (x0) = Lj with BL(L, p) < ∞, then provided U is taken sufficiently small,

∫

U

m∏

j=1

(fj ◦ Bj )
pj .

m∏

j=1

(∫

R
nj

fj

)pj

.

This is true for the Loomis–Whitney inequality; i.e.

Theorem (Nonlinear Loomis–Whitney; B–Carbery–Wright 2005)

If dBj (x0) = Lj where L1, . . . , Ln : Rn → R
n−1, then provided U is taken sufficiently small,

∫

U

n∏

j=1

(fj ◦ Bj )
1

n−1 . det(X (L1) · · · X (Ln))
− 1

n−1

n∏

j=1

(∫

Rn−1

fj

) 1
n−1

.
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Variant 1: A nonlinear Brascamp–Lieb inequality

The so-called nonlinear Brascamp–Lieb inequality replaces the linear surjections
Lj : R

n → R
nj with local submersions Bj : U → R

nj , defined on a neighbourhood U of a
point x0 ∈ R

n.

Conjecture (Nonlinear Brascamp–Lieb)

If dBj (x0) = Lj with BL(L, p) < ∞, then provided U is taken sufficiently small,

∫

U

m∏

j=1

(fj ◦ Bj )
pj .

m∏

j=1

(∫

R
nj

fj

)pj

.

This is true for the Loomis–Whitney inequality; i.e.

Theorem (Nonlinear Loomis–Whitney; B–Carbery–Wright 2005)

If dBj (x0) = Lj where L1, . . . , Ln : Rn → R
n−1, then provided U is taken sufficiently small,

∫

U

n∏

j=1

(fj ◦ Bj )
1

n−1 . det(X (L1) · · · X (Ln))
− 1

n−1

n∏

j=1

(∫

Rn−1

fj

) 1
n−1

.

Generalises to “block Loomis–Whitney”, whereby
⊕

j
ker Lj = R

n (B–Bez 2010).
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Nonlinear Brascamp–Lieb conjecture true in general with a certain ε-loss at least...
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Nonlinear Brascamp–Lieb conjecture true in general with a certain ε-loss at least...

For this it is convenient to first recall the multilinear formulation of the Brascamp–Lieb
inequality: ∫

Rn

m∏

j=1

gj ◦ Lj ≤ BL(L, p)
m∏

j=1

‖gj‖Lqj (Rnj ),

where qj = 1/pj .
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j=1

gj ◦ Lj ≤ BL(L, p)
m∏

j=1

‖gj‖Lqj (Rnj ),

where qj = 1/pj .

Theorem (B–Bez–Flock–Lee 2015)

Suppose dBj (x0) = Lj with BL(L, p) < ∞ and U is sufficiently small. Then for every
ε > 0 there is a constant Cε < ∞ such that

∫

U

m∏

j=1

gj ◦ Bj ≤ Cε

m∏

j=1

‖gj‖
L
qj
ε (R

nj )
.
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ε > 0 there is a constant Cε < ∞ such that
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m∏
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‖gj‖
L
qj
ε (R

nj )
.

Proof strategy (Induction on Scales).
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Suppose dBj (x0) = Lj with BL(L, p) < ∞ and U is sufficiently small. Then for every
ε > 0 there is a constant Cε < ∞ such that

∫

U

m∏

j=1

gj ◦ Bj ≤ Cε

m∏

j=1

‖gj‖
L
qj
ε (R

nj )
.

Proof strategy (Induction on Scales). Observe that if gj is “constant at scale δ”, then

gj (Bj (x)) ∼ gj (Bj (x0) + Lj(x − x0))

whenever |x − x0| . δ1/2.
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Proof strategy (Induction on Scales). Observe that if gj is “constant at scale δ”, then

gj (Bj (x)) ∼ gj (Bj (x0) + Lj(x − x0))

whenever |x − x0| . δ1/2. (Since Bj (x) = Bj (x0) + Lj(x − x0) + O(|x − x0|
2).)
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ε > 0 there is a constant Cε < ∞ such that

∫

U

m∏

j=1

gj ◦ Bj ≤ Cε

m∏

j=1

‖gj‖
L
qj
ε (R

nj )
.

Proof strategy (Induction on Scales). Observe that if gj is “constant at scale δ”, then

gj (Bj (x)) ∼ gj (Bj (x0) + Lj(x − x0))

whenever |x − x0| . δ1/2. (Since Bj (x) = Bj (x0) + Lj(x − x0) + O(|x − x0|
2).)

Proceed by induction on δ, the scale at which the gj are “constant”...
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Multilinear Radon-like transforms

Such nonlinear Brascamp–Lieb inequalities may be recast as Radon-like transform
estimates of the type

∫

R
n1×···×Rnm

f1(y1) · · · fm(ym)δ(F (y))dy . ‖f1‖Lq1 (Rn1 ) · · · ‖fm‖Lqm (Rnm )

for certain nonlinear functions F .
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Multilinear Radon-like transforms

Such nonlinear Brascamp–Lieb inequalities may be recast as Radon-like transform
estimates of the type

∫

R
n1×···×Rnm

f1(y1) · · · fm(ym)δ(F (y))dy . ‖f1‖Lq1 (Rn1 ) · · · ‖fm‖Lqm (Rnm )

for certain nonlinear functions F .

A trilinear example in the plane:

Corollary (B–Bez–Gutiérrez 2013)

If F : R2 × R
2 × R

2 → R
3 is smooth in a neighbourhood of a point y0 and satisfies

det(∂y11F × ∂y12F ∂y21F × ∂y22F ∂y31F × ∂y32F ) 6= 0

there, then there is a neighbourhood V ∋ y0 such that
∫

V

f1(y1)f2(y2)f3(y3)δ(F (y))dy . ‖f1‖L2(R2)‖f2‖L2(R2)‖f3‖L2(R2).

Proof. Parametrise the action of the distribution δ ◦ F by x ∈ R
3, reducing it to the

nonlinear Loomis–Whitney inequality in R
3...
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Multilinear Radon-like transforms in PDE

Example from obstacle scattering (Born series). The error in approximating a
potential q : R2 → R by its Born approximation qB is comprised of a series of multilinear
operators. The main term involves, for example, the bilinear operator S(q) defined by

Ŝ(q)(x) =
iπ

|x |

∫

Γ(x)

q̂(x − y)q̂(y)dσx(y),

where Γ(x) is the circle centred at x/2 of radius |x |/2 in R
2, and dσx is arc-length

measure on Γ(x).
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potential q : R2 → R by its Born approximation qB is comprised of a series of multilinear
operators. The main term involves, for example, the bilinear operator S(q) defined by

Ŝ(q)(x) =
iπ

|x |

∫

Γ(x)

q̂(x − y)q̂(y)dσx(y),

where Γ(x) is the circle centred at x/2 of radius |x |/2 in R
2, and dσx is arc-length

measure on Γ(x).

By duality, L2 Sobolev bounds on S(q) may be recast as L2 bounds on an associated
trilinear form, which may be expressed in terms of

Λ(f1, f2, f3) :=

∫

(R2)3
f1(y1)f2(y2)f3(y3)δ(F (y))dy ,

where
F (y) =

(
y1 − y2 − y3,

∣∣∣y2 − y1
2

∣∣∣−
∣∣∣y1
2

∣∣∣
)
.
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potential q : R2 → R by its Born approximation qB is comprised of a series of multilinear
operators. The main term involves, for example, the bilinear operator S(q) defined by

Ŝ(q)(x) =
iπ

|x |

∫

Γ(x)

q̂(x − y)q̂(y)dσx(y),

where Γ(x) is the circle centred at x/2 of radius |x |/2 in R
2, and dσx is arc-length

measure on Γ(x).

By duality, L2 Sobolev bounds on S(q) may be recast as L2 bounds on an associated
trilinear form, which may be expressed in terms of

Λ(f1, f2, f3) :=

∫

(R2)3
f1(y1)f2(y2)f3(y3)δ(F (y))dy ,

where
F (y) =

(
y1 − y2 − y3,

∣∣∣y2 − y1
2

∣∣∣−
∣∣∣y1
2

∣∣∣
)
.

Another example: well-posedness of the Zakharov system (plasma physics),
Bejenaru–Herr–Holmer–Tataru 2009–2011.
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Variant 2: A Fourier-analytic Brascamp–Lieb inequality
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Variant 2: A Fourier-analytic Brascamp–Lieb inequality

Motivation: Stein’s restriction problem.
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Variant 2: A Fourier-analytic Brascamp–Lieb inequality

Motivation: Stein’s restriction problem.

Suppose Σ : U → R
n is a smooth parametrisation of a k-dimensional submanifold S of

R
n
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Variant 2: A Fourier-analytic Brascamp–Lieb inequality

Motivation: Stein’s restriction problem.

Suppose Σ : U → R
n is a smooth parametrisation of a k-dimensional submanifold S of

R
n (so U ⊆ R

k), and let

Eg(x) =

∫

U

e ix·Σ(ξ)g(ξ)dξ,

where x ∈ R
n.

Jonathan Bennett (U. Birmingham) The Brascamp–Lieb inequality in modern harmonic analysis and PDE 15 July 2016 15 / 18



Variant 2: A Fourier-analytic Brascamp–Lieb inequality

Motivation: Stein’s restriction problem.

Suppose Σ : U → R
n is a smooth parametrisation of a k-dimensional submanifold S of

R
n (so U ⊆ R

k), and let

Eg(x) =

∫

U

e ix·Σ(ξ)g(ξ)dξ,

where x ∈ R
n. We refer to E as the Fourier extension operator associated with Σ (or S).

Jonathan Bennett (U. Birmingham) The Brascamp–Lieb inequality in modern harmonic analysis and PDE 15 July 2016 15 / 18



Variant 2: A Fourier-analytic Brascamp–Lieb inequality

Motivation: Stein’s restriction problem.

Suppose Σ : U → R
n is a smooth parametrisation of a k-dimensional submanifold S of

R
n (so U ⊆ R

k), and let

Eg(x) =
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U

e ix·Σ(ξ)g(ξ)dξ,

where x ∈ R
n. We refer to E as the Fourier extension operator associated with Σ (or S).

(So called as E∗f = f̂ ◦ Σ.)
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Variant 2: A Fourier-analytic Brascamp–Lieb inequality

Motivation: Stein’s restriction problem.

Suppose Σ : U → R
n is a smooth parametrisation of a k-dimensional submanifold S of

R
n (so U ⊆ R

k), and let

Eg(x) =

∫

U

e ix·Σ(ξ)g(ξ)dξ,

where x ∈ R
n. We refer to E as the Fourier extension operator associated with Σ (or S).

(So called as E∗f = f̂ ◦ Σ.)

E.g. U = R
n−1 and Σ(ξ) = (ξ, |ξ|2) – the paraboloid.
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Motivation: Stein’s restriction problem.

Suppose Σ : U → R
n is a smooth parametrisation of a k-dimensional submanifold S of

R
n (so U ⊆ R

k), and let

Eg(x) =

∫

U

e ix·Σ(ξ)g(ξ)dξ,

where x ∈ R
n. We refer to E as the Fourier extension operator associated with Σ (or S).

(So called as E∗f = f̂ ◦ Σ.)

E.g. U = R
n−1 and Σ(ξ) = (ξ, |ξ|2) – the paraboloid. Notice that u : Rn−1 × R → C

given by

u(x , t) := Eĝ(x , t) =

∫

Rn−1

e i(x·ξ+t|ξ|2)ĝ(ξ)dξ

solves the Schrödinger equation i∂tu = ∆u with initial data g .
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n is a smooth parametrisation of a k-dimensional submanifold S of
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e ix·Σ(ξ)g(ξ)dξ,
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n. We refer to E as the Fourier extension operator associated with Σ (or S).

(So called as E∗f = f̂ ◦ Σ.)

E.g. U = R
n−1 and Σ(ξ) = (ξ, |ξ|2) – the paraboloid. Notice that u : Rn−1 × R → C

given by

u(x , t) := Eĝ(x , t) =

∫

Rn−1

e i(x·ξ+t|ξ|2)ĝ(ξ)dξ

solves the Schrödinger equation i∂tu = ∆u with initial data g .

Regardless of the choice of Σ, there is the trivial estimate ‖Eg‖∞ ≤ ‖g‖1.
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Variant 2: A Fourier-analytic Brascamp–Lieb inequality

Motivation: Stein’s restriction problem.

Suppose Σ : U → R
n is a smooth parametrisation of a k-dimensional submanifold S of

R
n (so U ⊆ R

k), and let

Eg(x) =

∫

U

e ix·Σ(ξ)g(ξ)dξ,

where x ∈ R
n. We refer to E as the Fourier extension operator associated with Σ (or S).

(So called as E∗f = f̂ ◦ Σ.)

E.g. U = R
n−1 and Σ(ξ) = (ξ, |ξ|2) – the paraboloid. Notice that u : Rn−1 × R → C

given by

u(x , t) := Eĝ(x , t) =

∫

Rn−1

e i(x·ξ+t|ξ|2)ĝ(ξ)dξ

solves the Schrödinger equation i∂tu = ∆u with initial data g .

Regardless of the choice of Σ, there is the trivial estimate ‖Eg‖∞ ≤ ‖g‖1.

Theorem (Stein–Tomas restriction theorem 1967/75)

If S is a compact hypersurface of nonvanishing gauss curvature, then ‖Eg‖ 2(n+1)
n−1

. ‖g‖2.
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n is a smooth parametrisation of a k-dimensional submanifold S of
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n (so U ⊆ R

k), and let

Eg(x) =

∫

U

e ix·Σ(ξ)g(ξ)dξ,

where x ∈ R
n. We refer to E as the Fourier extension operator associated with Σ (or S).

(So called as E∗f = f̂ ◦ Σ.)

E.g. U = R
n−1 and Σ(ξ) = (ξ, |ξ|2) – the paraboloid. Notice that u : Rn−1 × R → C

given by

u(x , t) := Eĝ(x , t) =

∫

Rn−1

e i(x·ξ+t|ξ|2)ĝ(ξ)dξ

solves the Schrödinger equation i∂tu = ∆u with initial data g .

Regardless of the choice of Σ, there is the trivial estimate ‖Eg‖∞ ≤ ‖g‖1.

Theorem (Stein–Tomas restriction theorem 1967/75)

If S is a compact hypersurface of nonvanishing gauss curvature, then ‖Eg‖ 2(n+1)
n−1

. ‖g‖2.

If S is the paraboloid then this becomes ‖u‖
L
2(n+1)/(n−1)
x,t

. ‖ĝ‖2 = ‖g‖2 – the classical

Strichartz estimate for the Schrödinger equation (Strichartz 1978).
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Now suppose Σ1, . . . ,Σm parametrise n1, . . . , nm dimensional submanifolds S1, . . . ,Sm of
R

n, and E1, . . . ,Em are their associated Fourier extension operators; i.e. that

Ejg(x) =

∫

Uj

e ix·Σj (ξ)g(ξ)dξ, 1 ≤ j ≤ m.

Jonathan Bennett (U. Birmingham) The Brascamp–Lieb inequality in modern harmonic analysis and PDE 15 July 2016 16 / 18



Now suppose Σ1, . . . ,Σm parametrise n1, . . . , nm dimensional submanifolds S1, . . . ,Sm of
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n, and E1, . . . ,Em are their associated Fourier extension operators; i.e. that

Ejg(x) =

∫

Uj

e ix·Σj (ξ)g(ξ)dξ, 1 ≤ j ≤ m.

Observe that if Σj is linear with adjoint Lj , then Ejg = ĝ ◦ Lj .
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n, and E1, . . . ,Em are their associated Fourier extension operators; i.e. that

Ejg(x) =

∫

Uj

e ix·Σj (ξ)g(ξ)dξ, 1 ≤ j ≤ m.

Observe that if Σj is linear with adjoint Lj , then Ejg = ĝ ◦ Lj . Thus the Brascamp–Lieb
inequality ∫

Rd

m∏

j=1

(fj ◦ Lj )
pj ≤ BL(L, p)

m∏

j=1

(∫

R
dj

fj

)pj

, (BL)

on setting fj = |ĝj |
2, maybe written as

∫

Rd

m∏

j=1

|Ejgj |
2pj ≤ BL(L, p)

m∏

j=1

‖gj‖
2pj
2 .
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Ejg(x) =

∫

Uj

e ix·Σj (ξ)g(ξ)dξ, 1 ≤ j ≤ m.

Observe that if Σj is linear with adjoint Lj , then Ejg = ĝ ◦ Lj . Thus the Brascamp–Lieb
inequality ∫
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(∫
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dj

fj

)pj

, (BL)

on setting fj = |ĝj |
2, maybe written as

∫

Rd

m∏

j=1

|Ejgj |
2pj ≤ BL(L, p)

m∏

j=1

‖gj‖
2pj
2 .

We conjecture that the linearity requirement on the submanifolds Sj can be relaxed here,
leading to certain “Fourier-analytic Brascamp–Lieb inequalities”...

Theorem (B–Carbery–Tao 2006; B–Bez–Flock–Lee 2015)

Suppose BL(L, p) < ∞, where Lj := (dΣj (0))
∗. Then for each ε > 0

∫

B(0;R)

m∏

j=1

|Ejgj |
2pj .ε Rε

m∏

j=1

‖gj‖
2pj
2 .
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Multilinear Strichartz estimates

Let us restrict attention to n codimension-1 submanifolds S1, . . . ,Sn of Rn.

Definition (Transversality)

We say that S1, . . . ,Sn are transversal if there exists ν > 0 such that whenever v1, . . . , vn
are unit normal vectors to S1, . . . ,Sn respectively, then | det(v1 v2 · · · vn)| ≥ ν.
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Multilinear Strichartz estimates

Let us restrict attention to n codimension-1 submanifolds S1, . . . ,Sn of Rn.

Definition (Transversality)

We say that S1, . . . ,Sn are transversal if there exists ν > 0 such that whenever v1, . . . , vn
are unit normal vectors to S1, . . . ,Sn respectively, then | det(v1 v2 · · · vn)| ≥ ν.

Corollary (B–Carbery–Tao 2006)

If E1, . . . ,En are extension operators associated with transversal compact submanifolds
S1, . . . ,Sn of Rn, then

‖E1g1 · · ·Engn‖L2/(n−1)(B(0;R)) .ε Rε‖g1‖2 · · · ‖gn‖2.
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Multilinear Strichartz estimates

Let us restrict attention to n codimension-1 submanifolds S1, . . . ,Sn of Rn.

Definition (Transversality)

We say that S1, . . . ,Sn are transversal if there exists ν > 0 such that whenever v1, . . . , vn
are unit normal vectors to S1, . . . ,Sn respectively, then | det(v1 v2 · · · vn)| ≥ ν.

Corollary (B–Carbery–Tao 2006)

If E1, . . . ,En are extension operators associated with transversal compact submanifolds
S1, . . . ,Sn of Rn, then

‖E1g1 · · ·Engn‖L2/(n−1)(B(0;R)) .ε Rε‖g1‖2 · · · ‖gn‖2.

In the context of transversal patches of paraboloid, this as a Strichartz estimate...

Corollary

Let u1, . . . , un : Rn−1 × R → C be solutions of i∂tu = ∆u with initial data g1, . . . , gn
respectively.
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Applications

Progress on Stein’s Fourier restriction conjecture: deeper Lp → Lq estimates for E
(Bourgain–Guth 2011).
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∑
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Proof of the Vinogradov Mean Value Conjecture: exponential sum bounds and
Diophantine equations (Bourgain–Demeter–Guth 2016).
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Thank you for listening!
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