The Brascamp-Lieb inequality in modern harmonic analysis and PDE

Jonathan Bennett

U. Birmingham

15 July 2016

London Mathematical Society – EPSRC Durham Symposium Mathematical and Computational Aspects of Maxwell's Equations

(中) (문) (문) (문) (문)

Supported by ERC grant 307617.

Part 1: An introduction to the classical Brascamp-Lieb inequality.

Part 1: An introduction to the classical Brascamp-Lieb inequality.

Part 2: Some recent incarnations of the Brascamp–Lieb inequality in harmonic analysis, and links with PDE.

$$\int_{\mathbb{R}^n} \prod_{j=1}^m (f_j \circ L_j)^{p_j} \le C \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j \right)^{p_j},$$
(BL)

where $L_j : \mathbb{R}^n \to \mathbb{R}^{n_j}$ is a linear surjection and $p_j \in [0, 1]$ for each $1 \le j \le m$;

$$\int_{\mathbb{R}^n} \prod_{j=1}^m (f_j \circ L_j)^{p_j} \le C \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j \right)^{p_j},$$
(BL)

where $L_j : \mathbb{R}^n \to \mathbb{R}^{n_j}$ is a linear surjection and $p_j \in [0, 1]$ for each $1 \le j \le m$; we refer to the *m*-tuple $(\mathbf{L}, \mathbf{p}) := ((L_j), (p_j))$ of parameters as the *Brascamp–Lieb datum*.

<ロト < 回 > < 回 > < 回 > < 回 >

$$\int_{\mathbb{R}^n} \prod_{j=1}^m (f_j \circ L_j)^{p_j} \le C \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j \right)^{p_j}, \tag{BL}$$

where $L_j : \mathbb{R}^n \to \mathbb{R}^{n_j}$ is a linear surjection and $p_j \in [0, 1]$ for each $1 \le j \le m$; we refer to the *m*-tuple $(\mathbf{L}, \mathbf{p}) := ((L_j), (p_j))$ of parameters as the *Brascamp–Lieb datum*.

Here the $f_j \in L^1(\mathbb{R}^{n_j})$ are nonnegative, and we denote by $BL(\mathbf{L}, \mathbf{p})$ the best constant $C \leq \infty$ in (BL).

<ロ> (日) (日) (日) (日) (日)

$$\int_{\mathbb{R}^n} \prod_{j=1}^m (f_j \circ L_j)^{p_j} \le C \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j \right)^{p_j}, \tag{BL}$$

where $L_j : \mathbb{R}^n \to \mathbb{R}^{n_j}$ is a linear surjection and $p_j \in [0, 1]$ for each $1 \le j \le m$; we refer to the *m*-tuple $(\mathbf{L}, \mathbf{p}) := ((L_j), (p_j))$ of parameters as the *Brascamp–Lieb datum*.

Here the $f_j \in L^1(\mathbb{R}^{n_j})$ are nonnegative, and we denote by $BL(\mathbf{L}, \mathbf{p})$ the best constant $C \leq \infty$ in (BL).

Notice that (BL) is equivalent to

$$\int_{\mathbb{R}^n} \prod_{j=1}^m g_j \circ L_j \leq C \prod_{j=1}^m \|g_j\|_{L^{q_j}(\mathbb{R}^{n_j})},$$

where $q_j = 1/p_j \in [1, \infty]$.

<ロ> (日) (日) (日) (日) (日)

・ロト ・聞ト ・ヨト ・ヨト

$$\int_{\mathbb{R}^n} \prod_{j=1}^m f_j^{p_j} \leq \prod_{j=1}^m \left(\int_{\mathbb{R}^n} f_j \right)^{p_j};$$

<ロ> (日) (日) (日) (日) (日)

Some familiar examples

• Hölder's inequality: If $\sum p_j = 1$ then

$$\int_{\mathbb{R}^n} \prod_{j=1}^m f_j^{p_j} \leq \prod_{j=1}^m \left(\int_{\mathbb{R}^n} f_j \right)^{p_j};$$

i.e. (BL) with $n_j = n$, $L_j = I_n$ and $\sum p_j = 1$.

$$\int_{\mathbb{R}^n} \prod_{j=1}^m f_j^{p_j} \leq \prod_{j=1}^m \left(\int_{\mathbb{R}^n} f_j \right)^{p_j};$$

i.e. (BL) with $n_j = n$, $L_j = I_n$ and $\sum p_j = 1$.

• Young's convolution inequality: If $k \in \mathbb{N}$ and $p_1 + p_2 + p_3 = 2$ then

$$\int_{\mathbb{R}^{2k}} f_1(x)^{p_1} f_2(x-y)^{p_2} f_3(y)^{p_3} \mathsf{d} x \mathsf{d} y \leq C_{\mathbf{p}} \left(\int_{\mathbb{R}^k} f_1 \right)^{p_1} \left(\int_{\mathbb{R}^k} f_2 \right)^{p_2} \left(\int_{\mathbb{R}^k} f_3 \right)^{p_3};$$

< □ > < □ > < □ > < □ > < □ > < □ >

$$\int_{\mathbb{R}^n} \prod_{j=1}^m f_j^{p_j} \leq \prod_{j=1}^m \left(\int_{\mathbb{R}^n} f_j \right)^{p_j};$$

i.e. (BL) with $n_j = n$, $L_j = I_n$ and $\sum p_j = 1$.

• Young's convolution inequality: If $k \in \mathbb{N}$ and $p_1 + p_2 + p_3 = 2$ then

$$\int_{\mathbb{R}^{2k}} f_1(x)^{p_1} f_2(x-y)^{p_2} f_3(y)^{p_3} dx dy \leq C_p \left(\int_{\mathbb{R}^k} f_1 \right)^{p_1} \left(\int_{\mathbb{R}^k} f_2 \right)^{p_2} \left(\int_{\mathbb{R}^k} f_3 \right)^{p_3};$$

i.e. (BL) with n = 2k, $n_1 = n_2 = n_3 = k$, $p_1 + p_2 + p_3 = 2$ and

$$L_1(x,y) = x$$
, $L_2(x,y) = x - y$, $L_3(x,y) = y$.

<ロ> (日) (日) (日) (日) (日)

$$\int_{\mathbb{R}^n} \prod_{j=1}^m f_j^{p_j} \leq \prod_{j=1}^m \left(\int_{\mathbb{R}^n} f_j \right)^{p_j};$$

i.e. (BL) with $n_j = n$, $L_j = I_n$ and $\sum p_j = 1$.

• Young's convolution inequality: If $k \in \mathbb{N}$ and $p_1 + p_2 + p_3 = 2$ then

$$\int_{\mathbb{R}^{2k}} f_1(x)^{p_1} f_2(x-y)^{p_2} f_3(y)^{p_3} dx dy \leq C_p \left(\int_{\mathbb{R}^k} f_1 \right)^{p_1} \left(\int_{\mathbb{R}^k} f_2 \right)^{p_2} \left(\int_{\mathbb{R}^k} f_3 \right)^{p_3};$$

i.e. (BL) with n = 2k, $n_1 = n_2 = n_3 = k$, $p_1 + p_2 + p_3 = 2$ and

$$L_1(x,y) = x$$
, $L_2(x,y) = x - y$, $L_3(x,y) = y$.

(Sharp constant C_p obtained by testing on centred gaussians; Beckner/Brascamp-Lieb 1975.)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\pi_j(x) = (x_1, \ldots, \widehat{x_j}, \cdots, x_n).$$

< □ > < □ > < □ > < □ > < □ > < □ >

$$\pi_j(x) = (x_1, \ldots, \widehat{x_j}, \cdots, x_n).$$

The Loomis-Whitney inequality states that

$$\int_{\mathbb{R}^n} \prod_{j=1}^n (f_j \circ \pi_j)^{1/(n-1)} \le \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j \right)^{1/(n-1)};$$

イロン 不聞と 不同と 不同と

$$\pi_j(x) = (x_1, \ldots, \widehat{x_j}, \cdots, x_n).$$

The Loomis-Whitney inequality states that

$$\int_{\mathbb{R}^n} \prod_{j=1}^n (f_j \circ \pi_j)^{1/(n-1)} \leq \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j \right)^{1/(n-1)};$$

i.e. (BL) with m = n, $n_j = n - 1$, $L_j = \pi_j$, $p_j = 1/(n - 1)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\pi_j(x) = (x_1, \ldots, \widehat{x_j}, \cdots, x_n).$$

The Loomis-Whitney inequality states that

$$\int_{\mathbb{R}^n} \prod_{j=1}^n (f_j \circ \pi_j)^{1/(n-1)} \leq \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j \right)^{1/(n-1)};$$

i.e. (BL) with m = n, $n_j = n - 1$, $L_j = \pi_j$, $p_j = 1/(n - 1)$.

Aside: this is a *geometric inequality*: If $\Omega \subset \mathbb{R}^n$ and $f_j = \chi_{\pi_j(\Omega)}$ then

・ロト ・個ト ・ヨト ・ヨト

$$\pi_j(x) = (x_1, \ldots, \widehat{x_j}, \cdots, x_n).$$

The Loomis-Whitney inequality states that

$$\int_{\mathbb{R}^n} \prod_{j=1}^n (f_j \circ \pi_j)^{1/(n-1)} \leq \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j \right)^{1/(n-1)};$$

i.e. (BL) with m = n, $n_j = n - 1$, $L_j = \pi_j$, $p_j = 1/(n - 1)$.

Aside: this is a *geometric inequality*: If $\Omega \subset \mathbb{R}^n$ and $f_j = \chi_{\pi_j(\Omega)}$ then

$$|\Omega|\leq \prod_{j=1}^n|\pi_j(\Omega)|^{1/(n-1)},$$

・ロト ・聞ト ・ヨト ・ヨト

$$\pi_j(x)=(x_1,\ldots,\widehat{x_j},\cdots,x_n).$$

The Loomis-Whitney inequality states that

$$\int_{\mathbb{R}^n} \prod_{j=1}^n (f_j \circ \pi_j)^{1/(n-1)} \leq \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j \right)^{1/(n-1)};$$

i.e. (BL) with m = n, $n_j = n - 1$, $L_j = \pi_j$, $p_j = 1/(n - 1)$.

Aside: this is a *geometric inequality*: If $\Omega \subset \mathbb{R}^n$ and $f_j = \chi_{\pi_j(\Omega)}$ then

$$|\Omega| \leq \prod_{j=1}^n |\pi_j(\Omega)|^{1/(n-1)},$$

or

$$|\Omega| \geq \prod_{j=1}^n rac{|\Omega|}{|\pi_j(\Omega)|}.$$

・ロト ・聞ト ・ヨト ・ヨト

<ロ> (日) (日) (日) (日) (日)

Then,

$$\int_{\mathbb{R}^n} \prod_{j=1}^n (f_j \circ L_j)^{1/(n-1)} \leq \det(X(L_1) \cdot \cdot \cdot X(L_n))^{-\frac{1}{n-1}} \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j \right)^{1/(n-1)};$$

<ロ> (日) (日) (日) (日) (日)

Then,

$$\int_{\mathbb{R}^n} \prod_{j=1}^n (f_j \circ L_j)^{1/(n-1)} \leq \det(X(L_1) \cdot \cdot \cdot X(L_n))^{-\frac{1}{n-1}} \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j \right)^{1/(n-1)};$$

so that for $p_1 = \cdots = p_n = \frac{1}{n-1}$,

$$\mathsf{BL}(\mathbf{L},\mathbf{p}) = \mathsf{det}(X(L_1) \cdot \cdot \cdot X(L_n))^{-\frac{1}{n-1}}.$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Then,

$$\int_{\mathbb{R}^n} \prod_{j=1}^n (f_j \circ L_j)^{1/(n-1)} \leq \det(X(L_1) \cdot \cdot \cdot X(L_n))^{-\frac{1}{n-1}} \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j \right)^{1/(n-1)};$$

so that for $p_1 = \cdots = p_n = \frac{1}{n-1}$,

$$\mathsf{BL}(\mathbf{L},\mathbf{p}) = \mathsf{det}(X(L_1) \cdot \cdot \cdot X(L_n))^{-\frac{1}{n-1}}$$

Follows from the standard Loomis-Whitney inequality just by changes of variables.

・ロト ・聞ト ・ヨト ・ヨト

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Lieb's fundamental theorem

Recall that BL(L, p) denotes the best constant in

$$\int_{\mathbb{R}^n} \prod_{j=1}^m (f_j \circ L_j)^{p_j} \le C \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j \right)^{p_j}$$
(BL)

Recall that $BL(\mathbf{L}, \mathbf{p})$ denotes the best constant in

$$\int_{\mathbb{R}^n} \prod_{j=1}^m (f_j \circ L_j)^{p_j} \le C \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j \right)^{p_j}$$
(BL)

Theorem (Lieb 1990)

For any Brascamp-Lieb datum (L, p) the constant BL(L, p) is exhausted by centred gaussian inputs; i.e.

$$f_j(x)=e^{-\pi\langle A_jx,x\rangle},$$

where $x \in \mathbb{R}^{n_j}$ and $A_j > 0$.

Recall that $BL(\mathbf{L}, \mathbf{p})$ denotes the best constant in

$$\int_{\mathbb{R}^n} \prod_{j=1}^m (f_j \circ L_j)^{p_j} \le C \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j \right)^{p_j}$$
(BL)

Theorem (Lieb 1990)

For any Brascamp–Lieb datum (L, p) the constant BL(L, p) is exhausted by centred gaussian inputs; i.e.

$$f_j(x)=e^{-\pi\langle A_jx,x\rangle},$$

where $x \in \mathbb{R}^{n_j}$ and $A_j > 0$. Hence

$$BL(\mathbf{L},\mathbf{p}) = \sup_{A_1,\ldots,A_m>0} \left(\frac{\prod_{j=1}^m (\det A_j)^{p_j}}{\det \left(\sum_{j=1}^m p_j L_j^* A_j L_j \right)} \right)^{1/2}.$$

Recall that $BL(\mathbf{L}, \mathbf{p})$ denotes the best constant in

$$\int_{\mathbb{R}^n} \prod_{j=1}^m (f_j \circ L_j)^{p_j} \le C \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j \right)^{p_j}$$
(BL)

Theorem (Lieb 1990)

For any Brascamp-Lieb datum (L, p) the constant BL(L, p) is exhausted by centred gaussian inputs; i.e.

$$f_j(x) = e^{-\pi \langle A_j x, x \rangle},$$

where $x \in \mathbb{R}^{n_j}$ and $A_j > 0$. Hence

$$BL(\mathbf{L},\mathbf{p}) = \sup_{A_1,\ldots,A_m>0} \left(\frac{\prod_{j=1}^m (\det A_j)^{p_j}}{\det \left(\sum_{j=1}^m p_j L_j^* A_j L_j \right)} \right)^{1/2}.$$

Even with Lieb's formula for BL(L, p), it is still far from clear when it is finite...

<ロ> (日) (日) (日) (日) (日)

Jonathan Bennett (U. Birmingham) The Brascamp–Lieb inequality in modern harmonic and

Easy necessary condition 1: by scaling (replacing f_j with $f_j(\lambda \cdot)$ for each j and $\lambda > 0$),

$$\mathsf{BL}(\mathbf{L},\mathbf{p})<\infty \implies \sum_{j=1}^m p_j n_j = n.$$

Easy necessary condition 1: by scaling (replacing f_j with $f_j(\lambda \cdot)$ for each j and $\lambda > 0$),

$$\mathsf{BL}(\mathbf{L},\mathbf{p})<\infty \implies \sum_{j=1}^m p_j n_j = n.$$

Easy necessary condition 2:

$$\mathsf{BL}(\mathsf{L},\mathsf{p})<\infty \implies \bigcap_{j=1}^m \ker L_j = \{0\},$$

since the integrand

$$\prod_{j=1}^m (f_j \circ L_j)^{p_j} \equiv \prod_{j=1}^m f_j(0)^{p_j} \text{ on } \bigcap_{j=1}^m \ker L_j.$$

Easy necessary condition 1: by scaling (replacing f_j with $f_j(\lambda \cdot)$ for each j and $\lambda > 0$),

$$\mathsf{BL}(\mathbf{L},\mathbf{p})<\infty \implies \sum_{j=1}^m p_j n_j = n.$$

Easy necessary condition 2:

$$\mathsf{BL}(\mathsf{L},\mathsf{p})<\infty \implies \bigcap_{j=1}^m \ker L_j = \{0\},$$

since the integrand

$$\prod_{j=1}^m (f_j \circ L_j)^{p_j} \equiv \prod_{j=1}^m f_j(0)^{p_j} \text{ on } \bigcap_{j=1}^m \ker L_j.$$

Theorem (B-Carbery-Christ-Tao 2007)

 $BL(\mathbf{L},\mathbf{p}) < \infty$ if and only if $\sum_{j=1}^m p_j n_j = n$

Easy necessary condition 1: by scaling (replacing f_j with $f_j(\lambda \cdot)$ for each j and $\lambda > 0$),

$$\mathsf{BL}(\mathbf{L},\mathbf{p})<\infty \implies \sum_{j=1}^m p_j n_j = n.$$

Easy necessary condition 2:

$$\mathsf{BL}(\mathsf{L},\mathsf{p})<\infty \implies \bigcap_{j=1}^m \ker L_j = \{0\},$$

since the integrand

$$\prod_{j=1}^m (f_j \circ L_j)^{p_j} \equiv \prod_{j=1}^m f_j(0)^{p_j} \text{ on } \bigcap_{j=1}^m \ker L_j.$$

Theorem (B-Carbery-Christ-Tao 2007)

 $BL(\mathbf{L},\mathbf{p})<\infty$ if and only if $\sum_{j=1}^m p_j n_j=n$ and

$$\dim V \leq \sum_{j=1}^m p_j \dim L_j V \quad \text{ for all } V \leq \mathbb{R}^n.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

 a description of the data (L, p) for which gaussian extremisers exist (Carlen-Lieb-Loss, B-Carbery-Christ-Tao);
- a description of the data (L, p) for which gaussian extremisers exist (Carlen-Lieb-Loss, B-Carbery-Christ-Tao);
- the monotonicity of the functional

$$(f_1,\ldots,f_m)\mapsto rac{\int_{\mathbb{R}^n}\prod_{j=1}^m(f_j\circ L_j)^{p_j}}{\prod_{j=1}^m\left(\int_{\mathbb{R}^{n_j}}f_j
ight)^{p_j}}$$

as the f_j evolve under certain heat equations (..., Carlen–Lieb–Loss, B–Carbery–Christ–Tao);

<ロト <問ト < 臣ト < 臣

٩

۹

- a description of the data (L, p) for which gaussian extremisers exist (Carlen-Lieb-Loss, B-Carbery-Christ-Tao);
- the monotonicity of the functional

$$(f_1,\ldots,f_m)\mapsto rac{\int_{\mathbb{R}^n}\prod_{j=1}^m(f_j\circ L_j)^{p_j}}{\prod_{j=1}^m\left(\int_{\mathbb{R}^{n_j}}f_j\right)^{p_j}}$$

as the f_j evolve under certain heat equations (..., Carlen–Lieb–Loss, B–Carbery–Christ–Tao);

• the continuity of the constant $L \mapsto BL(L, p)$ (B-Bez-Cowling-Flock 2016);

< □ > < 同 > < 回 > < Ξ > < Ξ

- a description of the data (L, p) for which gaussian extremisers exist (Carlen-Lieb-Loss, B-Carbery-Christ-Tao);
- the monotonicity of the functional

$$(f_1,\ldots,f_m)\mapsto rac{\int_{\mathbb{R}^n}\prod_{j=1}^m(f_j\circ L_j)^{p_j}}{\prod_{j=1}^m\left(\int_{\mathbb{R}^{n_j}}f_j\right)^{p_j}}$$

as the f_j evolve under certain heat equations (..., Carlen–Lieb–Loss, B–Carbery–Christ–Tao);

0

٩

- the continuity of the constant $L \mapsto BL(L, p)$ (B–Bez–Cowling–Flock 2016);
- a polynomial time algorithm for determining whether $\mathsf{BL}(\mathbf{L},\mathbf{p}) < \infty$ and more (Garg–Gurvits–Oliveira–Wigderson 2016).

< ロ > < 同 > < 回 > < 回 > < 回

Part 2: Some recent variants of the Brascamp–Lieb inequality in harmonic analysis, and links with PDE.

The so-called *nonlinear Brascamp–Lieb inequality* replaces the linear surjections $L_j : \mathbb{R}^n \to \mathbb{R}^{n_j}$ with *local submersions* $B_j : U \to \mathbb{R}^{n_j}$, defined on a neighbourhood U of a point $x_0 \in \mathbb{R}^n$.

・ロト ・回ト ・ヨト ・

The so-called *nonlinear Brascamp–Lieb inequality* replaces the linear surjections $L_j : \mathbb{R}^n \to \mathbb{R}^{n_j}$ with *local submersions* $B_j : U \to \mathbb{R}^{n_j}$, defined on a neighbourhood U of a point $x_0 \in \mathbb{R}^n$.

Conjecture (Nonlinear Brascamp–Lieb)

If $dB_j(x_0) = L_j$ with $BL(\mathbf{L}, \mathbf{p}) < \infty$, then provided U is taken sufficiently small,

$$\int_U \prod_{j=1}^m (f_j \circ B_j)^{p_j} \lesssim \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j
ight)^{p_j}.$$

The so-called *nonlinear Brascamp–Lieb inequality* replaces the linear surjections $L_j : \mathbb{R}^n \to \mathbb{R}^{n_j}$ with *local submersions* $B_j : U \to \mathbb{R}^{n_j}$, defined on a neighbourhood U of a point $x_0 \in \mathbb{R}^n$.

Conjecture (Nonlinear Brascamp-Lieb)

If $dB_j(x_0) = L_j$ with $BL(\mathbf{L}, \mathbf{p}) < \infty$, then provided U is taken sufficiently small,

$$\int_U \prod_{j=1}^m (f_j \circ B_j)^{p_j} \lesssim \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j
ight)^{p_j}.$$

This is true for the Loomis-Whitney inequality;

() < </p>

The so-called *nonlinear Brascamp–Lieb inequality* replaces the linear surjections $L_j : \mathbb{R}^n \to \mathbb{R}^{n_j}$ with *local submersions* $B_j : U \to \mathbb{R}^{n_j}$, defined on a neighbourhood U of a point $x_0 \in \mathbb{R}^n$.

Conjecture (Nonlinear Brascamp-Lieb)

If $dB_j(x_0) = L_j$ with $BL(\mathbf{L}, \mathbf{p}) < \infty$, then provided U is taken sufficiently small,

$$\int_U \prod_{j=1}^m (f_j \circ B_j)^{p_j} \lesssim \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j
ight)^{p_j}.$$

This is true for the Loomis-Whitney inequality; i.e.

Theorem (Nonlinear Loomis–Whitney; B–Carbery–Wright 2005)

If $dB_j(x_0) = L_j$ where $L_1, \ldots, L_n : \mathbb{R}^n \to \mathbb{R}^{n-1}$, then provided U is taken sufficiently small,

$$\int_U \prod_{j=1}^n (f_j \circ B_j)^{\frac{1}{n-1}} \lesssim \det(X(L_1) \cdot \cdot \cdot X(L_n))^{-\frac{1}{n-1}} \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j\right)^{\frac{1}{n-1}}.$$

<ロ> (日) (日) (日) (日) (日)

The so-called *nonlinear Brascamp–Lieb inequality* replaces the linear surjections $L_j : \mathbb{R}^n \to \mathbb{R}^{n_j}$ with *local submersions* $B_j : U \to \mathbb{R}^{n_j}$, defined on a neighbourhood U of a point $x_0 \in \mathbb{R}^n$.

Conjecture (Nonlinear Brascamp-Lieb)

If $dB_j(x_0) = L_j$ with $BL(\mathbf{L}, \mathbf{p}) < \infty$, then provided U is taken sufficiently small,

$$\int_U \prod_{j=1}^m (f_j \circ B_j)^{p_j} \lesssim \prod_{j=1}^m \left(\int_{\mathbb{R}^{n_j}} f_j
ight)^{p_j}.$$

This is true for the Loomis-Whitney inequality; i.e.

Theorem (Nonlinear Loomis–Whitney; B–Carbery–Wright 2005)

If $dB_j(x_0) = L_j$ where $L_1, \ldots, L_n : \mathbb{R}^n \to \mathbb{R}^{n-1}$, then provided U is taken sufficiently small,

$$\int_U \prod_{j=1}^n (f_j \circ B_j)^{\frac{1}{n-1}} \lesssim \det(X(L_1) \cdot \cdot \cdot X(L_n))^{-\frac{1}{n-1}} \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j\right)^{\frac{1}{n-1}}$$

Generalises to "block Loomis–Whitney", whereby $\bigoplus_{i} \ker L_i = \mathbb{R}^n$ (B–Bez 2010).

・ロト ・四ト ・ヨト ・ヨト

ヘロン ヘロン ヘヨン ヘヨン

For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$\int_{\mathbb{R}^n} \prod_{j=1}^m g_j \circ L_j \leq \mathsf{BL}(\mathsf{L},\mathsf{p}) \prod_{j=1}^m \|g_j\|_{L^{q_j}(\mathbb{R}^{n_j})},$$

where $q_j = 1/p_j$.

・ロト ・ 日 ト ・ 日 ト ・ 日

For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$\int_{\mathbb{R}^n} \prod_{j=1}^m g_j \circ L_j \leq \mathsf{BL}(\mathsf{L},\mathsf{p}) \prod_{j=1}^m \|g_j\|_{L^{q_j}(\mathbb{R}^{n_j})},$$

where $q_j = 1/p_j$.

Theorem (B–Bez–Flock–Lee 2015)

Suppose $dB_j(x_0) = L_j$ with $BL(\mathbf{L}, \mathbf{p}) < \infty$ and U is sufficiently small. Then for every $\varepsilon > 0$ there is a constant $C_{\varepsilon} < \infty$ such that

$$\int_U \prod_{j=1}^m g_j \circ B_j \leq C_arepsilon \prod_{j=1}^m \|g_j\|_{L^{q_j}_arepsilon(\mathbb{R}^{n_j})}.$$

For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$\int_{\mathbb{R}^n} \prod_{j=1}^m g_j \circ L_j \leq \mathsf{BL}(\mathsf{L},\mathsf{p}) \prod_{j=1}^m \|g_j\|_{L^{q_j}(\mathbb{R}^{n_j})},$$

where $q_j = 1/p_j$.

Theorem (B–Bez–Flock–Lee 2015)

Suppose $dB_j(x_0) = L_j$ with $BL(\mathbf{L}, \mathbf{p}) < \infty$ and U is sufficiently small. Then for every $\varepsilon > 0$ there is a constant $C_{\varepsilon} < \infty$ such that

$$\int_U \prod_{j=1}^m g_j \circ B_j \leq C_arepsilon \prod_{j=1}^m \|g_j\|_{L^{q_j}_arepsilon(\mathbb{R}^{n_j})}.$$

Proof strategy (Induction on Scales).

・ロト ・ 日 ト ・ 目 ト ・

For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$\int_{\mathbb{R}^n} \prod_{j=1}^m g_j \circ L_j \leq \mathsf{BL}(\mathsf{L},\mathsf{p}) \prod_{j=1}^m \|g_j\|_{L^{q_j}(\mathbb{R}^{n_j})},$$

where $q_j = 1/p_j$.

Theorem (B–Bez–Flock–Lee 2015)

Suppose $dB_j(x_0) = L_j$ with $BL(\mathbf{L}, \mathbf{p}) < \infty$ and U is sufficiently small. Then for every $\varepsilon > 0$ there is a constant $C_{\varepsilon} < \infty$ such that

$$\int_U \prod_{j=1}^m g_j \circ B_j \leq C_arepsilon \prod_{j=1}^m \|g_j\|_{L^{q_j}_arepsilon(\mathbb{R}^{n_j})}.$$

Proof strategy (Induction on Scales). Observe that if g_j is "constant at scale δ ", then

$$g_j(B_j(x)) \sim g_j(B_j(x_0) + L_j(x - x_0))$$

whenever $|x - x_0| \lesssim \delta^{1/2}$.

For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$\int_{\mathbb{R}^n} \prod_{j=1}^m g_j \circ L_j \leq \mathsf{BL}(\mathsf{L},\mathsf{p}) \prod_{j=1}^m \|g_j\|_{L^{q_j}(\mathbb{R}^{n_j})},$$

where $q_j = 1/p_j$.

Theorem (B–Bez–Flock–Lee 2015)

Suppose $dB_j(x_0) = L_j$ with $BL(\mathbf{L}, \mathbf{p}) < \infty$ and U is sufficiently small. Then for every $\varepsilon > 0$ there is a constant $C_{\varepsilon} < \infty$ such that

$$\int_U \prod_{j=1}^m g_j \circ B_j \leq C_arepsilon \prod_{j=1}^m \|g_j\|_{L^{q_j}_arepsilon(\mathbb{R}^{n_j})}.$$

Proof strategy (Induction on Scales). Observe that if g_j is "constant at scale δ ", then

$$g_j(B_j(x)) \sim g_j(B_j(x_0) + L_j(x - x_0))$$

whenever $|x - x_0| \lesssim \delta^{1/2}$. (Since $B_j(x) = B_j(x_0) + L_j(x - x_0) + O(|x - x_0|^2)$.)

イロン 不聞と 不同と 不同と

For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$\int_{\mathbb{R}^n} \prod_{j=1}^m g_j \circ L_j \leq \mathsf{BL}(\mathsf{L},\mathsf{p}) \prod_{j=1}^m \|g_j\|_{L^{q_j}(\mathbb{R}^{n_j})},$$

where $q_j = 1/p_j$.

Theorem (B-Bez-Flock-Lee 2015)

Suppose $dB_j(x_0) = L_j$ with $BL(\mathbf{L}, \mathbf{p}) < \infty$ and U is sufficiently small. Then for every $\varepsilon > 0$ there is a constant $C_{\varepsilon} < \infty$ such that

$$\int_U \prod_{j=1}^m g_j \circ B_j \leq C_arepsilon \prod_{j=1}^m \|g_j\|_{L^{q_j}_arepsilon(\mathbb{R}^{n_j})}.$$

Proof strategy (Induction on Scales). Observe that if g_j is "constant at scale δ ", then

$$g_j(B_j(x)) \sim g_j(B_j(x_0) + L_j(x - x_0))$$

whenever $|x - x_0| \lesssim \delta^{1/2}$. (Since $B_j(x) = B_j(x_0) + L_j(x - x_0) + O(|x - x_0|^2)$.)

Proceed by induction on δ , the scale at which the g_j are "constant"...

・ロト ・四ト ・ヨト ・ヨト

Multilinear Radon-like transforms

Such nonlinear Brascamp–Lieb inequalities may be recast as Radon-like transform estimates of the type

$$\int_{\mathbb{R}^{n_1}\times\cdots\times\mathbb{R}^{n_m}}f_1(y_1)\cdots f_m(y_m)\delta(F(y))dy \lesssim \|f_1\|_{L^{q_1}(\mathbb{R}^{n_1})}\cdots\|f_m\|_{L^{q_m}(\mathbb{R}^{n_m})}$$

for certain nonlinear functions F.

Such nonlinear Brascamp–Lieb inequalities may be recast as Radon-like transform estimates of the type

$$\int_{\mathbb{R}^{n_1}\times\cdots\times\mathbb{R}^{n_m}}f_1(y_1)\cdots f_m(y_m)\delta(F(y))dy \lesssim \|f_1\|_{L^{q_1}(\mathbb{R}^{n_1})}\cdots\|f_m\|_{L^{q_m}(\mathbb{R}^{n_m})}$$

for certain nonlinear functions F.

A trilinear example in the plane:

Corollary (B-Bez-Gutiérrez 2013)

If $F: \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^3$ is smooth in a neighbourhood of a point y_0 and satisfies

$$\det(\partial_{y_{11}}F \times \partial_{y_{12}}F \quad \partial_{y_{21}}F \times \partial_{y_{22}}F \quad \partial_{y_{31}}F \times \partial_{y_{32}}F) \neq 0$$

there, then there is a neighbourhood $V \ni y_0$ such that

$$\int_{V} f_{1}(y_{1})f_{2}(y_{2})f_{3}(y_{3})\delta(F(y))dy \lesssim \|f_{1}\|_{L^{2}(\mathbb{R}^{2})}\|f_{2}\|_{L^{2}(\mathbb{R}^{2})}\|f_{3}\|_{L^{2}(\mathbb{R}^{2})}.$$

Proof. Parametrise the action of the distribution $\delta \circ F$ by $x \in \mathbb{R}^3$, reducing it to the nonlinear Loomis–Whitney inequality in \mathbb{R}^3 ...

Example from obstacle scattering (Born series). The error in approximating a potential $q : \mathbb{R}^2 \to \mathbb{R}$ by its Born approximation q_B is comprised of a series of multilinear operators. The main term involves, for example, the bilinear operator S(q) defined by

$$\widehat{S(q)}(x) = rac{i\pi}{|x|} \int_{\Gamma(x)} \widehat{q}(x-y) \widehat{q}(y) d\sigma_x(y),$$

where $\Gamma(x)$ is the circle centred at x/2 of radius |x|/2 in \mathbb{R}^2 , and $d\sigma_x$ is arc-length measure on $\Gamma(x)$.

Example from obstacle scattering (Born series). The error in approximating a potential $q : \mathbb{R}^2 \to \mathbb{R}$ by its Born approximation q_B is comprised of a series of multilinear operators. The main term involves, for example, the bilinear operator S(q) defined by

$$\widehat{S(q)}(x) = \frac{i\pi}{|x|} \int_{\Gamma(x)} \widehat{q}(x-y) \widehat{q}(y) d\sigma_x(y),$$

where $\Gamma(x)$ is the circle centred at x/2 of radius |x|/2 in \mathbb{R}^2 , and $d\sigma_x$ is arc-length measure on $\Gamma(x)$.

By duality, L^2 Sobolev bounds on S(q) may be recast as L^2 bounds on an associated trilinear form, which may be expressed in terms of

$$\Lambda(f_1, f_2, f_3) := \int_{(\mathbb{R}^2)^3} f_1(y_1) f_2(y_2) f_3(y_3) \delta(F(y)) dy,$$

where

$$F(y) = \left(y_1 - y_2 - y_3, \left|y_2 - \frac{y_1}{2}\right| - \left|\frac{y_1}{2}\right|\right).$$

Example from obstacle scattering (Born series). The error in approximating a potential $q : \mathbb{R}^2 \to \mathbb{R}$ by its Born approximation q_B is comprised of a series of multilinear operators. The main term involves, for example, the bilinear operator S(q) defined by

$$\widehat{S(q)}(x) = \frac{i\pi}{|x|} \int_{\Gamma(x)} \widehat{q}(x-y) \widehat{q}(y) d\sigma_x(y),$$

where $\Gamma(x)$ is the circle centred at x/2 of radius |x|/2 in \mathbb{R}^2 , and $d\sigma_x$ is arc-length measure on $\Gamma(x)$.

By duality, L^2 Sobolev bounds on S(q) may be recast as L^2 bounds on an associated trilinear form, which may be expressed in terms of

$$\Lambda(f_1, f_2, f_3) := \int_{(\mathbb{R}^2)^3} f_1(y_1) f_2(y_2) f_3(y_3) \delta(F(y)) dy,$$

where

$$F(y) = \left(y_1 - y_2 - y_3, \left|y_2 - \frac{y_1}{2}\right| - \left|\frac{y_1}{2}\right|\right).$$

Another example: well-posedness of the Zakharov system (plasma physics), Bejenaru–Herr–Holmer–Tataru 2009–2011.

Jonathan Bennett (U. Birmingham) The Brascamp–Lieb inequality in modern harmonic and

・ロト ・ 日 ・ ・ ヨ ・ ・

Motivation: Stein's restriction problem.

・ロト ・回ト ・ヨト ・

Motivation: Stein's restriction problem.

Suppose $\Sigma : U \to \mathbb{R}^n$ is a smooth parametrisation of a *k*-dimensional submanifold *S* of \mathbb{R}^n

・ロト ・日下・ ・ ヨト・

Motivation: Stein's restriction problem.

Suppose $\Sigma : U \to \mathbb{R}^n$ is a smooth parametrisation of a *k*-dimensional submanifold *S* of \mathbb{R}^n (so $U \subseteq \mathbb{R}^k$),

・ロト ・ 日 ・ ・ ヨ ・ ・

Motivation: Stein's restriction problem.

Suppose $\Sigma : U \to \mathbb{R}^n$ is a smooth parametrisation of a *k*-dimensional submanifold *S* of \mathbb{R}^n (so $U \subseteq \mathbb{R}^k$), and let

$$\mathsf{E}\mathsf{g}(\mathsf{x}) = \int_U e^{i\mathsf{x}\cdot\Sigma(\xi)}\mathsf{g}(\xi)d\xi,$$

where $x \in \mathbb{R}^n$.

・ロト ・回ト ・ヨト ・

Motivation: Stein's restriction problem.

Suppose $\Sigma : U \to \mathbb{R}^n$ is a smooth parametrisation of a *k*-dimensional submanifold *S* of \mathbb{R}^n (so $U \subseteq \mathbb{R}^k$), and let

$$\mathsf{E}g(x) = \int_U e^{ix\cdot\Sigma(\xi)}g(\xi)d\xi,$$

where $x \in \mathbb{R}^n$. We refer to *E* as the *Fourier extension operator* associated with Σ (or *S*).

・ロト ・日下・ ・ ヨト・

Motivation: Stein's restriction problem.

Suppose $\Sigma : U \to \mathbb{R}^n$ is a smooth parametrisation of a *k*-dimensional submanifold *S* of \mathbb{R}^n (so $U \subseteq \mathbb{R}^k$), and let

$$\mathsf{E}\mathsf{g}(\mathsf{x}) = \int_U e^{i\mathsf{x}\cdot\Sigma(\xi)}\mathsf{g}(\xi)d\xi,$$

where $x \in \mathbb{R}^n$. We refer to *E* as the *Fourier extension operator* associated with Σ (or *S*). (So called as $E^*f = \hat{f} \circ \Sigma$.)

Motivation: Stein's restriction problem.

Suppose $\Sigma : U \to \mathbb{R}^n$ is a smooth parametrisation of a *k*-dimensional submanifold *S* of \mathbb{R}^n (so $U \subseteq \mathbb{R}^k$), and let

$$\mathsf{E}g(x) = \int_U e^{ix\cdot\Sigma(\xi)}g(\xi)d\xi,$$

where $x \in \mathbb{R}^n$. We refer to *E* as the *Fourier extension operator* associated with Σ (or *S*). (So called as $E^*f = \hat{f} \circ \Sigma$.)

E.g. $U = \mathbb{R}^{n-1}$ and $\Sigma(\xi) = (\xi, |\xi|^2)$ – the paraboloid.

Motivation: Stein's restriction problem.

Suppose $\Sigma : U \to \mathbb{R}^n$ is a smooth parametrisation of a *k*-dimensional submanifold *S* of \mathbb{R}^n (so $U \subseteq \mathbb{R}^k$), and let

$$\mathsf{E}\mathsf{g}(\mathsf{x}) = \int_U e^{i\mathsf{x}\cdot\Sigma(\xi)}\mathsf{g}(\xi)d\xi,$$

where $x \in \mathbb{R}^n$. We refer to *E* as the *Fourier extension operator* associated with Σ (or *S*). (So called as $E^*f = \hat{f} \circ \Sigma$.)

E.g. $U = \mathbb{R}^{n-1}$ and $\Sigma(\xi) = (\xi, |\xi|^2)$ – the paraboloid. Notice that $u : \mathbb{R}^{n-1} \times \mathbb{R} \to \mathbb{C}$ given by

$$u(x,t) := E\widehat{g}(x,t) = \int_{\mathbb{R}^{n-1}} e^{i(x\cdot\xi+t|\xi|^2)}\widehat{g}(\xi)d\xi$$

solves the Schrödinger equation $i\partial_t u = \Delta u$ with initial data g.

Motivation: Stein's restriction problem.

Suppose $\Sigma : U \to \mathbb{R}^n$ is a smooth parametrisation of a *k*-dimensional submanifold *S* of \mathbb{R}^n (so $U \subseteq \mathbb{R}^k$), and let

$$\mathsf{E}g(x) = \int_U e^{ix\cdot\Sigma(\xi)}g(\xi)d\xi,$$

where $x \in \mathbb{R}^n$. We refer to *E* as the *Fourier extension operator* associated with Σ (or *S*). (So called as $E^*f = \hat{f} \circ \Sigma$.)

E.g. $U = \mathbb{R}^{n-1}$ and $\Sigma(\xi) = (\xi, |\xi|^2)$ – the paraboloid. Notice that $u : \mathbb{R}^{n-1} \times \mathbb{R} \to \mathbb{C}$ given by

$$u(x,t) := E\widehat{g}(x,t) = \int_{\mathbb{R}^{n-1}} e^{i(x\cdot\xi+t|\xi|^2)}\widehat{g}(\xi)d\xi$$

solves the Schrödinger equation $i\partial_t u = \Delta u$ with initial data g.

Regardless of the choice of Σ , there is the trivial estimate $||Eg||_{\infty} \leq ||g||_1$.

Motivation: Stein's restriction problem.

Suppose $\Sigma : U \to \mathbb{R}^n$ is a smooth parametrisation of a *k*-dimensional submanifold *S* of \mathbb{R}^n (so $U \subseteq \mathbb{R}^k$), and let

$$\mathsf{E}\mathsf{g}(\mathsf{x}) = \int_U e^{i\mathsf{x}\cdot\Sigma(\xi)}\mathsf{g}(\xi)d\xi,$$

where $x \in \mathbb{R}^n$. We refer to *E* as the *Fourier extension operator* associated with Σ (or *S*). (So called as $E^*f = \hat{f} \circ \Sigma$.)

E.g. $U = \mathbb{R}^{n-1}$ and $\Sigma(\xi) = (\xi, |\xi|^2)$ – the paraboloid. Notice that $u : \mathbb{R}^{n-1} \times \mathbb{R} \to \mathbb{C}$ given by

$$u(x,t) := E\widehat{g}(x,t) = \int_{\mathbb{R}^{n-1}} e^{i(x\cdot\xi+t|\xi|^2)}\widehat{g}(\xi)d\xi$$

solves the Schrödinger equation $i\partial_t u = \Delta u$ with initial data g.

Regardless of the choice of Σ , there is the trivial estimate $\|Eg\|_{\infty} \leq \|g\|_{1}$.

Theorem (Stein–Tomas restriction theorem 1967/75)

If S is a compact hypersurface of nonvanishing gauss curvature, then $\|Eg\|_{\frac{2(n+1)}{n-1}} \lesssim \|g\|_2$.

Motivation: Stein's restriction problem.

Suppose $\Sigma : U \to \mathbb{R}^n$ is a smooth parametrisation of a *k*-dimensional submanifold *S* of \mathbb{R}^n (so $U \subseteq \mathbb{R}^k$), and let

$$\mathsf{E}\mathsf{g}(\mathsf{x}) = \int_U e^{i\mathsf{x}\cdot\Sigma(\xi)}\mathsf{g}(\xi)d\xi,$$

where $x \in \mathbb{R}^n$. We refer to *E* as the *Fourier extension operator* associated with Σ (or *S*). (So called as $E^*f = \hat{f} \circ \Sigma$.)

E.g. $U = \mathbb{R}^{n-1}$ and $\Sigma(\xi) = (\xi, |\xi|^2)$ – the paraboloid. Notice that $u : \mathbb{R}^{n-1} \times \mathbb{R} \to \mathbb{C}$ given by

$$u(x,t) := E\widehat{g}(x,t) = \int_{\mathbb{R}^{n-1}} e^{i(x\cdot\xi+t|\xi|^2)}\widehat{g}(\xi)d\xi$$

solves the Schrödinger equation $i\partial_t u = \Delta u$ with initial data g.

Regardless of the choice of Σ , there is the trivial estimate $\|Eg\|_{\infty} \leq \|g\|_{1}$.

Theorem (Stein–Tomas restriction theorem 1967/75)

If S is a compact hypersurface of nonvanishing gauss curvature, then $\|Eg\|_{\frac{2(n+1)}{n-1}} \lesssim \|g\|_2$.

If S is the paraboloid then this becomes $\|u\|_{L^{2(n+1)/(n-1)}_{x,t}} \lesssim \|\widehat{g}\|_2 = \|g\|_2$ - the classical Strichartz estimate for the Schrödinger equation (Strichartz 1978) \Rightarrow $A \equiv A = A$

Now suppose $\Sigma_1, \ldots, \Sigma_m$ parametrise n_1, \ldots, n_m dimensional submanifolds S_1, \ldots, S_m of \mathbb{R}^n , and E_1, \ldots, E_m are their associated Fourier extension operators; i.e. that

$${\it E}_{j}g(x)=\int_{U_{j}}{
m e}^{ix\cdot\Sigma_{j}(\xi)}g(\xi)d\xi, \ \ 1\leq j\leq m.$$

Now suppose $\Sigma_1, \ldots, \Sigma_m$ parametrise n_1, \ldots, n_m dimensional submanifolds S_1, \ldots, S_m of \mathbb{R}^n , and E_1, \ldots, E_m are their associated Fourier extension operators; i.e. that

$$E_j g(x) = \int_{U_j} e^{i x \cdot \Sigma_j(\xi)} g(\xi) d\xi, \quad 1 \leq j \leq m.$$

Observe that if Σ_j is *linear* with adjoint L_j , then $E_jg = \widehat{g} \circ L_j$.

・ロト ・回ト ・ヨト ・

Now suppose $\Sigma_1, \ldots, \Sigma_m$ parametrise n_1, \ldots, n_m dimensional submanifolds S_1, \ldots, S_m of \mathbb{R}^n , and E_1, \ldots, E_m are their associated Fourier extension operators; i.e. that

$$E_j g(x) = \int_{U_j} e^{i x \cdot \Sigma_j(\xi)} g(\xi) d\xi, \quad 1 \leq j \leq m.$$

Observe that if Σ_j is *linear* with adjoint L_j , then $E_jg = \widehat{g} \circ L_j$. Thus the Brascamp-Lieb inequality

$$\int_{\mathbb{R}^d} \prod_{j=1}^m (f_j \circ L_j)^{p_j} \le \mathsf{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^m \left(\int_{\mathbb{R}^{d_j}} f_j \right)^{p_j}, \tag{BL}$$

on setting $f_j = |\widehat{g}_j|^2$, maybe written as

$$\int_{\mathbb{R}^d} \prod_{j=1}^m |E_j g_j|^{2p_j} \leq \mathsf{BL}(\mathsf{L},\mathsf{p}) \prod_{j=1}^m \|g_j\|_2^{2p_j}.$$

・ロト ・日下・ ・ ヨト・
Now suppose $\Sigma_1, \ldots, \Sigma_m$ parametrise n_1, \ldots, n_m dimensional submanifolds S_1, \ldots, S_m of \mathbb{R}^n , and E_1, \ldots, E_m are their associated Fourier extension operators; i.e. that

$$E_j g(x) = \int_{U_j} e^{i x \cdot \Sigma_j(\xi)} g(\xi) d\xi, \quad 1 \leq j \leq m.$$

Observe that if Σ_j is *linear* with adjoint L_j , then $E_jg = \widehat{g} \circ L_j$. Thus the Brascamp-Lieb inequality

$$\int_{\mathbb{R}^d} \prod_{j=1}^m (f_j \circ L_j)^{p_j} \le \mathsf{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^m \left(\int_{\mathbb{R}^{d_j}} f_j \right)^{p_j}, \tag{BL}$$

on setting $f_j = |\widehat{g}_j|^2$, maybe written as

$$\int_{\mathbb{R}^d} \prod_{j=1}^m |\mathcal{E}_j g_j|^{2p_j} \leq \mathsf{BL}(\mathsf{L},\mathsf{p}) \prod_{j=1}^m \|g_j\|_2^{2p_j}.$$

We conjecture that the linearity requirement on the submanifolds S_j can be relaxed here, leading to certain "Fourier-analytic Brascamp–Lieb inequalities"...

Theorem (B-Carbery-Tao 2006; B-Bez-Flock-Lee 2015)

Suppose $BL(\mathbf{L}, \mathbf{p}) < \infty$, where $L_j := (d\Sigma_j(0))^*$. Then for each $\varepsilon > 0$

$$\int_{B(0;R)} \prod_{j=1}^m |E_j g_j|^{2p_j} \lesssim_{\varepsilon} R^{\varepsilon} \prod_{j=1}^m \|g_j\|_2^{2p_j}$$

Let us restrict attention to *n* codimension-1 submanifolds S_1, \ldots, S_n of \mathbb{R}^n .

Definition (Transversality)

We say that S_1, \ldots, S_n are *transversal* if there exists $\nu > 0$ such that whenever v_1, \ldots, v_n are unit normal vectors to S_1, \ldots, S_n respectively, then $|\det(v_1 \ v_2 \ \cdots \ v_n)| \ge \nu$.

Let us restrict attention to *n* codimension-1 submanifolds S_1, \ldots, S_n of \mathbb{R}^n .

Definition (Transversality)

We say that S_1, \ldots, S_n are *transversal* if there exists $\nu > 0$ such that whenever v_1, \ldots, v_n are unit normal vectors to S_1, \ldots, S_n respectively, then $|\det(v_1 \ v_2 \ \cdots \ v_n)| \ge \nu$.

Corollary (B–Carbery–Tao 2006)

If E_1, \ldots, E_n are extension operators associated with transversal compact submanifolds S_1, \ldots, S_n of \mathbb{R}^n , then

$$\|E_1g_1\cdots E_ng_n\|_{L^{2/(n-1)}(B(0;R))}\lesssim_{\varepsilon} R^{\varepsilon}\|g_1\|_2\cdots\|g_n\|_2.$$

イロト イポト イヨト イヨ

Let us restrict attention to *n* codimension-1 submanifolds S_1, \ldots, S_n of \mathbb{R}^n .

Definition (Transversality)

We say that S_1, \ldots, S_n are *transversal* if there exists $\nu > 0$ such that whenever v_1, \ldots, v_n are unit normal vectors to S_1, \ldots, S_n respectively, then $|\det(v_1 \ v_2 \ \cdots \ v_n)| \ge \nu$.

Corollary (B–Carbery–Tao 2006)

If E_1, \ldots, E_n are extension operators associated with transversal compact submanifolds S_1, \ldots, S_n of \mathbb{R}^n , then

$$\|E_1g_1\cdots E_ng_n\|_{L^{2/(n-1)}(B(0;R))} \lesssim_{\varepsilon} R^{\varepsilon}\|g_1\|_2\cdots\|g_n\|_2.$$

In the context of transversal patches of paraboloid, this as a Strichartz estimate...

Corollary

Let $u_1, \ldots, u_n : \mathbb{R}^{n-1} \times \mathbb{R} \to \mathbb{C}$ be solutions of $i\partial_t u = \Delta u$ with initial data g_1, \ldots, g_n respectively.

Let us restrict attention to *n* codimension-1 submanifolds S_1, \ldots, S_n of \mathbb{R}^n .

Definition (Transversality)

We say that S_1, \ldots, S_n are *transversal* if there exists $\nu > 0$ such that whenever v_1, \ldots, v_n are unit normal vectors to S_1, \ldots, S_n respectively, then $|\det(v_1 \ v_2 \ \cdots \ v_n)| \ge \nu$.

Corollary (B–Carbery–Tao 2006)

If E_1, \ldots, E_n are extension operators associated with transversal compact submanifolds S_1, \ldots, S_n of \mathbb{R}^n , then

$$\|E_1g_1\cdots E_ng_n\|_{L^{2/(n-1)}(B(0;R))} \lesssim_{\varepsilon} R^{\varepsilon}\|g_1\|_2\cdots\|g_n\|_2.$$

In the context of transversal patches of paraboloid, this as a Strichartz estimate...

Corollary

Let $u_1, \ldots, u_n : \mathbb{R}^{n-1} \times \mathbb{R} \to \mathbb{C}$ be solutions of $i\partial_t u = \Delta u$ with initial data g_1, \ldots, g_n respectively. If $supp(\widehat{g}_1), \ldots, supp(\widehat{g}_n) \subseteq \mathbb{R}^{n-1}$ meet no affine hyperplane, then

$$||u_1\cdots u_n||_{L^{2/(n-1)}_{t,x}(|x|,|t|\leq R)} \lesssim_{\varepsilon} R^{\varepsilon} ||g_1||_2\cdots ||g_n||_2.$$

Let us restrict attention to *n* codimension-1 submanifolds S_1, \ldots, S_n of \mathbb{R}^n .

Definition (Transversality)

We say that S_1, \ldots, S_n are *transversal* if there exists $\nu > 0$ such that whenever v_1, \ldots, v_n are unit normal vectors to S_1, \ldots, S_n respectively, then $|\det(v_1 \ v_2 \ \cdots \ v_n)| \ge \nu$.

Corollary (B–Carbery–Tao 2006)

If E_1, \ldots, E_n are extension operators associated with transversal compact submanifolds S_1, \ldots, S_n of \mathbb{R}^n , then

$$\|E_1g_1\cdots E_ng_n\|_{L^{2/(n-1)}(B(0;R))} \lesssim_{\varepsilon} R^{\varepsilon}\|g_1\|_2\cdots \|g_n\|_2.$$

In the context of transversal patches of paraboloid, this as a Strichartz estimate...

Corollary

Let $u_1, \ldots, u_n : \mathbb{R}^{n-1} \times \mathbb{R} \to \mathbb{C}$ be solutions of $i\partial_t u = \Delta u$ with initial data g_1, \ldots, g_n respectively. If $supp(\widehat{g}_1), \ldots, supp(\widehat{g}_n) \subseteq \mathbb{R}^{n-1}$ meet no affine hyperplane, then

$$\|u_1\cdots u_n\|_{L^{2/(n-1)}_{t,x}}(|x|,|t|\leq R) \lesssim_{\varepsilon} R^{\varepsilon}\|g_1\|_2\cdots\|g_n\|_2.$$

(The corresponding linear inequality $\|u\|_{L^{2n/(n-1)}} \lesssim \|g\|_2$ is false.) $\exists r \in \mathbb{R}$

Progress on Stein's Fourier restriction conjecture: deeper L^p → L^q estimates for E (Bourgain–Guth 2011).

Progress on Stein's Fourier restriction conjecture: deeper L^p → L^q estimates for E (Bourgain–Guth 2011). For g : U → C, write χ_U = Σ_α χ_{U_α}, so that

$$(Eg)^n = \sum_{\alpha_1,\ldots,\alpha_n} E(g\chi_{U_{\alpha_1}})\cdots E(g\chi_{U_{\alpha_n}}),$$

then "look for transversality" amongst multilinear operators

$$(g_1,\ldots,g_n)\mapsto E(g_1\chi_{U_{\alpha_1}})\cdots E(g_n\chi_{U_{\alpha_n}}).$$

Progress on Stein's Fourier restriction conjecture: deeper L^p → L^q estimates for E (Bourgain–Guth 2011). For g : U → C, write χ_U = Σ_α χ_{U_α}, so that

$$(Eg)^n = \sum_{\alpha_1,\ldots,\alpha_n} E(g\chi_{U_{\alpha_1}})\cdots E(g\chi_{U_{\alpha_n}}),$$

then "look for transversality" amongst multilinear operators

$$(g_1,\ldots,g_n)\mapsto E(g_1\chi_{U_{\alpha_1}})\cdots E(g_n\chi_{U_{\alpha_n}}).$$

 Improved mixed norm Strichartz estimates for the Schrödinger equation on ℝⁿ (Bourgain 2011).

Progress on Stein's Fourier restriction conjecture: deeper L^p → L^q estimates for E (Bourgain–Guth 2011). For g : U → C, write χ_U = Σ_α χ_{U_α}, so that

$$(Eg)^n = \sum_{\alpha_1,\ldots,\alpha_n} E(g\chi_{U_{\alpha_1}})\cdots E(g\chi_{U_{\alpha_n}}),$$

then "look for transversality" amongst multilinear operators

$$(g_1,\ldots,g_n)\mapsto E(g_1\chi_{U_{\alpha_1}})\cdots E(g_n\chi_{U_{\alpha_n}}).$$

- Improved mixed norm Strichartz estimates for the Schrödinger equation on ℝⁿ (Bourgain 2011).
- Sharp Strichartz estimates for the Schrödinger equation on tori (Bourgain–Demeter 2015).

Progress on Stein's Fourier restriction conjecture: deeper L^p → L^q estimates for E (Bourgain–Guth 2011). For g : U → C, write χ_U = Σ_α χ_{U_α}, so that

$$(Eg)^n = \sum_{\alpha_1,\ldots,\alpha_n} E(g\chi_{U_{\alpha_1}})\cdots E(g\chi_{U_{\alpha_n}}),$$

then "look for transversality" amongst multilinear operators

$$(g_1,\ldots,g_n)\mapsto E(g_1\chi_{U_{\alpha_1}})\cdots E(g_n\chi_{U_{\alpha_n}}).$$

- Improved mixed norm Strichartz estimates for the Schrödinger equation on ℝⁿ (Bourgain 2011).
- Sharp Strichartz estimates for the Schrödinger equation on tori (Bourgain–Demeter 2015).
- Proof of the Vinogradov Mean Value Conjecture: exponential sum bounds and Diophantine equations (Bourgain-Demeter-Guth 2016).

• Progress on Stein's Fourier restriction conjecture: deeper $L^p \to L^q$ estimates for E (Bourgain–Guth 2011). For $g: U \to \mathbb{C}$, write $\chi_U = \sum_{\alpha} \chi_{U_{\alpha}}$, so that

$$(Eg)^n = \sum_{\alpha_1,\ldots,\alpha_n} E(g\chi_{U_{\alpha_1}})\cdots E(g\chi_{U_{\alpha_n}}),$$

then "look for transversality" amongst multilinear operators

$$(g_1,\ldots,g_n)\mapsto E(g_1\chi_{U_{\alpha_1}})\cdots E(g_n\chi_{U_{\alpha_n}}).$$

- Improved mixed norm Strichartz estimates for the Schrödinger equation on ℝⁿ (Bourgain 2011).
- Sharp Strichartz estimates for the Schrödinger equation on tori (Bourgain–Demeter 2015).
- Proof of the Vinogradov Mean Value Conjecture: exponential sum bounds and Diophantine equations (Bourgain-Demeter-Guth 2016).
- Improved asymptotic bounds for $\zeta(s)$ (Bourgain–Watt 2014).
- ٩

• Progress on Stein's Fourier restriction conjecture: deeper $L^p \to L^q$ estimates for E (Bourgain–Guth 2011). For $g: U \to \mathbb{C}$, write $\chi_U = \sum_{\alpha} \chi_{U_{\alpha}}$, so that

$$(Eg)^n = \sum_{\alpha_1,\ldots,\alpha_n} E(g\chi_{U_{\alpha_1}})\cdots E(g\chi_{U_{\alpha_n}}),$$

then "look for transversality" amongst multilinear operators

$$(g_1,\ldots,g_n)\mapsto E(g_1\chi_{U_{\alpha_1}})\cdots E(g_n\chi_{U_{\alpha_n}}).$$

- Improved mixed norm Strichartz estimates for the Schrödinger equation on ℝⁿ (Bourgain 2011).
- Sharp Strichartz estimates for the Schrödinger equation on tori (Bourgain–Demeter 2015).
- Proof of the Vinogradov Mean Value Conjecture: exponential sum bounds and Diophantine equations (Bourgain-Demeter-Guth 2016).
- Improved asymptotic bounds for $\zeta(s)$ (Bourgain–Watt 2014).

٩

Thank you for listening!

イロン 不聞と 不同と 不同と