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The classical Brascamp—Lieb inequality

The Brascamp—-Lieb inequality is a functional inequality with many parameters, designed
to simultaneously generalise many classical inequalities. It takes the form

/Rano PJ<CH</ )pj (BL)

where Lj : R" — R" is a linear surjection and p; € [0, 1] for each 1 < j < m;
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The classical Brascamp—Lieb inequality

The Brascamp—-Lieb inequality is a functional inequality with many parameters, designed
to simultaneously generalise many classical inequalities. It takes the form

/Rnﬂ(ﬂ'oLj)PJSCﬁ</an ﬁ')pj, (BL)

where L; : R" — R"% is a linear surjection and p; € [0, 1] for each 1 < j < m; we refer to
the m-tuple (L, p) := ((L;), (p;)) of parameters as the Brascamp—Lieb datum.

Here the f; € L*(R") are nonnegative, and we denote by BL(L,p) the best constant
C < oo in (BL).

Notice that (BL) is equivalent to

m m
[ Tleet = cIllgloeo,
R? j—1 j=1

where g; = 1/p; € [1, 00].
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@ Holder’s inequality: If > p; =1 then
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Some familiar examples

@ Holder’s inequality: If > p; =1 then

[I1e<11(/5)"

i.e. (BL) with nj=mn, Lj=1,and ) pj=1.

Jonathan Bennett (U. Birmingham) The Brascamp-Lieb inequality in modern harmonic an: 15 July 2016 4 / 18



Some familiar examples

@ Holder’s inequality: If > p; =1 then

[Ar =1L

Jj=1

i.e. (BL) with nj=mn, Lj=1,and ) pj=1.
@ Young’s convolution inequality: If kK € N and p;1 + p2 + ps = 2 then

/Rzkﬂ(X)Plﬁ(X—Y)pzﬁ(Y)mdxdyg G </Rk fl)pl (/Rk 6)"2 (/Rk f3)P3;
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Some familiar examples

@ Holder’s inequality: If > p; =1 then

/n.
RJ

i.e. (BL) with nj=mn, Lj=1,and ) pj=1.
@ Young’s convolution inequality: If kK € N and p;1 + p2 + ps = 2 then

/Rzkﬂ(X)Plﬁ(X—Y)pzﬁ(Y)mdxdyg G </Rk fl)pl (/Rk 6)"2 (/Rk f3)P3;

i.e. (BL)with n=2k, m=n=n=k, pr+p+p3=2and

m m

) P
<L)
1 R?

= j=1

LI(X7y):X7 L2(Xay):X_y7 L3(Xay):y'
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Some familiar examples

@ Holder’s inequality: If > p; =1 then

/n.
RJ

i.e. (BL) with nj=mn, Lj=1,and ) pj=1.
@ Young’s convolution inequality: If kK € N and p;1 + p2 + ps = 2 then

/RMﬂ(X)Plﬁ(X—Y)pzﬁ(Y)mdxdyg G </Rk fl)pl (/Rk 6)"2 (/Rk f3)P3;

i.e. (BL)with n=2k, m=n=n=k, pr+p+p3=2and

m m

) P
7 <11([.7)
1 R?

= j=1

LI(X7y):X7 L2(Xay):X_y7 L3(Xay):y'

(Sharp constant G, obtained by testing on centred gaussians;
Beckner/Brascamp—Lieb 1975.)
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@ The Loomis—Whitney inequality: For 1 < j < nlet m; : R" — R""* be given by

71-J'(X) :(X17"'v)/<;a"' aXﬂ)'
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@ The Loomis—Whitney inequality: For 1 < j < nlet m; : R" — R""* be given by

ﬂ-j(X) :(Xlw"v)/(;a"' aXﬂ)'

The Loomis—Whitney inequality states that

/"H 1/n1§1:[(/Rn1 )1/(n1);
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The Loomis—Whitney inequality states that

[eem eI ([ o)

e. (BL)withm=n, nj=n—-1, Lj=m;, pj=1/(n—1).
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The Loomis—Whitney inequality states that

[eem eI ([ o)

e. (BL)withm=n, nj=n—-1, Lj=m;, pj=1/(n—1).

Aside: this is a geometric inequality: If Q C R" and f; = X;(@) then
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@ The Loomis—Whitney inequality: For 1 < j < nlet m; : R" — R""* be given by

ﬂ-j(X) :(Xlw"v)/(;a"' aXﬂ)'

The Loomis—Whitney inequality states that

[eem eI ([ o)

e. (BL)withm=n, nj=n—-1, Lj=m;, pj=1/(n—1).

Aside: this is a geometric inequality: If Q C R" and f; = X;(@) then

|Q|<H|7r )|V,

or

" o)
Q| >
2= o
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@ The affine-invariant Loomis—Whitney inequality: For 1 < j < n let
L : R" — R""! be a linear map, and X(L;) € R" be the wedge product of the rows
of LJ'.
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@ The affine-invariant Loomis—Whitney inequality: For 1 < j < n let
L : R" — R""! be a linear map, and X(L;) € R" be the wedge product of the rows
of LJ'.
Then,

n n

/Rn [T o L) ™ < det(X(Ly) - - - X(L) "7 [] (/RH ﬂ-) 1/(n71);

j=t j=t
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@ The affine-invariant Loomis—Whitney inequality: For 1 < j < n let
L : R" — R""! be a linear map, and X(L;) € R" be the wedge product of the rows

of LJ'.
Then,
. AL 1/(n—1)
[ 1o < der(x(Ls) - - X(Ln))—mH(/ ﬂ') ;
R Jj=1 j=1 Rn—1
so that for py = -+ = p, = -1,
BL(L,p) = det(X(L1) - - - X(Ln))_"il,
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@ The affine-invariant Loomis—Whitney inequality: For 1 < j < n let
L : R" — R""! be a linear map, and X(L;) € R" be the wedge product of the rows

of Lj.
Then,
L 1/(n—1)
[T <amnr - xunr=f1([ )"
i 11\
so that for py = -+ = p, = -1,
BL(L,p) = det(X(L1) - - - X(Ln))_"il,

Follows from the standard Loomis—Whitney inequality just by changes of variables.
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Lieb's fundamental theorem

Recall that BL(L, p) denotes the best constant in

/Rnn(foL cﬂ(/wﬁ)m (BL)
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Lieb's fundamental theorem

Recall that BL(L, p) denotes the best constant in

/Rnﬁ(ﬁog)pf'<cﬂ(/m ﬂ.)pj (BL)

Theorem (Lieb 1990)

For any Brascamp—Lieb datum (L, p) the constant BL(L, p) is exhausted by centred
gaussian inputs; i.e.

x) = e ™A,

where x € R% and A; > 0.
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Lieb's fundamental theorem

Recall that BL(L, p) denotes the best constant in

/Rnﬁ(ﬁog)pf'<cﬂ(/m ﬂ.)pj (BL)

Theorem (Lieb 1990)

For any Brascamp—Lieb datum (L, p) the constant BL(L, p) is exhausted by centred
gaussian inputs; i.e.

where x € R" and A; > 0. Hence

1/2

T (det A;)P
BL(L,p)= sup S i
A1,..,Am>0 \ det (Z‘;n:l ijfAJLJ)
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Lieb's fundamental theorem

Recall that BL(L, p) denotes the best constant in

/Rnﬁ(ﬁoLj)pf'<Cﬂ</an ﬂ.)pj (BL)

Theorem (Lieb 1990)

For any Brascamp—Lieb datum (L, p) the constant BL(L, p) is exhausted by centred
gaussian inputs; i.e.

where x € R" and A; > 0. Hence

1/2

T (det A;)P
BL(L,p)= sup S i
A1,..,Am>0 \ det (Z‘;n:l ijfAJLJ)

Even with Lieb's formula for BL(L, p), it is still far from clear when it is finite...
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When is BL(L, p) < co?
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When is BL(L, p) < co?

Easy necessary condition 1: by scaling (replacing f; with f;(\-) for each j and A > 0),

BL(L,p) < c0o = ijﬂj =n.

j=1
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When is BL(L, p) < co?

Easy necessary condition 1: by scaling (replacing f; with f;(\-) for each j and A > 0),

BL(L,p) < c0o = ijﬂj =n.

j=1
Easy necessary condition 2:

BL(L,p) < oo = [ )kerL; = {0},
j=1

since the integrand
m

[[(foL)? =]]£(0)% on (kerL,.

j=t j=t j=t
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When is BL(L, p) < co?

Easy necessary condition 1: by scaling (replacing f; with f;(\-) for each j and A > 0),

BL(L,p) < c0o = ijﬂj =n.

j=1
Easy necessary condition 2:

BL(L,p) < oo = [ )kerL; = {0},

j=t

since the integrand
m

[1foL)? £(0)” on (kerL,.

j=t j=t j=t

Theorem (B-Carbery-Christ-Tao 2007)

BL(L,p) < oo if and only if 377", pinj = n
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When is BL(L, p) < co?

Easy necessary condition 1: by scaling (replacing f; with f;(\-) for each j and A > 0),

BL(L,p) < c0o = ijﬂj =n.

j=1
Easy necessary condition 2:

BL(L,p) < oo = [ )kerL; = {0},

j=t

since the integrand
m

[1foL)? £(0)” on (kerL,.

j=t j=t j=t

Theorem (B-Carbery-Christ-Tao 2007)

BL(L,p) < oo if and only if 377", pinj = n and

dimV <Y pidimL;V  forall V <R".

j=1
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Further structural results

@ a description of the data (L, p) for which gaussian extremisers exist
(Carlen—Lieb—Loss, B-Carbery—Christ-Tao);
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Further structural results

@ a description of the data (L, p) for which gaussian extremisers exist
(Carlen—Lieb—Loss, B-Carbery—Christ-Tao);

@ the monotonicity of the functional
fR,, (fioLy)?
j:1 (fR"J J)

as the f; evolve under certain heat equations (..., Carlen—Lieb—Loss,
B—Carbery—Christ-Tao);

(A, ., fm) —
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Further structural results

@ a description of the data (L, p) for which gaussian extremisers exist
(Carlen—Lieb—Loss, B-Carbery—Christ-Tao);

@ the monotonicity of the functional
fR,, (fioLy)?
j:1 (fR"J J)

as the f; evolve under certain heat equations (..., Carlen—Lieb—Loss,
B—Carbery—Christ-Tao);

(A, ., fm) —

o

@ the continuity of the constant L — BL(L, p) (B-Bez—Cowling—Flock 2016);
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Further structural results

@ a description of the data (L, p) for which gaussian extremisers exist
(Carlen—Lieb—Loss, B-Carbery—Christ-Tao);

@ the monotonicity of the functional
fR,, (fioLy)?
j:1 (fR"J J)

as the f; evolve under certain heat equations (..., Carlen—Lieb—Loss,
B—Carbery—Christ-Tao);

(A, ., fm) —

°
@ the continuity of the constant L — BL(L, p) (B—Bez—Cowling—Flock 2016);

@ a polynomial time algorithm for determining whether BL(L, p) < co and more
(Garg—Gurvits—Oliveira-Wigderson 2016).
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Part 2: Some recent variants of the Brascamp—Lieb inequality in harmonic analysis, and
links with PDE.
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Variant 1: A nonlinear Brascamp—Lieb inequality

The so-called nonlinear Brascamp—Lieb inequality replaces the linear surjections

L : R" — R" with local submersions B; : U — R, defined on a neighbourhood U of a
point xop € R”".
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Variant 1: A nonlinear Brascamp—Lieb inequality

The so-called nonlinear Brascamp—Lieb inequality replaces the linear surjections

L : R" — R" with local submersions B; : U — R, defined on a neighbourhood U of a
point xop € R".

Conjecture (Nonlinear Brascamp—Lieb)

If dBj(x0) = L; with BL(L, p) < oo, then provided U is taken sufficiently small,

/Uﬁ(ﬁ‘ij)ijf_!(/anﬁ)Pj-

Jonathan Bennett (U. Birmingham)

The Brascamp-Lieb inequality in modern harmonic an: 15 July 2016

11 /18



Variant 1: A nonlinear Brascamp—Lieb inequality

The so-called nonlinear Brascamp—Lieb inequality replaces the linear surjections

L : R" — R" with local submersions B; : U — R, defined on a neighbourhood U of a
point xop € R".

Conjecture (Nonlinear Brascamp—Lieb)

If dBj(x0) = L; with BL(L, p) < oo, then provided U is taken sufficiently small,

/Uﬁ(ﬁ‘ij)ijf_!(/anﬁ)Pj-

This is true for the Loomis—Whitney inequality;
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Variant 1: A nonlinear Brascamp—Lieb inequality

The so-called nonlinear Brascamp—Lieb inequality replaces the linear surjections

L : R" — R" with local submersions B; : U — R, defined on a neighbourhood U of a
point xop € R".

Conjecture (Nonlinear Brascamp-Lieb)

If dBj(x0) = L; with BL(L, p) < oo, then provided U is taken sufficiently small,

[Ty = (/ f)
Ui j=1 \RY

This is true for the Loomis—Whitney inequality; i.e.

Theorem (Nonlinear Loomis—Whitney; B—Carbery—Wright 2005)

If dBj(x0) = L; where Ly, ..., L, : R" — R"™!, then provided U is taken sufficiently small,

/lef[(ﬂo B))m1 < det(X(L1) - - - X(Ln)) "1 ﬁ (/]RH ﬂ)ll

J=1
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Variant 1: A nonlinear Brascamp—Lieb inequality

The so-called nonlinear Brascamp—Lieb inequality replaces the linear surjections

L : R" — R" with local submersions B; : U — R, defined on a neighbourhood U of a
point xop € R".

Conjecture (Nonlinear Brascamp-Lieb)

If dBj(x0) = L; with BL(L, p) < oo, then provided U is taken sufficiently small,

[Ty = (/ f)
Ui j=1 \RY

This is true for the Loomis—Whitney inequality; i.e.

Theorem (Nonlinear Loomis—Whitney; B—Carbery—Wright 2005)

If dBj(x0) = L; where Ly, ..., L, : R" — R"™!, then provided U is taken sufficiently small,

/lef[(ﬂo B))m1 < det(X(L1) - - - X(Ln)) "1 ﬁ (/]RH ﬂ)ll

J=1

Generalises to “block Loomis—Whitney", whereby P, ker L; = R" (B-Bez 2010).
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Nonlinear Brascamp—Lieb conjecture true in general with a certain e-loss at least...
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Nonlinear Brascamp—Lieb conjecture true in general with a certain e-loss at least...

For this it is convenient to first recall the multilinear formulation of the Brascamp—Lieb
inequality:

IR CETELIO) (R
R j—1 j=1

where g; = 1/p;.

15 July 2016
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Nonlinear Brascamp—Lieb conjecture true in general with a certain e-loss at least...

For this it is convenient to first recall the multilinear formulation of the Brascamp—Lieb

inequality:
m m
IR CETELIO) (R
R j=1

where g; = 1/p;.

Theorem (B-Bez—Flock—Lee 2015)

Suppose dBj(x0) = L;j with BL(L,p) < oo and U is sufficiently small. Then for every
€ > 0 there is a constant C. < oo such that

m m
[ Heo8 < &I gl
U= j=1 ©
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Nonlinear Brascamp—Lieb conjecture true in general with a certain e-loss at least...

For this it is convenient to first recall the multilinear formulation of the Brascamp—Lieb

inequality:
m m
IR CETELIO) (R
R j=1

where g; = 1/p;.

Theorem (B-Bez—Flock—Lee 2015)

Suppose dBj(x0) = L;j with BL(L,p) < oo and U is sufficiently small. Then for every
€ > 0 there is a constant C. < oo such that

m m
[ Heo8 < &I gl
Uj=1 j=1 ©

Proof strategy (Induction on Scales).
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Nonlinear Brascamp—Lieb conjecture true in general with a certain e-loss at least...

For this it is convenient to first recall the multilinear formulation of the Brascamp—Lieb

inequality:
m m
IR CETELIO) (R
R j=1

where g; = 1/p;.

Theorem (B-Bez—Flock—Lee 2015)

Suppose dBj(x0) = L;j with BL(L,p) < oo and U is sufficiently small. Then for every
€ > 0 there is a constant C. < oo such that

m m
[ Heo8 < &I gl
Uj=1 j=1 ©

Proof strategy (Induction on Scales). Observe that if gj is “constant at scale §", then
&(Bi(x)) ~ g(Bj(x0) + Li(x — x0))

whenever |x — x| < 6Y/2.
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Nonlinear Brascamp—Lieb conjecture true in general with a certain e-loss at least...

For this it is convenient to first recall the multilinear formulation of the Brascamp—Lieb

inequality:
m m
IR CETELIO) (R
R j=1

where g; = 1/p;.

Theorem (B-Bez—Flock—Lee 2015)

Suppose dBj(x0) = L;j with BL(L,p) < oo and U is sufficiently small. Then for every
€ > 0 there is a constant C. < oo such that

m m
[ Heo8 < &I gl
Uj=1 j=1 ©

Proof strategy (Induction on Scales). Observe that if gj is “constant at scale §", then
&(Bi(x)) ~ g(Bj(x0) + Li(x — x0))
whenever |x — x| < 8*/2. (Since Bj(x) = Bj(x0) + Lj(x — x0) + O(|x — x0|?).)

Jonathan Bennett (U. Birmingham) The Brascamp-Lieb inequality in modern harmonic an: 15 July 2016



Nonlinear Brascamp—Lieb conjecture true in general with a certain e-loss at least...

For this it is convenient to first recall the multilinear formulation of the Brascamp—Lieb

inequality:
m m
IR CETELIO) (R
R j=1

where g; = 1/p;.

Theorem (B-Bez—Flock—Lee 2015)

Suppose dBj(x0) = L;j with BL(L,p) < oo and U is sufficiently small. Then for every
e > 0 there is a constant C. < oo such that

m m
[ Heo8 < &I gl
Uj=1 j=1 ©

Proof strategy (Induction on Scales). Observe that if gj is “constant at scale §", then
&(Bi(x)) ~ g(Bj(x0) + Li(x — x0))
whenever |x — x| < 8*/2. (Since Bj(x) = Bj(x0) + Lj(x — x0) + O(|x — x0|?).)

Proceed by induction on §, the scale at which the gj are “constant”...
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Multilinear Radon-like transforms

Such nonlinear Brascamp—Lieb inequalities may be recast as Radon-like transform
estimates of the type

/ R~ Fn(ym)S(F )y < | llion ey - ol ey
RM x--- XRMm

for certain nonlinear functions F.
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Multilinear Radon-like transforms

Such nonlinear Brascamp—Lieb inequalities may be recast as Radon-like transform
estimates of the type

/ A1) - fm(ym)S(F(y))dy S [Ifillion @y - - || fml| Lom (grm)
RM x--- XRMm

for certain nonlinear functions F.

A trilinear example in the plane:

Corollary (B-Bez—Gutiérrez 2013)

If F:R* x R? x R?> — R? js smooth in a neighbourhood of a point yo and satisfies
det(0y,, F X Oy, F Oy F X 0y F Oy F X 0y, F) # 0

there, then there is a neighbourhood V 3 yy such that

/vfl(}’l)f2(}’2)f3(y3)5("_()/))dy S Al e lIfll @)l 6 2@2)-

Proof. Parametrise the action of the distribution § o F by x € R3, reducing it to the
nonlinear Loomis—Whitney inequality in R3...
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Multilinear Radon-like transforms in PDE

Example from obstacle scattering (Born series). The error in approximating a
potential g : R> — R by its Born approximation gg is comprised of a series of multilinear
operators. The main term involves, for example, the bilinear operator S(q) defined by

5(q)(x) = |/ G(x — y)q(y)dox(y),

where T'(x) is the circle centred at x/2 of radius |x|/2 in R?, and do is arc-length
measure on ['(x).
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Multilinear Radon-like transforms in PDE

Example from obstacle scattering (Born series). The error in approximating a
potential g : R> — R by its Born approximation gg is comprised of a series of multilinear
operators. The main term involves, for example, the bilinear operator S(q) defined by

5(q)(x) = |/ G(x — y)q(y)dox(y),

where T'(x) is the circle centred at x/2 of radius |x|/2 in R?, and do is arc-length
measure on ['(x).

By duality, L? Sobolev bounds on S(g) may be recast as L? bounds on an associated
trilinear form, which may be expressed in terms of

Ak, £, ) = / () h0) B(s)5(F(y))dy.

(R2)3
where " "
n-%]-|3)):

F(y) = ()/1 -y —ys,
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Multilinear Radon-like transforms in PDE

Example from obstacle scattering (Born series). The error in approximating a
potential g : R — R by its Born approximation gg is comprised of a series of multilinear
operators. The main term involves, for example, the bilinear operator S(q) defined by

5(q)(x) = |/ G(x — y)q(y)dox(y),

where T'(x) is the circle centred at x/2 of radius |x|/2 in R?, and do is arc-length
measure on ['(x).

By duality, L? Sobolev bounds on S(g) may be recast as L? bounds on an associated
trilinear form, which may be expressed in terms of

N8 = [ R00RODBAIEL) .
»-31-12)

Another example: well-posedness of the Zakharov system (plasma physics),
Bejenaru—Herr—Holmer—Tataru 2009-2011.

where

F(y) = ()/1 -y —ys,

Jonathan Bennett (U. Birmingham) The Brascamp-Lieb inequality in modern harmonic an: 15 July 2016 14 / 18



Variant 2: A Fourier-analytic Brascamp—Lieb inequality
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Suppose ¥ : U — R" is a smooth parametrisation of a k-dimensional submanifold S of
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Variant 2: A Fourier-analytic Brascamp—Lieb inequality

Motivation: Stein’s restriction problem.

Suppose ¥ : U — R" is a smooth parametrisation of a k-dimensional submanifold S of
R" (so U C R¥), and let

Eg(x) = /U S TOg(e)de,

where x € R".
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Variant 2: A Fourier-analytic Brascamp—Lieb inequality

Motivation: Stein’s restriction problem.

Suppose ¥ : U — R" is a smooth parametrisation of a k-dimensional submanifold S of
R" (so U C R¥), and let

Eg(x) = /U S TOg(e)de,

where x € R". We refer to E as the Fourier extension operator associated with X (or S).
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Eg(x) = /U S TOg(e)de,

where x € R". We refer to E as the Fourier extension operator associated with X (or S).
(So called as E*f =foX.)
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Variant 2: A Fourier-analytic Brascamp—Lieb inequality

Motivation: Stein’s restriction problem.

Suppose ¥ : U — R" is a smooth parametrisation of a k-dimensional submanifold S of
R" (so U C R¥), and let

Eg(x) = /U S TOg(e)de,

where x € R". We refer to E as the Fourier extension operator associated with X (or S).
(So called as E*f =foX.)

E.g. U=R"!and X(¢) = (¢, |¢|*) - the paraboloid.
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Variant 2: A Fourier-analytic Brascamp—Lieb inequality

Motivation: Stein’s restriction problem.

Suppose ¥ : U — R" is a smooth parametrisation of a k-dimensional submanifold S of
R" (so U C R¥), and let

Eg(x) = /U S TOg(e)de,

where x € R". We refer to E as the Fourier extension operator associated with X (or S).
(So called as E*f =foX.)

E.g. U=R"!and X(¢) = (&, |€[?) — the paraboloid. Notice that u: R xR — C
given by

u(x,t) == EB(x, t) = / O ertleg () de

solves the Schrodinger equation i0;u = Au with initial data g.
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Variant 2: A Fourier-analytic Brascamp—Lieb inequality

Motivation: Stein’s restriction problem.

Suppose ¥ : U — R" is a smooth parametrisation of a k-dimensional submanifold S of
R" (so U C R¥), and let

Eg(x) = /U S TOg(e)de,

where x € R". We refer to E as the Fourier extension operator associated with X (or S).
(So called as E*f =foX.)

E.g. U=R"!and X(¢) = (&, |€[?) — the paraboloid. Notice that u: R xR — C
given by
u(x, t) = Eg(x,t) = / e/t g(¢)de

solves the Schrodinger equation i0;u = Au with initial data g.

Regardless of the choice of X, there is the trivial estimate ||Egllc < ||g]||1-
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Variant 2: A Fourier-analytic Brascamp—Lieb inequality

Motivation: Stein’s restriction problem.

Suppose ¥ : U — R" is a smooth parametrisation of a k-dimensional submanifold S of
R" (so U C R¥), and let

Eg(x) = /U S TOg(e)de,

where x € R". We refer to E as the Fourier extension operator associated with X (or S).
(So called as E*f =foX.)

E.g. U=R"!and X(¢) = (&, |€[?) — the paraboloid. Notice that u: R xR — C
given by
u(x, t) = Eg(x,t) = / e/t g(¢)de

solves the Schrodinger equation i0;u = Au with initial data g.

Regardless of the choice of X, there is the trivial estimate ||Egllc < ||g]||1-

Theorem (Stein—Tomas restriction theorem 1967/75)

If S is a compact hypersurface of nonvanishing gauss curvature, then ||Eg|l 2wy < ||gll2-
n—1
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Variant 2: A Fourier-analytic Brascamp—Lieb inequality

Motivation: Stein’s restriction problem.

Suppose ¥ : U — R" is a smooth parametrisation of a k-dimensional submanifold S of
R" (so U C R¥), and let

Eg(x) = /U S TOg(e)de,

where x € R". We refer to E as the Fourier extension operator associated with X (or S).
(So called as E*f =foX.)

E.g. U=R"!and X(¢) = (&, |€[?) — the paraboloid. Notice that u: R xR — C
given by

~ i(x- PN
) 1= Eglet) = [ & g(e)ae
R
solves the Schrodinger equation i0;u = Au with initial data g.

Regardless of the choice of X, there is the trivial estimate ||Egllc < ||g]||1-

Theorem (Stein—Tomas restriction theorem 1967/75)

If S is a compact hypersurface of nonvanishing gauss curvature, then ||Eg|l 2wy < ||gll2-
n—1

If S is the paraboloid then this becomes ||u]| 21/ (0-) < |lgll2 = |lgll2 - the classical
Strichartz estimate for the Schrodinger equatlon (Strichartz1978):
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Now suppose X1,..., %, parametrise ni,..., N, dimensional submanifolds Si,..., S, of
R", and Ei,..., En are their associated Fourier extension operators; i.e. that

Ea(x) = / T Og(e)de, 1<j<m.

Ui
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Now suppose X1,..., %, parametrise ni,..., N, dimensional submanifolds Si,..., S, of
R", and Ei, ..., En are their associated Fourier extension operators; i.e. that

Ee() = [ & 9g(0)de, 1<j<m

Observe that if ¥ is linear with adjoint L;, then Ejg =g o L;.
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Now suppose X1,..., %, parametrise ni,..., N, dimensional submanifolds Si,..., S, of

R", and Ei, ..., En are their associated Fourier extension operators; i.e. that
Eel) = [ &9g(0)de, 1<i<m
Y

Observe that if X is linear with adjoint L;, then Ejg = g o L;. Thus the Brascamp-Lieb

inequality ,
/RdH "1<BLLp1:[</ ),, (BL)

on setting f; = |gj|°>, maybe written as

/ [11E&* <BLLp) ][] llgl>”
R 5 j=1
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Now suppose X1,..., %, parametrise ni,..., N, dimensional submanifolds Si,..., S, of

R", and Ei, ..., En are their associated Fourier extension operators; i.e. that
Eel) = [ &9g(0)de, 1<i<m
Y

Observe that if X is linear with adjoint L;, then Ejg = g o L;. Thus the Brascamp-Lieb

inequality
o
;)% < BL(L BL
[ Mooy zeenll ([, 5)" o0
on setting f; = |gj|°>, maybe written as
/ [11E&™ <BLLP) [ ] llall”-
R 5 j=1

We conjecture that the linearity requirement on the submanifolds S; can be relaxed here,
leading to certain “Fourier-analytic Brascamp—Lieb inequalities”...

Theorem (B—Carbery—Tao 2006; B-Bez—Flock—Lee 2015)

Suppose BL(L, p) < oo, where Lj := (dX;(0))*. Then for eache >0

2 B 2
ARHMaﬁﬁﬁﬂMW-
0;

Jonathan Bennett (U. Birmingham) The Brascamp-Lieb inequality in modern harmonic an: 15 July 2016 16 / 18



Multilinear Strichartz estimates

Let us restrict attention to n codimension-1 submanifolds S, ..., S, of R".

Definition (Transversality)

We say that Si,...,S, are transversal if there exists v > 0 such that whenever vi,..., v,
are unit normal vectors to Si, ..., S, respectively, then |det(vi vo --- v,)| > v.

17 / 18
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Multilinear Strichartz estimates

Let us restrict attention to n codimension-1 submanifolds Si,...,S, of R".

Definition (Transversality)

We say that Si,...,S, are transversal if there exists v > 0 such that whenever vi,..., v,
are unit normal vectors to Si, ..., S, respectively, then |det(vi vo --- v,)| > v.

Corollary (B—Carbery—Tao 2006)

If E1, ..., E, are extension operators associated with transversal compact submanifolds
S1,...,5, of R, then

| Exg1 - -+ Engnll2/t0-18(0im)) S REIlg1ll2 -+~ llgnll2-
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Multilinear Strichartz estimates

Let us restrict attention to n codimension-1 submanifolds Si,...,S, of R".

Definition (Transversality)

We say that Si,...,S, are transversal if there exists v > 0 such that whenever vi,..., v,
are unit normal vectors to Si, ..., S, respectively, then |det(vi vo --- v,)| > v.

Corollary (B—Carbery—Tao 2006)

If E1, ..., E, are extension operators associated with transversal compact submanifolds
S1,...,5, of R, then

| Exg1 - -+ Engnll2/t0-18(0im)) S REIlg1ll2 -+~ llgnll2-

In the context of transversal patches of paraboloid, this as a Strichartz estimate...

Let u1,...,u,: R"™1 x R — C be solutions of i0;u = Au with initial data g1, ..., gn
respectively.

Jonathan Bennett (U. Birmingham) The Brascamp-Lieb inequality in modern harmonic an: 15 July 2016 17



Multilinear Strichartz estimates

Let us restrict attention to n codimension-1 submanifolds Si,...,S, of R".

Definition (Transversality)

We say that Si,...,S, are transversal if there exists v > 0 such that whenever vi,..., v,
are unit normal vectors to Sy, ..., S, respectively, then |det(vi vo -+ v,)| > v.

Corollary (B—Carbery—Tao 2006)

If E1, ..., E, are extension operators associated with transversal compact submanifolds
S1,...,5, of R, then

Ergy - - Engnll 2/tn-1)5(0;r)) S REllg112 -~ llgnll2-

In the context of transversal patches of paraboloid, this as a Strichartz estimate...

Let u1,...,u,: R"™1 x R — C be solutions of i0;u = Au with initial data g1, ..., gn
respectively. If supp(g1),...,supp(g,) € R"~! meet no affine hyperplane, then

[l - - tnll 276021 11<ry Se R Nlgnll2 - - llgalle-

Jonathan Bennett (U. Birmingham) The Brascamp-Lieb inequality in modern harmonic an: 15 July 2016 17



Multilinear Strichartz estimates

Let us restrict attention to n codimension-1 submanifolds Si,...,S, of R".

Definition (Transversality)

We say that Si,...,S, are transversal if there exists v > 0 such that whenever vi,..., v,
are unit normal vectors to Sy, ..., S, respectively, then |det(vi vo -+ v,)| > v.

Corollary (B—Carbery—Tao 2006)

If E1, ..., E, are extension operators associated with transversal compact submanifolds
S1,...,5, of R, then

Ergy - - Engnll 2/tn-1)5(0;r)) S REllg112 -~ llgnll2-

In the context of transversal patches of paraboloid, this as a Strichartz estimate...

Let u1,...,u,: R"™1 x R — C be solutions of i0;u = Au with initial data g1, ..., gn
respectively. If supp(g1),...,supp(g,) € R"~! meet no affine hyperplane, then

[l - - tnll 276021 11<ry Se R Nlgnll2 - - llgalle-

(The corresponding linear inequality [|u|| 2n/(—1) < ||g||2 is false.)
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Applications

@ Progress on Stein’s Fourier restriction conjecture: deeper LP — L9 estimates for E
(Bourgain—Guth 2011).
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Applications

@ Progress on Stein’s Fourier restriction conjecture: deeper LP — L9 estimates for E
(Bourgain—Guth 2011). For g : U — C, write xy = Y__ XU, so that

Z E(gxua,) - E(gxua,);

then “look for transversality” amongst multilinear operators

(81,---,80) = E(gixua, ) E(grXUa, )-
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2015).
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@ Improved mixed norm Strichartz estimates for the Schrodinger equation on R”
(Bourgain 2011).
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2015).

@ Proof of the Vinogradov Mean Value Conjecture: exponential sum bounds and
Diophantine equations (Bourgain-Demeter—Guth 2016).
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o

Thank you for listening!
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