The Brascamp-Lieb inequality in modern harmonic analysis and PDE

Jonathan Bennett

U. Birmingham

15 July 2016

London Mathematical Society - EPSRC Durham Symposium Mathematical and Computational Aspects of Maxwell's Equations

Supported by ERC grant 307617.

Part 1: An introduction to the classical Brascamp-Lieb inequality.

Part 1: An introduction to the classical Brascamp-Lieb inequality.

Part 2: Some recent incarnations of the Brascamp-Lieb inequality in harmonic analysis, and links with PDE.

The classical Brascamp-Lieb inequality

The classical Brascamp-Lieb inequality

The Brascamp-Lieb inequality is a functional inequality with many parameters, designed to simultaneously generalise many classical inequalities. It takes the form

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}}, \tag{BL}
\end{equation*}
$$

where $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$ is a linear surjection and $p_{j} \in[0,1]$ for each $1 \leq j \leq m$;

The classical Brascamp-Lieb inequality

The Brascamp-Lieb inequality is a functional inequality with many parameters, designed to simultaneously generalise many classical inequalities. It takes the form

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}} \tag{BL}
\end{equation*}
$$

where $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$ is a linear surjection and $p_{j} \in[0,1]$ for each $1 \leq j \leq m$; we refer to the m-tuple $(\mathbf{L}, \mathbf{p}):=\left(\left(L_{j}\right),\left(p_{j}\right)\right)$ of parameters as the Brascamp-Lieb datum.

The classical Brascamp-Lieb inequality

The Brascamp-Lieb inequality is a functional inequality with many parameters, designed to simultaneously generalise many classical inequalities. It takes the form

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}} \tag{BL}
\end{equation*}
$$

where $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$ is a linear surjection and $p_{j} \in[0,1]$ for each $1 \leq j \leq m$; we refer to the m-tuple $(\mathbf{L}, \mathbf{p}):=\left(\left(L_{j}\right),\left(p_{j}\right)\right)$ of parameters as the Brascamp-Lieb datum.

Here the $f_{j} \in L^{1}\left(\mathbb{R}^{n_{j}}\right)$ are nonnegative, and we denote by $\operatorname{BL}(\mathbf{L}, \mathbf{p})$ the best constant $C \leq \infty$ in (BL).

The classical Brascamp-Lieb inequality

The Brascamp-Lieb inequality is a functional inequality with many parameters, designed to simultaneously generalise many classical inequalities. It takes the form

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}} \tag{BL}
\end{equation*}
$$

where $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$ is a linear surjection and $p_{j} \in[0,1]$ for each $1 \leq j \leq m$; we refer to the m-tuple $(\mathbf{L}, \mathbf{p}):=\left(\left(L_{j}\right),\left(p_{j}\right)\right)$ of parameters as the Brascamp-Lieb datum.

Here the $f_{j} \in L^{1}\left(\mathbb{R}^{n_{j}}\right)$ are nonnegative, and we denote by $\operatorname{BL}(\mathbf{L}, \mathbf{p})$ the best constant $C \leq \infty$ in (BL).

Notice that (BL) is equivalent to

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} g_{j} \circ L_{j} \leq C \prod_{j=1}^{m}\left\|g_{j}\right\|_{L^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

where $q_{j}=1 / p_{j} \in[1, \infty]$.

Some familiar examples

Some familiar examples

- Hölder's inequality: If $\sum p_{j}=1$ then

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}^{p_{j}} \leq \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} f_{j}\right)^{p_{j}}
$$

Some familiar examples

- Hölder's inequality: If $\sum p_{j}=1$ then

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}^{p_{j}} \leq \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} f_{j}\right)^{p_{j}}
$$

i.e. (BL) with $n_{j}=n, L_{j}=I_{n}$ and $\sum p_{j}=1$.

Some familiar examples

- Hölder's inequality: If $\sum p_{j}=1$ then

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}^{p_{j}} \leq \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} f_{j}\right)^{p_{j}}
$$

i.e. (BL) with $n_{j}=n, L_{j}=I_{n}$ and $\sum p_{j}=1$.

- Young's convolution inequality: If $k \in \mathbb{N}$ and $p_{1}+p_{2}+p_{3}=2$ then

$$
\int_{\mathbb{R}^{2 k}} f_{1}(x)^{p_{1}} f_{2}(x-y)^{p_{2}} f_{3}(y)^{p_{3}} \mathrm{~d} x \mathrm{~d} y \leq C_{\mathrm{p}}\left(\int_{\mathbb{R}^{k}} f_{1}\right)^{p_{1}}\left(\int_{\mathbb{R}^{k}} f_{2}\right)^{p_{2}}\left(\int_{\mathbb{R}^{k}} f_{3}\right)^{p_{3}}
$$

Some familiar examples

- Hölder's inequality: If $\sum p_{j}=1$ then

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}^{p_{j}} \leq \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} f_{j}\right)^{p_{j}}
$$

i.e. (BL) with $n_{j}=n, L_{j}=I_{n}$ and $\sum p_{j}=1$.

- Young's convolution inequality: If $k \in \mathbb{N}$ and $p_{1}+p_{2}+p_{3}=2$ then

$$
\int_{\mathbb{R}^{2 k}} f_{1}(x)^{p_{1}} f_{2}(x-y)^{p_{2}} f_{3}(y)^{p_{3}} \mathrm{~d} x \mathrm{~d} y \leq C_{\mathrm{p}}\left(\int_{\mathbb{R}^{k}} f_{1}\right)^{p_{1}}\left(\int_{\mathbb{R}^{k}} f_{2}\right)^{p_{2}}\left(\int_{\mathbb{R}^{k}} f_{3}\right)^{p_{3}}
$$

i.e. (BL) with $n=2 k, n_{1}=n_{2}=n_{3}=k, p_{1}+p_{2}+p_{3}=2$ and

$$
L_{1}(x, y)=x, \quad L_{2}(x, y)=x-y, \quad L_{3}(x, y)=y
$$

Some familiar examples

- Hölder's inequality: If $\sum p_{j}=1$ then

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} f_{j}^{p_{j}} \leq \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}} f_{j}\right)^{p_{j}} ;
$$

i.e. (BL) with $n_{j}=n, L_{j}=I_{n}$ and $\sum p_{j}=1$.

- Young's convolution inequality: If $k \in \mathbb{N}$ and $p_{1}+p_{2}+p_{3}=2$ then

$$
\int_{\mathbb{R}^{2 k}} f_{1}(x)^{p_{1}} f_{2}(x-y)^{p_{2}} f_{3}(y)^{p_{3}} \mathrm{~d} x d y \leq C_{\mathbf{p}}\left(\int_{\mathbb{R}^{k}} f_{1}\right)^{p_{1}}\left(\int_{\mathbb{R}^{k}} f_{2}\right)^{p_{2}}\left(\int_{\mathbb{R}^{k}} f_{3}\right)^{p_{3}} ;
$$

i.e. (BL) with $n=2 k, n_{1}=n_{2}=n_{3}=k, p_{1}+p_{2}+p_{3}=2$ and

$$
L_{1}(x, y)=x, \quad L_{2}(x, y)=x-y, \quad L_{3}(x, y)=y .
$$

(Sharp constant C_{p} obtained by testing on centred gaussians;
Beckner/Brascamp-Lieb 1975.)

- The Loomis-Whitney inequality: For $1 \leq j \leq n$ let $\pi_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be given by

$$
\pi_{j}(x)=\left(x_{1}, \ldots, \widehat{x}_{j}, \cdots, x_{n}\right) .
$$

- The Loomis-Whitney inequality: For $1 \leq j \leq n$ let $\pi_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be given by

$$
\pi_{j}(x)=\left(x_{1}, \ldots, \widehat{x_{j}}, \cdots, x_{n}\right)
$$

The Loomis-Whitney inequality states that

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(f_{j} \circ \pi_{j}\right)^{1 /(n-1)} \leq \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{1 /(n-1)} ;
$$

- The Loomis-Whitney inequality: For $1 \leq j \leq n$ let $\pi_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be given by

$$
\pi_{j}(x)=\left(x_{1}, \ldots, \widehat{x_{j}}, \cdots, x_{n}\right)
$$

The Loomis-Whitney inequality states that

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(f_{j} \circ \pi_{j}\right)^{1 /(n-1)} \leq \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{1 /(n-1)} ;
$$

i.e. (BL) with $m=n, n_{j}=n-1, L_{j}=\pi_{j}, p_{j}=1 /(n-1)$.

- The Loomis-Whitney inequality: For $1 \leq j \leq n$ let $\pi_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be given by

$$
\pi_{j}(x)=\left(x_{1}, \ldots, \widehat{x_{j}}, \cdots, x_{n}\right)
$$

The Loomis-Whitney inequality states that

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(f_{j} \circ \pi_{j}\right)^{1 /(n-1)} \leq \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{1 /(n-1)} ;
$$

i.e. (BL) with $m=n, n_{j}=n-1, L_{j}=\pi_{j}, p_{j}=1 /(n-1)$.

Aside: this is a geometric inequality: If $\Omega \subset \mathbb{R}^{n}$ and $f_{j}=\chi_{\pi_{j}(\Omega)}$ then

- The Loomis-Whitney inequality: For $1 \leq j \leq n$ let $\pi_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be given by

$$
\pi_{j}(x)=\left(x_{1}, \ldots, \widehat{x_{j}}, \cdots, x_{n}\right)
$$

The Loomis-Whitney inequality states that

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(f_{j} \circ \pi_{j}\right)^{1 /(n-1)} \leq \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{1 /(n-1)} ;
$$

i.e. (BL) with $m=n, n_{j}=n-1, L_{j}=\pi_{j}, p_{j}=1 /(n-1)$.

Aside: this is a geometric inequality: If $\Omega \subset \mathbb{R}^{n}$ and $f_{j}=\chi_{\pi_{j}(\Omega)}$ then

$$
|\Omega| \leq \prod_{j=1}^{n}\left|\pi_{j}(\Omega)\right|^{1 /(n-1)}
$$

- The Loomis-Whitney inequality: For $1 \leq j \leq n$ let $\pi_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be given by

$$
\pi_{j}(x)=\left(x_{1}, \ldots, \widehat{x_{j}}, \cdots, x_{n}\right)
$$

The Loomis-Whitney inequality states that

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(f_{j} \circ \pi_{j}\right)^{1 /(n-1)} \leq \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{1 /(n-1)} ;
$$

i.e. (BL) with $m=n, n_{j}=n-1, L_{j}=\pi_{j}, p_{j}=1 /(n-1)$.

Aside: this is a geometric inequality: If $\Omega \subset \mathbb{R}^{n}$ and $f_{j}=\chi_{\pi_{j}(\Omega)}$ then

$$
|\Omega| \leq \prod_{j=1}^{n}\left|\pi_{j}(\Omega)\right|^{1 /(n-1)}
$$

or

$$
|\Omega| \geq \prod_{j=1}^{n} \frac{|\Omega|}{\left|\pi_{j}(\Omega)\right|}
$$

- The affine-invariant Loomis-Whitney inequality: For $1 \leq j \leq n$ let $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be a linear map, and $X\left(L_{j}\right) \in \mathbb{R}^{n}$ be the wedge product of the rows of L_{j}.
- The affine-invariant Loomis-Whitney inequality: For $1 \leq j \leq n$ let $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be a linear map, and $X\left(L_{j}\right) \in \mathbb{R}^{n}$ be the wedge product of the rows of L_{j}.
Then,

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(f_{j} \circ L_{j}\right)^{1 /(n-1)} \leq \operatorname{det}\left(X\left(L_{1}\right) \cdots X\left(L_{n}\right)\right)^{-\frac{1}{n-1}} \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{1 /(n-1)}
$$

- The affine-invariant Loomis-Whitney inequality: For $1 \leq j \leq n$ let $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be a linear map, and $X\left(L_{j}\right) \in \mathbb{R}^{n}$ be the wedge product of the rows of L_{j}.
Then,

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(f_{j} \circ L_{j}\right)^{1 /(n-1)} \leq \operatorname{det}\left(X\left(L_{1}\right) \cdots X\left(L_{n}\right)\right)^{-\frac{1}{n-1}} \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{1 /(n-1)}
$$

so that for $p_{1}=\cdots=p_{n}=\frac{1}{n-1}$,

$$
\mathrm{BL}(\mathbf{L}, \mathbf{p})=\operatorname{det}\left(X\left(L_{1}\right) \cdots X\left(L_{n}\right)\right)^{-\frac{1}{n-1}}
$$

- The affine-invariant Loomis-Whitney inequality: For $1 \leq j \leq n$ let $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be a linear map, and $X\left(L_{j}\right) \in \mathbb{R}^{n}$ be the wedge product of the rows of L_{j}.
Then,

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left(f_{j} \circ L_{j}\right)^{1 /(n-1)} \leq \operatorname{det}\left(X\left(L_{1}\right) \cdots X\left(L_{n}\right)\right)^{-\frac{1}{n-1}} \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{1 /(n-1)}
$$

so that for $p_{1}=\cdots=p_{n}=\frac{1}{n-1}$,

$$
\mathrm{BL}(\mathbf{L}, \mathbf{p})=\operatorname{det}\left(X\left(L_{1}\right) \cdots X\left(L_{n}\right)\right)^{-\frac{1}{n-1}}
$$

Follows from the standard Loomis-Whitney inequality just by changes of variables.

Lieb's fundamental theorem

Lieb's fundamental theorem

Recall that $\mathrm{BL}(\mathbf{L}, \mathbf{p})$ denotes the best constant in

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}} \tag{BL}
\end{equation*}
$$

Lieb's fundamental theorem

Recall that $\operatorname{BL}(\mathbf{L}, \mathbf{p})$ denotes the best constant in

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}} \tag{BL}
\end{equation*}
$$

Theorem (Lieb 1990)

For any Brascamp-Lieb datum (\mathbf{L}, \mathbf{p}) the constant $B L(\mathbf{L}, \mathbf{p})$ is exhausted by centred gaussian inputs; i.e.

$$
f_{j}(x)=e^{-\pi\left\langle A_{j} x, x\right\rangle}
$$

where $x \in \mathbb{R}^{n_{j}}$ and $A_{j}>0$.

Lieb's fundamental theorem

Recall that $\operatorname{BL}(\mathbf{L}, \mathbf{p})$ denotes the best constant in

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}} \tag{BL}
\end{equation*}
$$

Theorem (Lieb 1990)

For any Brascamp-Lieb datum (\mathbf{L}, \mathbf{p}) the constant $B L(\mathbf{L}, \mathbf{p})$ is exhausted by centred gaussian inputs; i.e.

$$
f_{j}(x)=e^{-\pi\left\langle A_{j} x, x\right\rangle}
$$

where $x \in \mathbb{R}^{n_{j}}$ and $A_{j}>0$. Hence

$$
B L(\mathbf{L}, \mathbf{p})=\sup _{A_{1}, \ldots, A_{m}>0}\left(\frac{\prod_{j=1}^{m}\left(\operatorname{det} A_{j}\right)^{p_{j}}}{\operatorname{det}\left(\sum_{j=1}^{m} p_{j} L_{j}^{*} A_{j} L_{j}\right)}\right)^{1 / 2}
$$

Lieb's fundamental theorem

Recall that $\mathrm{BL}(\mathbf{L}, \mathbf{p})$ denotes the best constant in

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}} \tag{BL}
\end{equation*}
$$

Theorem (Lieb 1990)

For any Brascamp-Lieb datum (\mathbf{L}, \mathbf{p}) the constant $B L(\mathbf{L}, \mathbf{p})$ is exhausted by centred gaussian inputs; i.e.

$$
f_{j}(x)=e^{-\pi\left\langle A_{j} x, x\right\rangle}
$$

where $x \in \mathbb{R}^{n_{j}}$ and $A_{j}>0$. Hence

$$
B L(\mathbf{L}, \mathbf{p})=\sup _{A_{1}, \ldots, A_{m}>0}\left(\frac{\prod_{j=1}^{m}\left(\operatorname{det} A_{j}\right)^{p_{j}}}{\operatorname{det}\left(\sum_{j=1}^{m} p_{j} L_{j}^{*} A_{j} L_{j}\right)}\right)^{1 / 2}
$$

Even with Lieb's formula for $\operatorname{BL}(\mathbf{L}, \mathbf{p})$, it is still far from clear when it is finite...

When is $\operatorname{BL}(\mathbf{L}, \mathbf{p})<\infty$?

When is $\operatorname{BL}(\mathbf{L}, \mathbf{p})<\infty$?

Easy necessary condition 1: by scaling (replacing f_{j} with $f_{j}(\lambda \cdot)$ for each j and $\lambda>0$),

$$
\mathrm{BL}(\mathbf{L}, \mathbf{p})<\infty \Longrightarrow \sum_{j=1}^{m} p_{j} n_{j}=n .
$$

When is $\operatorname{BL}(\mathbf{L}, \mathbf{p})<\infty$?

Easy necessary condition 1: by scaling (replacing f_{j} with $f_{j}(\lambda \cdot)$ for each j and $\lambda>0$),

$$
\mathrm{BL}(\mathbf{L}, \mathbf{p})<\infty \Longrightarrow \sum_{j=1}^{m} p_{j} n_{j}=n .
$$

Easy necessary condition 2 :

$$
\mathrm{BL}(\mathbf{L}, \mathbf{p})<\infty \Longrightarrow \bigcap_{j=1}^{m} \operatorname{ker} L_{j}=\{0\}
$$

since the integrand

$$
\prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \equiv \prod_{j=1}^{m} f_{j}(0)^{p_{j}} \quad \text { on } \bigcap_{j=1}^{m} \operatorname{ker} L_{j} .
$$

When is $\operatorname{BL}(\mathbf{L}, \mathbf{p})<\infty$?

Easy necessary condition 1 : by scaling (replacing f_{j} with $f_{j}(\lambda \cdot)$ for each j and $\lambda>0$),

$$
\mathrm{BL}(\mathbf{L}, \mathbf{p})<\infty \Longrightarrow \sum_{j=1}^{m} p_{j} n_{j}=n
$$

Easy necessary condition 2 :

$$
\mathrm{BL}(\mathbf{L}, \mathbf{p})<\infty \Longrightarrow \bigcap_{j=1}^{m} \operatorname{ker} L_{j}=\{0\}
$$

since the integrand

$$
\prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \equiv \prod_{j=1}^{m} f_{j}(0)^{p_{j}} \quad \text { on } \bigcap_{j=1}^{m} \operatorname{ker} L_{j} .
$$

Theorem (B-Carbery-Christ-Tao 2007)

$B L(\mathbf{L}, \mathbf{p})<\infty$ if and only if $\sum_{j=1}^{m} p_{j} n_{j}=n$

When is $\operatorname{BL}(L, p)<\infty$?

Easy necessary condition 1 : by scaling (replacing f_{j} with $f_{j}(\lambda \cdot)$ for each j and $\lambda>0$),

$$
\mathrm{BL}(\mathbf{L}, \mathbf{p})<\infty \Longrightarrow \sum_{j=1}^{m} p_{j} n_{j}=n
$$

Easy necessary condition 2 :

$$
\mathrm{BL}(\mathbf{L}, \mathbf{p})<\infty \Longrightarrow \bigcap_{j=1}^{m} \operatorname{ker} L_{j}=\{0\}
$$

since the integrand

$$
\prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \equiv \prod_{j=1}^{m} f_{j}(0)^{p_{j}} \quad \text { on } \bigcap_{j=1}^{m} \operatorname{ker} L_{j} .
$$

Theorem (B-Carbery-Christ-Tao 2007)

$B L(\mathbf{L}, \mathbf{p})<\infty$ if and only if $\sum_{j=1}^{m} p_{j} n_{j}=n$ and

$$
\operatorname{dim} V \leq \sum_{j=1}^{m} p_{j} \operatorname{dim} L_{j} V \quad \text { for all } V \leq \mathbb{R}^{n}
$$

Further structural results

Further structural results

- a description of the data (\mathbf{L}, \mathbf{p}) for which gaussian extremisers exist (Carlen-Lieb-Loss, B-Carbery-Christ-Tao);

Further structural results

- a description of the data (\mathbf{L}, \mathbf{p}) for which gaussian extremisers exist (Carlen-Lieb-Loss, B-Carbery-Christ-Tao);
- the monotonicity of the functional

$$
\left(f_{1}, \ldots, f_{m}\right) \mapsto \frac{\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}}}{\prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}}}
$$

as the f_{j} evolve under certain heat equations (..., Carlen-Lieb-Loss, B-Carbery-Christ-Tao);

Further structural results

- a description of the data (\mathbf{L}, \mathbf{p}) for which gaussian extremisers exist (Carlen-Lieb-Loss, B-Carbery-Christ-Tao);
- the monotonicity of the functional

$$
\left(f_{1}, \ldots, f_{m}\right) \mapsto \frac{\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}}}{\prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}}}
$$

as the f_{j} evolve under certain heat equations (..., Carlen-Lieb-Loss, B-Carbery-Christ-Tao);
$-$

- the continuity of the constant $\mathbf{L} \mapsto \mathrm{BL}(\mathbf{L}, \mathbf{p})$ (B-Bez-Cowling-Flock 2016);

Further structural results

- a description of the data (\mathbf{L}, \mathbf{p}) for which gaussian extremisers exist (Carlen-Lieb-Loss, B-Carbery-Christ-Tao);
- the monotonicity of the functional

$$
\left(f_{1}, \ldots, f_{m}\right) \mapsto \frac{\int_{\mathbb{R}^{n}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}}}{\prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}}}
$$

as the f_{j} evolve under certain heat equations (..., Carlen-Lieb-Loss, B-Carbery-Christ-Tao);
-

- the continuity of the constant $\mathbf{L} \mapsto \mathrm{BL}(\mathbf{L}, \mathbf{p})$ (B-Bez-Cowling-Flock 2016);
- a polynomial time algorithm for determining whether $\operatorname{BL}(\mathbf{L}, \mathbf{p})<\infty$ and more (Garg-Gurvits-Oliveira-Wigderson 2016).

Part 2: Some recent variants of the Brascamp-Lieb inequality in harmonic analysis, and links with PDE.

Variant 1: A nonlinear Brascamp-Lieb inequality

The so-called nonlinear Brascamp-Lieb inequality replaces the linear surjections $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$ with local submersions $B_{j}: U \rightarrow \mathbb{R}^{n_{j}}$, defined on a neighbourhood U of a point $x_{0} \in \mathbb{R}^{n}$.

Variant 1: A nonlinear Brascamp-Lieb inequality

The so-called nonlinear Brascamp-Lieb inequality replaces the linear surjections $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$ with local submersions $B_{j}: U \rightarrow \mathbb{R}^{n_{j}}$, defined on a neighbourhood U of a point $x_{0} \in \mathbb{R}^{n}$.

Conjecture (Nonlinear Brascamp-Lieb)

If $d B_{j}\left(x_{0}\right)=L_{j}$ with $B L(\mathbf{L}, \mathbf{p})<\infty$, then provided U is taken sufficiently small,

$$
\int_{U} \prod_{j=1}^{m}\left(f_{j} \circ B_{j}\right)^{p_{j}} \lesssim \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}}
$$

Variant 1: A nonlinear Brascamp-Lieb inequality

The so-called nonlinear Brascamp-Lieb inequality replaces the linear surjections $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$ with local submersions $B_{j}: U \rightarrow \mathbb{R}^{n_{j}}$, defined on a neighbourhood U of a point $x_{0} \in \mathbb{R}^{n}$.

Conjecture (Nonlinear Brascamp-Lieb)

If $d B_{j}\left(x_{0}\right)=L_{j}$ with $B L(\mathbf{L}, \mathbf{p})<\infty$, then provided U is taken sufficiently small,

$$
\int_{U} \prod_{j=1}^{m}\left(f_{j} \circ B_{j}\right)^{p_{j}} \lesssim \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{p_{j}}
$$

This is true for the Loomis-Whitney inequality;

Variant 1: A nonlinear Brascamp-Lieb inequality

The so-called nonlinear Brascamp-Lieb inequality replaces the linear surjections $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$ with local submersions $B_{j}: U \rightarrow \mathbb{R}^{n_{j}}$, defined on a neighbourhood U of a point $x_{0} \in \mathbb{R}^{n}$.

Conjecture (Nonlinear Brascamp-Lieb)

If $d B_{j}\left(x_{0}\right)=L_{j}$ with $B L(\mathbf{L}, \mathbf{p})<\infty$, then provided U is taken sufficiently small,

$$
\int_{U} \prod_{j=1}^{m}\left(f_{j} \circ B_{j}\right)^{\rho_{j}} \lesssim \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n} j} f_{j}\right)^{\rho_{j}} .
$$

This is true for the Loomis-Whitney inequality; i.e.

Theorem (Nonlinear Loomis-Whitney; B-Carbery-Wright 2005)

If $d B_{j}\left(x_{0}\right)=L_{j}$ where $L_{1}, \ldots, L_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$, then provided U is taken sufficiently small,

$$
\int_{U} \prod_{j=1}^{n}\left(f_{j} \circ B_{j}\right)^{\frac{1}{n-1}} \lesssim \operatorname{det}\left(X\left(L_{1}\right) \cdots X\left(L_{n}\right)\right)^{-\frac{1}{n-1}} \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{\frac{1}{n-1}}
$$

Variant 1: A nonlinear Brascamp-Lieb inequality

The so-called nonlinear Brascamp-Lieb inequality replaces the linear surjections $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{j}}$ with local submersions $B_{j}: U \rightarrow \mathbb{R}^{n_{j}}$, defined on a neighbourhood U of a point $x_{0} \in \mathbb{R}^{n}$.

Conjecture (Nonlinear Brascamp-Lieb)

If $d B_{j}\left(x_{0}\right)=L_{j}$ with $B L(\mathbf{L}, \mathbf{p})<\infty$, then provided U is taken sufficiently small,

$$
\int_{U} \prod_{j=1}^{m}\left(f_{j} \circ B_{j}\right)^{\rho_{j}} \lesssim \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n_{j}}} f_{j}\right)^{\rho_{j}} .
$$

This is true for the Loomis-Whitney inequality; i.e.

Theorem (Nonlinear Loomis-Whitney; B-Carbery-Wright 2005)

If $d B_{j}\left(x_{0}\right)=L_{j}$ where $L_{1}, \ldots, L_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$, then provided U is taken sufficiently small,

$$
\int_{U} \prod_{j=1}^{n}\left(f_{j} \circ B_{j}\right)^{\frac{1}{n-1}} \lesssim \operatorname{det}\left(X\left(L_{1}\right) \cdots X\left(L_{n}\right)\right)^{-\frac{1}{n-1}} \prod_{j=1}^{n}\left(\int_{\mathbb{R}^{n-1}} f_{j}\right)^{\frac{1}{n-1}}
$$

Generalises to "block Loomis-Whitney", whereby $\bigoplus_{j} \operatorname{ker} L_{j}=\mathbb{R}^{n}$ (B-Bez 2010).

Nonlinear Brascamp-Lieb conjecture true in general with a certain ε-loss at least...

Nonlinear Brascamp-Lieb conjecture true in general with a certain ε-loss at least...
For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} g_{j} \circ L_{j} \leq \mathrm{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^{m}\left\|g_{j}\right\|_{L^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

where $q_{j}=1 / p_{j}$.

Nonlinear Brascamp-Lieb conjecture true in general with a certain ε-loss at least...
For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} g_{j} \circ L_{j} \leq \mathrm{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^{m}\left\|g_{j}\right\|_{L^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

where $q_{j}=1 / p_{j}$.

Theorem (B-Bez-Flock-Lee 2015)

Suppose $d B_{j}\left(x_{0}\right)=L_{j}$ with $B L(\mathbf{L}, \mathbf{p})<\infty$ and U is sufficiently small. Then for every $\varepsilon>0$ there is a constant $C_{\varepsilon}<\infty$ such that

$$
\int_{U} \prod_{j=1}^{m} g_{j} \circ B_{j} \leq C_{\varepsilon} \prod_{j=1}^{m}\left\|g_{j}\right\|_{L_{\varepsilon}^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

Nonlinear Brascamp-Lieb conjecture true in general with a certain ε-loss at least...
For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} g_{j} \circ L_{j} \leq \mathrm{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^{m}\left\|g_{j}\right\|_{L^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

where $q_{j}=1 / p_{j}$.

Theorem (B-Bez-Flock-Lee 2015)

Suppose $d B_{j}\left(x_{0}\right)=L_{j}$ with $B L(\mathbf{L}, \mathbf{p})<\infty$ and U is sufficiently small. Then for every $\varepsilon>0$ there is a constant $C_{\varepsilon}<\infty$ such that

$$
\int_{U} \prod_{j=1}^{m} g_{j} \circ B_{j} \leq C_{\varepsilon} \prod_{j=1}^{m}\left\|g_{j}\right\|_{L_{\varepsilon}^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

Proof strategy (Induction on Scales).

Nonlinear Brascamp-Lieb conjecture true in general with a certain ε-loss at least...
For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} g_{j} \circ L_{j} \leq \mathrm{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^{m}\left\|g_{j}\right\|_{L^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

where $q_{j}=1 / p_{j}$.

Theorem (B-Bez-Flock-Lee 2015)

Suppose $d B_{j}\left(x_{0}\right)=L_{j}$ with $B L(\mathbf{L}, \mathbf{p})<\infty$ and U is sufficiently small. Then for every $\varepsilon>0$ there is a constant $C_{\varepsilon}<\infty$ such that

$$
\int_{U} \prod_{j=1}^{m} g_{j} \circ B_{j} \leq C_{\varepsilon} \prod_{j=1}^{m}\left\|g_{j}\right\|_{L_{\varepsilon}^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

Proof strategy (Induction on Scales). Observe that if g_{j} is "constant at scale δ ", then

$$
g_{j}\left(B_{j}(x)\right) \sim g_{j}\left(B_{j}\left(x_{0}\right)+L_{j}\left(x-x_{0}\right)\right)
$$

whenever $\left|x-x_{0}\right| \lesssim \delta^{1 / 2}$.

Nonlinear Brascamp-Lieb conjecture true in general with a certain ε-loss at least...
For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} g_{j} \circ L_{j} \leq \mathrm{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^{m}\left\|g_{j}\right\|_{L^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

where $q_{j}=1 / p_{j}$.

Theorem (B-Bez-Flock-Lee 2015)

Suppose $d B_{j}\left(x_{0}\right)=L_{j}$ with $B L(\mathbf{L}, \mathbf{p})<\infty$ and U is sufficiently small. Then for every $\varepsilon>0$ there is a constant $C_{\varepsilon}<\infty$ such that

$$
\int_{U} \prod_{j=1}^{m} g_{j} \circ B_{j} \leq C_{\varepsilon} \prod_{j=1}^{m}\left\|g_{j}\right\|_{L_{\varepsilon}^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

Proof strategy (Induction on Scales). Observe that if g_{j} is "constant at scale δ ", then

$$
g_{j}\left(B_{j}(x)\right) \sim g_{j}\left(B_{j}\left(x_{0}\right)+L_{j}\left(x-x_{0}\right)\right)
$$

whenever $\left|x-x_{0}\right| \lesssim \delta^{1 / 2}$. (Since $B_{j}(x)=B_{j}\left(x_{0}\right)+L_{j}\left(x-x_{0}\right)+O\left(\left|x-x_{0}\right|^{2}\right)$.)

Nonlinear Brascamp-Lieb conjecture true in general with a certain ε-loss at least...
For this it is convenient to first recall the multilinear formulation of the Brascamp-Lieb inequality:

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{m} g_{j} \circ L_{j} \leq \mathrm{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^{m}\left\|g_{j}\right\|_{L^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

where $q_{j}=1 / p_{j}$.

Theorem (B-Bez-Flock-Lee 2015)

Suppose $d B_{j}\left(x_{0}\right)=L_{j}$ with $B L(\mathbf{L}, \mathbf{p})<\infty$ and U is sufficiently small. Then for every $\varepsilon>0$ there is a constant $C_{\varepsilon}<\infty$ such that

$$
\int_{U} \prod_{j=1}^{m} g_{j} \circ B_{j} \leq C_{\varepsilon} \prod_{j=1}^{m}\left\|g_{j}\right\|_{L_{\varepsilon}^{q_{j}}\left(\mathbb{R}^{n_{j}}\right)}
$$

Proof strategy (Induction on Scales). Observe that if g_{j} is "constant at scale δ ", then

$$
g_{j}\left(B_{j}(x)\right) \sim g_{j}\left(B_{j}\left(x_{0}\right)+L_{j}\left(x-x_{0}\right)\right)
$$

whenever $\left|x-x_{0}\right| \lesssim \delta^{1 / 2}$. (Since $B_{j}(x)=B_{j}\left(x_{0}\right)+L_{j}\left(x-x_{0}\right)+O\left(\left|x-x_{0}\right|^{2}\right)$.)
Proceed by induction on δ, the scale at which the g_{j} are "constant"...

Multilinear Radon-like transforms

Such nonlinear Brascamp-Lieb inequalities may be recast as Radon-like transform estimates of the type

$$
\int_{\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{m}}} f_{1}\left(y_{1}\right) \cdots f_{m}\left(y_{m}\right) \delta(F(y)) d y \lesssim\left\|f_{1}\right\|_{L^{q_{1}}\left(\mathbb{R}^{n_{1}}\right)} \cdots\left\|f_{m}\right\|_{L q_{m}\left(\mathbb{R}^{n_{m}}\right)}
$$

for certain nonlinear functions F.

Multilinear Radon-like transforms

Such nonlinear Brascamp-Lieb inequalities may be recast as Radon-like transform estimates of the type

$$
\int_{\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{m}}} f_{1}\left(y_{1}\right) \cdots f_{m}\left(y_{m}\right) \delta(F(y)) d y \lesssim\left\|f_{1}\right\|_{L^{q_{1}}\left(\mathbb{R}^{n_{1}}\right)} \cdots\left\|f_{m}\right\|_{L q_{m}\left(\mathbb{R}^{n_{m}}\right)}
$$

for certain nonlinear functions F.
A trilinear example in the plane:

Corollary (B-Bez-Gutiérrez 2013)

If $F: \mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is smooth in a neighbourhood of a point y_{0} and satisfies

$$
\operatorname{det}\left(\partial_{y_{11}} F \times \partial_{y_{12}} F \quad \partial_{y_{21}} F \times \partial_{y_{22}} F \quad \partial_{y_{31}} F \times \partial_{y_{32}} F\right) \neq 0
$$

there, then there is a neighbourhood $V \ni y_{0}$ such that

$$
\int_{V} f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) f_{3}\left(y_{3}\right) \delta(F(y)) d y \lesssim\left\|f_{1}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}\left\|f_{2}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}\left\|f_{3}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}
$$

Proof. Parametrise the action of the distribution $\delta \circ F$ by $x \in \mathbb{R}^{3}$, reducing it to the nonlinear Loomis-Whitney inequality in $\mathbb{R}^{3} \ldots$

Multilinear Radon-like transforms in PDE

Example from obstacle scattering (Born series). The error in approximating a potential $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by its Born approximation q_{B} is comprised of a series of multilinear operators. The main term involves, for example, the bilinear operator $S(q)$ defined by

$$
\widehat{S(q)}(x)=\frac{i \pi}{|x|} \int_{\Gamma(x)} \widehat{q}(x-y) \widehat{q}(y) d \sigma_{x}(y)
$$

where $\Gamma(x)$ is the circle centred at $x / 2$ of radius $|x| / 2$ in \mathbb{R}^{2}, and $d \sigma_{x}$ is arc-length measure on $\Gamma(x)$.

Multilinear Radon-like transforms in PDE

Example from obstacle scattering (Born series). The error in approximating a potential $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by its Born approximation q_{B} is comprised of a series of multilinear operators. The main term involves, for example, the bilinear operator $S(q)$ defined by

$$
\widehat{S(q)}(x)=\frac{i \pi}{|x|} \int_{\Gamma(x)} \widehat{q}(x-y) \widehat{q}(y) d \sigma_{x}(y)
$$

where $\Gamma(x)$ is the circle centred at $x / 2$ of radius $|x| / 2$ in \mathbb{R}^{2}, and $d \sigma_{x}$ is arc-length measure on $\Gamma(x)$.
By duality, L^{2} Sobolev bounds on $S(q)$ may be recast as L^{2} bounds on an associated trilinear form, which may be expressed in terms of

$$
\Lambda\left(f_{1}, f_{2}, f_{3}\right):=\int_{\left(\mathbb{R}^{2}\right)^{3}} f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) f_{3}\left(y_{3}\right) \delta(F(y)) d y
$$

where

$$
F(y)=\left(y_{1}-y_{2}-y_{3},\left|y_{2}-\frac{y_{1}}{2}\right|-\left|\frac{y_{1}}{2}\right|\right) .
$$

Multilinear Radon-like transforms in PDE

Example from obstacle scattering (Born series). The error in approximating a potential $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by its Born approximation q_{B} is comprised of a series of multilinear operators. The main term involves, for example, the bilinear operator $S(q)$ defined by

$$
\widehat{S(q)}(x)=\frac{i \pi}{|x|} \int_{\Gamma(x)} \widehat{q}(x-y) \widehat{q}(y) d \sigma_{x}(y)
$$

where $\Gamma(x)$ is the circle centred at $x / 2$ of radius $|x| / 2$ in \mathbb{R}^{2}, and $d \sigma_{x}$ is arc-length measure on $\Gamma(x)$.
By duality, L^{2} Sobolev bounds on $S(q)$ may be recast as L^{2} bounds on an associated trilinear form, which may be expressed in terms of

$$
\Lambda\left(f_{1}, f_{2}, f_{3}\right):=\int_{\left(\mathbb{R}^{2}\right)^{3}} f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) f_{3}\left(y_{3}\right) \delta(F(y)) d y
$$

where

$$
F(y)=\left(y_{1}-y_{2}-y_{3},\left|y_{2}-\frac{y_{1}}{2}\right|-\left|\frac{y_{1}}{2}\right|\right) .
$$

Another example: well-posedness of the Zakharov system (plasma physics), Bejenaru-Herr-Holmer-Tataru 2009-2011.

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.
Suppose $\Sigma: U \rightarrow \mathbb{R}^{n}$ is a smooth parametrisation of a k-dimensional submanifold S of \mathbb{R}^{n}

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.
Suppose $\Sigma: U \rightarrow \mathbb{R}^{n}$ is a smooth parametrisation of a k-dimensional submanifold S of $\mathbb{R}^{n}\left(\right.$ so $\left.U \subseteq \mathbb{R}^{k}\right)$,

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.
Suppose $\Sigma: U \rightarrow \mathbb{R}^{n}$ is a smooth parametrisation of a k-dimensional submanifold S of \mathbb{R}^{n} (so $U \subseteq \mathbb{R}^{k}$), and let

$$
E g(x)=\int_{U} e^{i x \cdot \Sigma(\xi)} g(\xi) d \xi,
$$

where $x \in \mathbb{R}^{n}$.

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.
Suppose $\Sigma: U \rightarrow \mathbb{R}^{n}$ is a smooth parametrisation of a k-dimensional submanifold S of \mathbb{R}^{n} (so $U \subseteq \mathbb{R}^{k}$), and let

$$
E g(x)=\int_{U} e^{i x \cdot \Sigma(\xi)} g(\xi) d \xi,
$$

where $x \in \mathbb{R}^{n}$. We refer to E as the Fourier extension operator associated with Σ (or S).

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.
Suppose $\Sigma: U \rightarrow \mathbb{R}^{n}$ is a smooth parametrisation of a k-dimensional submanifold S of \mathbb{R}^{n} (so $U \subseteq \mathbb{R}^{k}$), and let

$$
E g(x)=\int_{U} e^{i x \cdot \Sigma(\xi)} g(\xi) d \xi,
$$

where $x \in \mathbb{R}^{n}$. We refer to E as the Fourier extension operator associated with Σ (or S). (So called as $E^{*} f=\widehat{f} \circ \Sigma$.)

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.
Suppose $\Sigma: U \rightarrow \mathbb{R}^{n}$ is a smooth parametrisation of a k-dimensional submanifold S of \mathbb{R}^{n} (so $U \subseteq \mathbb{R}^{k}$), and let

$$
E g(x)=\int_{U} e^{i x \cdot \Sigma(\xi)} g(\xi) d \xi,
$$

where $x \in \mathbb{R}^{n}$. We refer to E as the Fourier extension operator associated with Σ (or S). (So called as $E^{*} f=\widehat{f} \circ \Sigma$.)
E.g. $U=\mathbb{R}^{n-1}$ and $\Sigma(\xi)=\left(\xi,|\xi|^{2}\right)$ - the paraboloid.

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.
Suppose $\Sigma: U \rightarrow \mathbb{R}^{n}$ is a smooth parametrisation of a k-dimensional submanifold S of \mathbb{R}^{n} (so $U \subseteq \mathbb{R}^{k}$), and let

$$
E g(x)=\int_{U} e^{i x \cdot \Sigma(\xi)} g(\xi) d \xi,
$$

where $x \in \mathbb{R}^{n}$. We refer to E as the Fourier extension operator associated with Σ (or S). (So called as $E^{*} f=\widehat{f} \circ \Sigma$.)
E.g. $U=\mathbb{R}^{n-1}$ and $\Sigma(\xi)=\left(\xi,|\xi|^{2}\right)$ - the paraboloid. Notice that $u: \mathbb{R}^{n-1} \times \mathbb{R} \rightarrow \mathbb{C}$ given by

$$
u(x, t):=E \widehat{g}(x, t)=\int_{\mathbb{R}^{n-1}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{g}(\xi) d \xi
$$

solves the Schrödinger equation $i \partial_{t} u=\Delta u$ with initial data g.

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.
Suppose $\Sigma: U \rightarrow \mathbb{R}^{n}$ is a smooth parametrisation of a k-dimensional submanifold S of \mathbb{R}^{n} (so $U \subseteq \mathbb{R}^{k}$), and let

$$
E g(x)=\int_{U} e^{i x \cdot \Sigma(\xi)} g(\xi) d \xi
$$

where $x \in \mathbb{R}^{n}$. We refer to E as the Fourier extension operator associated with Σ (or S). (So called as $E^{*} f=\widehat{f} \circ \Sigma$.)
E.g. $U=\mathbb{R}^{n-1}$ and $\Sigma(\xi)=\left(\xi,|\xi|^{2}\right)$ - the paraboloid. Notice that $u: \mathbb{R}^{n-1} \times \mathbb{R} \rightarrow \mathbb{C}$ given by

$$
u(x, t):=E \widehat{g}(x, t)=\int_{\mathbb{R}^{n-1}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{g}(\xi) d \xi
$$

solves the Schrödinger equation $i \partial_{t} u=\Delta u$ with initial data g.
Regardless of the choice of Σ, there is the trivial estimate $\|E g\|_{\infty} \leq\|g\|_{1}$.

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.
Suppose $\Sigma: U \rightarrow \mathbb{R}^{n}$ is a smooth parametrisation of a k-dimensional submanifold S of \mathbb{R}^{n} (so $U \subseteq \mathbb{R}^{k}$), and let

$$
E g(x)=\int_{U} e^{i x \cdot \Sigma(\xi)} g(\xi) d \xi
$$

where $x \in \mathbb{R}^{n}$. We refer to E as the Fourier extension operator associated with Σ (or S). (So called as $E^{*} f=\widehat{f} \circ \Sigma$.)
E.g. $U=\mathbb{R}^{n-1}$ and $\Sigma(\xi)=\left(\xi,|\xi|^{2}\right)$ - the paraboloid. Notice that $u: \mathbb{R}^{n-1} \times \mathbb{R} \rightarrow \mathbb{C}$ given by

$$
u(x, t):=E \widehat{g}(x, t)=\int_{\mathbb{R}^{n-1}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{g}(\xi) d \xi
$$

solves the Schrödinger equation $i \partial_{t} u=\Delta u$ with initial data g.
Regardless of the choice of Σ, there is the trivial estimate $\|E g\|_{\infty} \leq\|g\|_{1}$.

Theorem (Stein-Tomas restriction theorem 1967/75)

If S is a compact hypersurface of nonvanishing gauss curvature, then $\|E g\|_{\frac{2(n+1)}{n-1}} \lesssim\|g\|_{2}$.

Variant 2: A Fourier-analytic Brascamp-Lieb inequality

Motivation: Stein's restriction problem.
Suppose $\Sigma: U \rightarrow \mathbb{R}^{n}$ is a smooth parametrisation of a k-dimensional submanifold S of \mathbb{R}^{n} (so $U \subseteq \mathbb{R}^{k}$), and let

$$
E g(x)=\int_{U} e^{i x \cdot \Sigma(\xi)} g(\xi) d \xi
$$

where $x \in \mathbb{R}^{n}$. We refer to E as the Fourier extension operator associated with Σ (or S). (So called as $E^{*} f=\widehat{f} \circ \Sigma$.)
E.g. $U=\mathbb{R}^{n-1}$ and $\Sigma(\xi)=\left(\xi,|\xi|^{2}\right)$ - the paraboloid. Notice that $u: \mathbb{R}^{n-1} \times \mathbb{R} \rightarrow \mathbb{C}$ given by

$$
u(x, t):=E \widehat{g}(x, t)=\int_{\mathbb{R}^{n-1}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{g}(\xi) d \xi
$$

solves the Schrödinger equation $i \partial_{t} u=\Delta u$ with initial data g.
Regardless of the choice of Σ, there is the trivial estimate $\|E g\|_{\infty} \leq\|g\|_{1}$.

Theorem (Stein-Tomas restriction theorem 1967/75)

If S is a compact hypersurface of nonvanishing gauss curvature, then $\|E g\|_{\frac{2(n+1)}{n-1}} \lesssim\|g\|_{2}$.
If S is the paraboloid then this becomes $\|u\|_{L_{x, t}^{2(n+1) /(n-1)}} \lesssim\|\widehat{g}\|_{2}=\|g\|_{2}$ - the classical Strichartz estimate for the Schrödinger equation (Strichartz_1978).

Now suppose $\Sigma_{1}, \ldots, \Sigma_{m}$ parametrise n_{1}, \ldots, n_{m} dimensional submanifolds S_{1}, \ldots, S_{m} of \mathbb{R}^{n}, and E_{1}, \ldots, E_{m} are their associated Fourier extension operators; i.e. that

$$
E_{j} g(x)=\int_{U_{j}} e^{i x \cdot \Sigma_{j}(\xi)} g(\xi) d \xi, \quad 1 \leq j \leq m
$$

Now suppose $\Sigma_{1}, \ldots, \Sigma_{m}$ parametrise n_{1}, \ldots, n_{m} dimensional submanifolds S_{1}, \ldots, S_{m} of \mathbb{R}^{n}, and E_{1}, \ldots, E_{m} are their associated Fourier extension operators; i.e. that

$$
E_{j} g(x)=\int_{U_{j}} e^{i x \cdot \Sigma_{j}(\xi)} g(\xi) d \xi, \quad 1 \leq j \leq m
$$

Observe that if Σ_{j} is linear with adjoint L_{j}, then $E_{j} g=\widehat{g} \circ L_{j}$.

Now suppose $\Sigma_{1}, \ldots, \Sigma_{m}$ parametrise n_{1}, \ldots, n_{m} dimensional submanifolds S_{1}, \ldots, S_{m} of \mathbb{R}^{n}, and E_{1}, \ldots, E_{m} are their associated Fourier extension operators; i.e. that

$$
E_{j} g(x)=\int_{U_{j}} e^{i x \cdot \Sigma_{j}(\xi)} g(\xi) d \xi, \quad 1 \leq j \leq m
$$

Observe that if Σ_{j} is linear with adjoint L_{j}, then $E_{j} g=\widehat{g} \circ L_{j}$. Thus the Brascamp-Lieb inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \leq \mathrm{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{d_{j}}} f_{j}\right)^{p_{j}} \tag{BL}
\end{equation*}
$$

on setting $f_{j}=\left|\widehat{g}_{j}\right|^{2}$, maybe written as

$$
\int_{\mathbb{R}^{d}} \prod_{j=1}^{m}\left|E_{j} g_{j}\right|^{2 p_{j}} \leq \mathrm{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^{m}\left\|g_{j}\right\|_{2}^{2 p_{j}} .
$$

Now suppose $\Sigma_{1}, \ldots, \Sigma_{m}$ parametrise n_{1}, \ldots, n_{m} dimensional submanifolds S_{1}, \ldots, S_{m} of \mathbb{R}^{n}, and E_{1}, \ldots, E_{m} are their associated Fourier extension operators; i.e. that

$$
E_{j} g(x)=\int_{U_{j}} e^{i x \cdot \Sigma_{j}(\xi)} g(\xi) d \xi, \quad 1 \leq j \leq m
$$

Observe that if Σ_{j} is linear with adjoint L_{j}, then $E_{j} g=\widehat{g} \circ L_{j}$. Thus the Brascamp-Lieb inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \prod_{j=1}^{m}\left(f_{j} \circ L_{j}\right)^{p_{j}} \leq \mathrm{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{d_{j}}} f_{j}\right)^{p_{j}} \tag{BL}
\end{equation*}
$$

on setting $f_{j}=\left|\widehat{g}_{j}\right|^{2}$, maybe written as

$$
\int_{\mathbb{R}^{d}} \prod_{j=1}^{m}\left|E_{j} g_{j}\right|^{2 p_{j}} \leq \mathrm{BL}(\mathbf{L}, \mathbf{p}) \prod_{j=1}^{m}\left\|g_{j}\right\|_{2}^{2 p_{j}} .
$$

We conjecture that the linearity requirement on the submanifolds S_{j} can be relaxed here, leading to certain "Fourier-analytic Brascamp-Lieb inequalities" ...

Theorem (B-Carbery-Tao 2006; B-Bez-Flock-Lee 2015)

Suppose $B L(\mathbf{L}, \mathbf{p})<\infty$, where $L_{j}:=\left(\mathrm{d} \Sigma_{j}(0)\right)^{*}$. Then for each $\varepsilon>0$

$$
\int_{B(0 ; R)} \prod_{j=1}^{m}\left|E_{j} g_{j}\right|^{2 p_{j}} \lesssim \varepsilon R^{\varepsilon} \prod_{j=1}^{m}\left\|g_{j}\right\|_{2}^{2 p_{j}}
$$

Multilinear Strichartz estimates

Let us restrict attention to n codimension- 1 submanifolds S_{1}, \ldots, S_{n} of \mathbb{R}^{n}.

Definition (Transversality)

We say that S_{1}, \ldots, S_{n} are transversal if there exists $\nu>0$ such that whenever v_{1}, \ldots, v_{n} are unit normal vectors to S_{1}, \ldots, S_{n} respectively, then $\left|\operatorname{det}\left(v_{1} v_{2} \cdots v_{n}\right)\right| \geq \nu$.

Multilinear Strichartz estimates

Let us restrict attention to n codimension- 1 submanifolds S_{1}, \ldots, S_{n} of \mathbb{R}^{n}.

Definition (Transversality)

We say that S_{1}, \ldots, S_{n} are transversal if there exists $\nu>0$ such that whenever v_{1}, \ldots, v_{n} are unit normal vectors to S_{1}, \ldots, S_{n} respectively, then $\left|\operatorname{det}\left(v_{1} v_{2} \cdots v_{n}\right)\right| \geq \nu$.

Corollary (B-Carbery-Tao 2006)

If E_{1}, \ldots, E_{n} are extension operators associated with transversal compact submanifolds S_{1}, \ldots, S_{n} of \mathbb{R}^{n}, then

$$
\left\|E_{1} g_{1} \cdots E_{n} g_{n}\right\|_{L^{2 /(n-1)}(B(0 ; R))} \lesssim_{\varepsilon} R^{\varepsilon}\left\|g_{1}\right\|_{2} \cdots\left\|g_{n}\right\|_{2}
$$

Multilinear Strichartz estimates

Let us restrict attention to n codimension- 1 submanifolds S_{1}, \ldots, S_{n} of \mathbb{R}^{n}.

Definition (Transversality)

We say that S_{1}, \ldots, S_{n} are transversal if there exists $\nu>0$ such that whenever v_{1}, \ldots, v_{n} are unit normal vectors to S_{1}, \ldots, S_{n} respectively, then $\left|\operatorname{det}\left(v_{1} v_{2} \cdots v_{n}\right)\right| \geq \nu$.

Corollary (B-Carbery-Tao 2006)

If E_{1}, \ldots, E_{n} are extension operators associated with transversal compact submanifolds S_{1}, \ldots, S_{n} of \mathbb{R}^{n}, then

$$
\left\|E_{1} g_{1} \cdots E_{n} g_{n}\right\|_{L^{2 /(n-1)}(B(0 ; R))} \lesssim_{\varepsilon} R^{\varepsilon}\left\|g_{1}\right\|_{2} \cdots\left\|g_{n}\right\|_{2} .
$$

In the context of transversal patches of paraboloid, this as a Strichartz estimate...

Corollary

Let $u_{1}, \ldots, u_{n}: \mathbb{R}^{n-1} \times \mathbb{R} \rightarrow \mathbb{C}$ be solutions of $\partial_{t} u=\Delta u$ with initial data g_{1}, \ldots, g_{n} respectively.

Multilinear Strichartz estimates

Let us restrict attention to n codimension- 1 submanifolds S_{1}, \ldots, S_{n} of \mathbb{R}^{n}.

Definition (Transversality)

We say that S_{1}, \ldots, S_{n} are transversal if there exists $\nu>0$ such that whenever v_{1}, \ldots, v_{n} are unit normal vectors to S_{1}, \ldots, S_{n} respectively, then $\left|\operatorname{det}\left(v_{1} v_{2} \cdots v_{n}\right)\right| \geq \nu$.

Corollary (B-Carbery-Tao 2006)

If E_{1}, \ldots, E_{n} are extension operators associated with transversal compact submanifolds S_{1}, \ldots, S_{n} of \mathbb{R}^{n}, then

$$
\left\|E_{1} g_{1} \cdots E_{n} g_{n}\right\|_{L^{2 /(n-1)}(B(0 ; R))} \lesssim_{\varepsilon} R^{\varepsilon}\left\|g_{1}\right\|_{2} \cdots\left\|g_{n}\right\|_{2}
$$

In the context of transversal patches of paraboloid, this as a Strichartz estimate...

Corollary

Let $u_{1}, \ldots, u_{n}: \mathbb{R}^{n-1} \times \mathbb{R} \rightarrow \mathbb{C}$ be solutions of $\partial_{t} u=\Delta u$ with initial data g_{1}, \ldots, g_{n} respectively. If $\operatorname{supp}\left(\widehat{g}_{1}\right), \ldots, \operatorname{supp}\left(\widehat{g}_{n}\right) \subseteq \mathbb{R}^{n-1}$ meet no affine hyperplane, then

$$
\left\|u_{1} \cdots u_{n}\right\|_{L_{t, x}^{2 /(n-1)}(|x|,|t| \leq R)} \lesssim_{\varepsilon} R^{\varepsilon}\left\|g_{1}\right\|_{2} \cdots\left\|g_{n}\right\|_{2} .
$$

Multilinear Strichartz estimates

Let us restrict attention to n codimension- 1 submanifolds S_{1}, \ldots, S_{n} of \mathbb{R}^{n}.

Definition (Transversality)

We say that S_{1}, \ldots, S_{n} are transversal if there exists $\nu>0$ such that whenever v_{1}, \ldots, v_{n} are unit normal vectors to S_{1}, \ldots, S_{n} respectively, then $\left|\operatorname{det}\left(v_{1} v_{2} \cdots v_{n}\right)\right| \geq \nu$.

Corollary (B-Carbery-Tao 2006)

If E_{1}, \ldots, E_{n} are extension operators associated with transversal compact submanifolds S_{1}, \ldots, S_{n} of \mathbb{R}^{n}, then

$$
\left\|E_{1} g_{1} \cdots E_{n} g_{n}\right\|_{L^{2 /(n-1)}(B(0 ; R))} \lesssim_{\varepsilon} R^{\varepsilon}\left\|g_{1}\right\|_{2} \cdots\left\|g_{n}\right\|_{2}
$$

In the context of transversal patches of paraboloid, this as a Strichartz estimate...

Corollary

Let $u_{1}, \ldots, u_{n}: \mathbb{R}^{n-1} \times \mathbb{R} \rightarrow \mathbb{C}$ be solutions of $\partial_{t} u=\Delta u$ with initial data g_{1}, \ldots, g_{n} respectively. If $\operatorname{supp}\left(\widehat{g}_{1}\right), \ldots, \operatorname{supp}\left(\widehat{g}_{n}\right) \subseteq \mathbb{R}^{n-1}$ meet no affine hyperplane, then

$$
\left\|u_{1} \cdots u_{n}\right\|_{L_{t, x}^{2 /(n-1)}(|x|,|t| \leq R)} \lesssim_{\varepsilon} R^{\varepsilon}\left\|g_{1}\right\|_{2} \cdots\left\|g_{n}\right\|_{2} .
$$

(The corresponding linear inequality $\|u\|_{L^{2 n /(n-1)}} \lesssim\|g\|_{2}$ is false.)

Applications

- Progress on Stein's Fourier restriction conjecture: deeper $L^{p} \rightarrow L^{q}$ estimates for E (Bourgain-Guth 2011).

Applications

- Progress on Stein's Fourier restriction conjecture: deeper $L^{p} \rightarrow L^{q}$ estimates for E (Bourgain-Guth 2011). For $g: U \rightarrow \mathbb{C}$, write $\chi_{U}=\sum_{\alpha} \chi_{U_{\alpha}}$, so that

$$
(E g)^{n}=\sum_{\alpha_{1}, \ldots, \alpha_{n}} E\left(g \chi u_{\alpha_{1}}\right) \cdots E\left(g \chi u_{\alpha_{n}}\right)
$$

then "look for transversality" amongst multilinear operators

$$
\left(g_{1}, \ldots, g_{n}\right) \mapsto E\left(g_{1} \chi u_{\alpha_{1}}\right) \cdots E\left(g_{n} \chi u_{\alpha_{n}}\right)
$$

Applications

- Progress on Stein's Fourier restriction conjecture: deeper $L^{p} \rightarrow L^{q}$ estimates for E (Bourgain-Guth 2011). For $g: U \rightarrow \mathbb{C}$, write $\chi_{U}=\sum_{\alpha} \chi_{U_{\alpha}}$, so that

$$
(E g)^{n}=\sum_{\alpha_{1}, \ldots, \alpha_{n}} E\left(g \chi u_{\alpha_{1}}\right) \cdots E\left(g \chi u_{\alpha_{n}}\right)
$$

then "look for transversality" amongst multilinear operators

$$
\left(g_{1}, \ldots, g_{n}\right) \mapsto E\left(g_{1} \chi u_{\alpha_{1}}\right) \cdots E\left(g_{n} \chi{u_{\alpha_{n}}}\right)
$$

- Improved mixed norm Strichartz estimates for the Schrödinger equation on \mathbb{R}^{n} (Bourgain 2011).

Applications

- Progress on Stein's Fourier restriction conjecture: deeper $L^{p} \rightarrow L^{q}$ estimates for E (Bourgain-Guth 2011). For $g: U \rightarrow \mathbb{C}$, write $\chi_{U}=\sum_{\alpha} \chi_{U_{\alpha}}$, so that

$$
(E g)^{n}=\sum_{\alpha_{1}, \ldots, \alpha_{n}} E\left(g \chi u_{\alpha_{1}}\right) \cdots E\left(g \chi u_{\alpha_{n}}\right)
$$

then "look for transversality" amongst multilinear operators

$$
\left(g_{1}, \ldots, g_{n}\right) \mapsto E\left(g_{1} \chi u_{\alpha_{1}}\right) \cdots E\left(g_{n} \chi{u_{\alpha_{n}}}\right)
$$

- Improved mixed norm Strichartz estimates for the Schrödinger equation on \mathbb{R}^{n} (Bourgain 2011).
- Sharp Strichartz estimates for the Schrödinger equation on tori (Bourgain-Demeter 2015).

Applications

- Progress on Stein's Fourier restriction conjecture: deeper $L^{p} \rightarrow L^{q}$ estimates for E (Bourgain-Guth 2011). For $g: U \rightarrow \mathbb{C}$, write $\chi_{U}=\sum_{\alpha} \chi_{U_{\alpha}}$, so that

$$
(E g)^{n}=\sum_{\alpha_{1}, \ldots, \alpha_{n}} E\left(g \chi u_{\alpha_{1}}\right) \cdots E\left(g \chi u_{\alpha_{n}}\right)
$$

then "look for transversality" amongst multilinear operators

$$
\left(g_{1}, \ldots, g_{n}\right) \mapsto E\left(g_{1} \chi u_{\alpha_{1}}\right) \cdots E\left(g_{n} \chi{u_{\alpha_{n}}}\right)
$$

- Improved mixed norm Strichartz estimates for the Schrödinger equation on \mathbb{R}^{n} (Bourgain 2011).
- Sharp Strichartz estimates for the Schrödinger equation on tori (Bourgain-Demeter 2015).
- Proof of the Vinogradov Mean Value Conjecture: exponential sum bounds and Diophantine equations (Bourgain-Demeter-Guth 2016).

Applications

- Progress on Stein's Fourier restriction conjecture: deeper $L^{p} \rightarrow L^{q}$ estimates for E (Bourgain-Guth 2011). For $g: U \rightarrow \mathbb{C}$, write $\chi_{U}=\sum_{\alpha} \chi_{U_{\alpha}}$, so that

$$
(E g)^{n}=\sum_{\alpha_{1}, \ldots, \alpha_{n}} E\left(g \chi u_{\alpha_{1}}\right) \cdots E\left(g \chi u_{\alpha_{n}}\right)
$$

then "look for transversality" amongst multilinear operators

$$
\left(g_{1}, \ldots, g_{n}\right) \mapsto E\left(g_{1} \chi u_{\alpha_{1}}\right) \cdots E\left(g_{n} \chi u_{\alpha_{n}}\right)
$$

- Improved mixed norm Strichartz estimates for the Schrödinger equation on \mathbb{R}^{n} (Bourgain 2011).
- Sharp Strichartz estimates for the Schrödinger equation on tori (Bourgain-Demeter 2015).
- Proof of the Vinogradov Mean Value Conjecture: exponential sum bounds and Diophantine equations (Bourgain-Demeter-Guth 2016).
- Improved asymptotic bounds for $\zeta(s)$ (Bourgain-Watt 2014).

Applications

- Progress on Stein's Fourier restriction conjecture: deeper $L^{p} \rightarrow L^{q}$ estimates for E (Bourgain-Guth 2011). For $g: U \rightarrow \mathbb{C}$, write $\chi_{U}=\sum_{\alpha} \chi_{U_{\alpha}}$, so that

$$
(E g)^{n}=\sum_{\alpha_{1}, \ldots, \alpha_{n}} E\left(g \chi u_{\alpha_{1}}\right) \cdots E\left(g \chi u_{\alpha_{n}}\right)
$$

then "look for transversality" amongst multilinear operators

$$
\left(g_{1}, \ldots, g_{n}\right) \mapsto E\left(g_{1} \chi u_{\alpha_{1}}\right) \cdots E\left(g_{n} \chi u_{\alpha_{n}}\right)
$$

- Improved mixed norm Strichartz estimates for the Schrödinger equation on \mathbb{R}^{n} (Bourgain 2011).
- Sharp Strichartz estimates for the Schrödinger equation on tori (Bourgain-Demeter 2015).
- Proof of the Vinogradov Mean Value Conjecture: exponential sum bounds and Diophantine equations (Bourgain-Demeter-Guth 2016).
- Improved asymptotic bounds for $\zeta(s)$ (Bourgain-Watt 2014).

Thank you for listening!

