Homogenization of a Stationary Maxwell System with Periodic Coefficients

Tatiana Suslina

St. Petersburg State University

Mathematical and Computational Aspects of Maxwell's Equations

Durham, July 2016

- Introduction
- Statement of the problem
- The effective operator
- Main results for the Maxwell system
- Reduction to the second order elliptic operator
- Method of the study of the second order operator

Introduction

We study homogenization problem for a stationary Maxwell system with periodic rapidly oscillating coefficients.

Introduction

We study homogenization problem for a stationary Maxwell system with periodic rapidly oscillating coefficients. This problem was studied by traditional methods of homogenization theory. See the books

- A. Bensoussan, J.-L. Lions, G. Papanicolaou. Asymptotic analysis for periodic structures, 1978.
- E. Sanchez-Palencia. Nonhomogeneous media and vibration theory, 1980.
- N. S. Bakhvalov, G. P. Panasenko. Homogenization: averaging of processes in periodic media, 1984.
- V. V. Zhikov, S. M. Kozlov, O. A. Oleinik. Homogenization of differential operators, 1993.

Introduction

We study homogenization problem for a stationary Maxwell system with periodic rapidly oscillating coefficients. This problem was studied by traditional methods of homogenization theory. See the books

- A. Bensoussan, J.-L. Lions, G. Papanicolaou. Asymptotic analysis for periodic structures, 1978.
- E. Sanchez-Palencia. Nonhomogeneous media and vibration theory, 1980.
- N. S. Bakhvalov, G. P. Panasenko. Homogenization: averaging of processes in periodic media, 1984.
- V. V. Zhikov, S. M. Kozlov, O. A. Oleinik. Homogenization of differential operators, 1993.

The traditional results give weak convergence of the solutions to the solution of the homogenized system.

Introduction

We study homogenization problem for a stationary Maxwell system with periodic rapidly oscillating coefficients. This problem was studied by traditional methods of homogenization theory. See the books

- A. Bensoussan, J.-L. Lions, G. Papanicolaou. Asymptotic analysis for periodic structures, 1978.
- E. Sanchez-Palencia. Nonhomogeneous media and vibration theory, 1980.
- N. S. Bakhvalov, G. P. Panasenko. Homogenization: averaging of processes in periodic media, 1984.
- V. V. Zhikov, S. M. Kozlov, O. A. Oleinik. Homogenization of differential operators, 1993.

The traditional results give weak convergence of the solutions to the solution of the homogenized system. Our goal is to obtain approximations for the solutions in the L_{2}-norm with sharp order remainder estimates.

Statement of the problem

Let Γ be a lattice in \mathbb{R}^{3}, let Ω be the cell of Γ. By $\widetilde{\Gamma}$ we denote the dual lattice. Let $\widetilde{\Omega}$ be the Brillouin zone of $\widetilde{\Gamma}$.

Statement of the problem

Let Γ be a lattice in \mathbb{R}^{3}, let Ω be the cell of Γ. By $\widetilde{\Gamma}$ we denote the dual lattice. Let $\widetilde{\Omega}$ be the Brillouin zone of $\widetilde{\Gamma}$. Example:

$$
\Gamma=\mathbb{Z}^{3}, \quad \Omega=(0,1)^{3}, \quad \widetilde{\Gamma}=(2 \pi \mathbb{Z})^{3}, \quad \widetilde{\Omega}=(-\pi, \pi)^{3} .
$$

Statement of the problem

Let Γ be a lattice in \mathbb{R}^{3}, let Ω be the cell of Γ.
By $\widetilde{\Gamma}$ we denote the dual lattice. Let $\widetilde{\Omega}$ be the Brillouin zone of $\widetilde{\Gamma}$.

Example:

$$
\Gamma=\mathbb{Z}^{3}, \quad \Omega=(0,1)^{3}, \quad \widetilde{\Gamma}=(2 \pi \mathbb{Z})^{3}, \quad \widetilde{\Omega}=(-\pi, \pi)^{3} .
$$

Suppose that the dielectric permittivity $\eta(\mathbf{x})$ and the magnetic permeability $\mu(\mathbf{x})$ are Γ-periodic symmetric (3×3)-matrix-valued functions with real entries. Assume that

$$
c_{0} \mathbf{1} \leqslant \eta(\mathbf{x}) \leqslant c_{1} \mathbf{1}, \quad c_{0} \mathbf{1} \leqslant \mu(\mathbf{x}) \leqslant c_{1} \mathbf{1}, \quad \mathbf{x} \in \mathbb{R}^{3}, \quad 0<c_{0} \leqslant c_{1}<\infty
$$

Statement of the problem

By $L_{2}=L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ we denote the L_{2}-space of \mathbb{C}^{3}-valued functions in \mathbb{R}^{3}.

Statement of the problem

By $L_{2}=L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ we denote the L_{2}-space of \mathbb{C}^{3}-valued functions in \mathbb{R}^{3}. Besides the ordinary L_{2}-space, we need the weighted spaces

$$
L_{2}\left(\eta^{-1}\right)=L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3} ; \eta^{-1}\right), \quad L_{2}\left(\mu^{-1}\right)=L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3} ; \mu^{-1}\right)
$$

with the inner products

$$
\begin{aligned}
& (\mathbf{f}, \mathbf{g})_{L_{2}\left(\eta^{-1}\right)}:=\int_{\mathbb{R}^{3}}\left\langle\eta(\mathbf{x})^{-1} \mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x})\right\rangle d \mathbf{x}, \\
& (\mathbf{f}, \mathbf{g})_{L_{2}\left(\mu^{-1}\right)}:=\int_{\mathbb{R}^{3}}\left\langle\mu(\mathbf{x})^{-1} \mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x})\right\rangle d \mathbf{x} .
\end{aligned}
$$

Statement of the problem

By $L_{2}=L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ we denote the L_{2}-space of \mathbb{C}^{3}-valued functions in \mathbb{R}^{3}. Besides the ordinary L_{2}-space, we need the weighted spaces

$$
L_{2}\left(\eta^{-1}\right)=L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3} ; \eta^{-1}\right), \quad L_{2}\left(\mu^{-1}\right)=L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3} ; \mu^{-1}\right)
$$

with the inner products

$$
\begin{aligned}
(\mathbf{f}, \mathbf{g})_{L_{2}\left(\eta^{-1}\right)} & :=\int_{\mathbb{R}^{3}}\left\langle\eta(\mathbf{x})^{-1} \mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x})\right\rangle d \mathbf{x} \\
(\mathbf{f}, \mathbf{g})_{L_{2}\left(\mu^{-1}\right)} & :=\int_{\mathbb{R}^{3}}\left\langle\mu(\mathbf{x})^{-1} \mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x})\right\rangle d \mathbf{x} .
\end{aligned}
$$

We put

$$
J:=\left\{\mathbf{f} \in L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right): \operatorname{div} \mathbf{f}=0\right\}
$$

Clearly, J is a closed subspace in L_{2} (and also in $L_{2}\left(\eta^{-1}\right)$ and $L_{2}\left(\mu^{-1}\right)$).

Statement of the problem

Notation

- Let $\mathbf{u}(\mathbf{x})$ be the electric field strength.
- Let $\mathbf{v}(\mathbf{x})$ be the magnetic field strength.
- Then $\mathbf{w}(\mathbf{x})=\eta(\mathbf{x}) \mathbf{u}(\mathbf{x})$ is the electric displacement vector,
- and $\mathbf{z}(\mathbf{x})=\mu(\mathbf{x}) \mathbf{v}(\mathbf{x})$ is the magnetic displacement vector.

Statement of the problem

Notation

- Let $\mathbf{u}(\mathbf{x})$ be the electric field strength.
- Let $\mathbf{v}(\mathbf{x})$ be the magnetic field strength.
- Then $\mathbf{w}(\mathbf{x})=\eta(\mathbf{x}) \mathbf{u}(\mathbf{x})$ is the electric displacement vector,
- and $\mathbf{z}(\mathbf{x})=\mu(\mathbf{x}) \mathbf{v}(\mathbf{x})$ is the magnetic displacement vector.

It is assumed that \mathbf{w} and \mathbf{z} are divergence-free:

$$
\operatorname{div} \mathbf{w}=0, \quad \operatorname{div} \mathbf{z}=0
$$

Statement of the problem

Notation

- Let $\mathbf{u}(\mathbf{x})$ be the electric field strength.
- Let $\mathbf{v}(\mathbf{x})$ be the magnetic field strength.
- Then $\mathbf{w}(\mathbf{x})=\eta(\mathbf{x}) \mathbf{u}(\mathbf{x})$ is the electric displacement vector,
- and $\mathbf{z}(\mathbf{x})=\mu(\mathbf{x}) \mathbf{v}(\mathbf{x})$ is the magnetic displacement vector.

It is assumed that \mathbf{w} and \mathbf{z} are divergence-free:

$$
\operatorname{div} \mathbf{w}=0, \quad \operatorname{div} \mathbf{z}=0
$$

It is convenient to write the Maxwell operator $\mathcal{M}=\mathcal{M}(\eta, \mu)$ in terms of the displacement vectors \mathbf{w}, \mathbf{z}.

Statement of the problem

Notation

- Let $\mathbf{u}(\mathbf{x})$ be the electric field strength.
- Let $\mathbf{v}(\mathbf{x})$ be the magnetic field strength.
- Then $\mathbf{w}(\mathbf{x})=\eta(\mathbf{x}) \mathbf{u}(\mathbf{x})$ is the electric displacement vector,
- and $\mathbf{z}(\mathbf{x})=\mu(\mathbf{x}) \mathbf{v}(\mathbf{x})$ is the magnetic displacement vector.

It is assumed that \mathbf{w} and \mathbf{z} are divergence-free:

$$
\operatorname{div} \mathbf{w}=0, \quad \operatorname{div} \mathbf{z}=0
$$

It is convenient to write the Maxwell operator $\mathcal{M}=\mathcal{M}(\eta, \mu)$ in terms of the displacement vectors \mathbf{w}, \mathbf{z}. Then \mathcal{M} acts in the space $J \oplus J$ viewed as a subspace of $L_{2}\left(\eta^{-1}\right) \oplus L_{2}\left(\mu^{-1}\right)$.

Statement of the problem

Definition of the Maxwell operator

The operator $\mathcal{M}=\mathcal{M}(\eta, \mu)$ acts in the space $J \oplus J \subset L_{2}\left(\eta^{-1}\right) \oplus L_{2}\left(\mu^{-1}\right)$ and is given by

$$
\mathcal{M}=\left(\begin{array}{cc}
0 & i \operatorname{curl} \mu^{-1} \\
-i \operatorname{curl} \eta^{-1} & 0
\end{array}\right)
$$

on the domain

$$
\operatorname{Dom} \mathcal{M}=\left\{(\mathbf{w}, \mathbf{z}) \in J \oplus J: \operatorname{curl} \eta^{-1} \mathbf{w} \in L_{2}, \operatorname{curl} \mu^{-1} \mathbf{z} \in L_{2}\right\} .
$$

Statement of the problem

Definition of the Maxwell operator

The operator $\mathcal{M}=\mathcal{M}(\eta, \mu)$ acts in the space $J \oplus J \subset L_{2}\left(\eta^{-1}\right) \oplus L_{2}\left(\mu^{-1}\right)$ and is given by

$$
\mathcal{M}=\left(\begin{array}{cc}
0 & i \operatorname{curl} \mu^{-1} \\
-i \operatorname{curl} \eta^{-1} & 0
\end{array}\right)
$$

on the domain

$$
\operatorname{Dom} \mathcal{M}=\left\{(\mathbf{w}, \mathbf{z}) \in J \oplus J: \operatorname{curl} \eta^{-1} \mathbf{w} \in L_{2}, \operatorname{curl} \mu^{-1} \mathbf{z} \in L_{2}\right\} .
$$

The operator \mathcal{M} is selfadjoint with respect to the weighted inner product.

Statement of the problem

Let $\varepsilon>0$ be a small parameter. We use the notation

$$
\phi^{\varepsilon}(\mathbf{x})=\phi\left(\frac{\mathbf{x}}{\varepsilon}\right), \quad \varepsilon>0 .
$$

Statement of the problem

Let $\varepsilon>0$ be a small parameter. We use the notation

$$
\phi^{\varepsilon}(\mathbf{x})=\phi\left(\frac{\mathbf{x}}{\varepsilon}\right), \quad \varepsilon>0 .
$$

Main object

Our main object is the Maxwell operator

$$
\mathcal{M}_{\varepsilon}=\mathcal{M}\left(\eta^{\varepsilon}, \mu^{\varepsilon}\right), \quad \varepsilon>0
$$

with rapidly oscillating coefficients η^{ε} and μ^{ε}.

Statement of the problem

Let $\varepsilon>0$ be a small parameter. We use the notation

$$
\phi^{\varepsilon}(\mathbf{x})=\phi\left(\frac{\mathbf{x}}{\varepsilon}\right), \quad \varepsilon>0 .
$$

Main object

Our main object is the Maxwell operator

$$
\mathcal{M}_{\varepsilon}=\mathcal{M}\left(\eta^{\varepsilon}, \mu^{\varepsilon}\right), \quad \varepsilon>0
$$

with rapidly oscillating coefficients η^{ε} and μ^{ε}.
The point $\lambda=i$ is a regular point for $\mathcal{M}_{\varepsilon}$.

Statement of the problem

Problem

Our goal is to study the behavior of the resolvent $\left(\mathcal{M}_{\varepsilon}-i l\right)^{-1}$ as $\varepsilon \rightarrow 0$.

Statement of the problem

Problem

Our goal is to study the behavior of the resolvent $\left(\mathcal{M}_{\varepsilon}-i l\right)^{-1}$ as $\varepsilon \rightarrow 0$. In other words, we study the solutions ($\mathbf{w}_{\varepsilon}, \mathbf{z}_{\varepsilon}$) of the Maxwell system

$$
\begin{equation*}
\left(\mathcal{M}_{\varepsilon}-i l\right)\binom{\mathbf{w}_{\varepsilon}}{\mathbf{z}_{\varepsilon}}=\binom{\mathbf{q}}{\mathbf{r}}, \quad \mathbf{q}, \mathbf{r} \in J . \tag{1}
\end{equation*}
$$

Statement of the problem

Problem

Our goal is to study the behavior of the resolvent $\left(\mathcal{M}_{\varepsilon}-i l\right)^{-1}$ as $\varepsilon \rightarrow 0$. In other words, we study the solutions ($\mathbf{w}_{\varepsilon}, \mathbf{z}_{\varepsilon}$) of the Maxwell system

$$
\begin{equation*}
\left(\mathcal{M}_{\varepsilon}-i I\right)\binom{\mathbf{w}_{\varepsilon}}{\mathbf{z}_{\varepsilon}}=\binom{\mathbf{q}}{\mathbf{r}}, \quad \mathbf{q}, \mathbf{r} \in J . \tag{1}
\end{equation*}
$$

We also study the corresponding fields

$$
\mathbf{u}_{\varepsilon}=\left(\eta^{\varepsilon}\right)^{-1} \mathbf{w}_{\varepsilon}, \quad \mathbf{v}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon} .
$$

Statement of the problem

Problem

Our goal is to study the behavior of the resolvent $\left(\mathcal{M}_{\varepsilon}-i l\right)^{-1}$ as $\varepsilon \rightarrow 0$. In other words, we study the solutions ($\mathbf{w}_{\varepsilon}, \mathbf{z}_{\varepsilon}$) of the Maxwell system

$$
\begin{equation*}
\left(\mathcal{M}_{\varepsilon}-i l\right)\binom{\mathbf{w}_{\varepsilon}}{\mathbf{z}_{\varepsilon}}=\binom{\mathbf{q}}{\mathbf{r}}, \quad \mathbf{q}, \mathbf{r} \in J . \tag{1}
\end{equation*}
$$

We also study the corresponding fields

$$
\mathbf{u}_{\varepsilon}=\left(\eta^{\varepsilon}\right)^{-1} \mathbf{w}_{\varepsilon}, \quad \mathbf{v}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon} .
$$

In details, (1) looks as follows:

$$
\left.\begin{array}{c}
\operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}-\mathbf{w}_{\varepsilon}=-i \mathbf{q} \\
\operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \mathbf{w}_{\varepsilon}+\mathbf{z}_{\varepsilon}=i \mathbf{r} \\
\operatorname{div} \mathbf{w}_{\varepsilon}=0, \quad \operatorname{div} \mathbf{z}_{\varepsilon}=0
\end{array}\right\}
$$

The effective operator

Now we introduce the effective Maxwell operator $\mathcal{M}^{0}=\mathcal{M}\left(\eta^{0}, \mu^{0}\right)$.

The effective operator

Now we introduce the effective Maxwell operator $\mathcal{M}^{0}=\mathcal{M}\left(\eta^{0}, \mu^{0}\right)$.

Definition of the effective matrix

Let $\mathbf{e}_{j}, j=1,2,3$, be the standard basis in \mathbb{C}^{3}. Let $\Phi_{j}(\mathbf{x})$ be the Γ-periodic solution of the problem

$$
\operatorname{div} \eta(\mathbf{x})\left(\nabla \Phi_{j}(\mathbf{x})+\mathbf{e}_{j}\right)=0, \quad \int_{\Omega} \Phi_{j}(\mathbf{x}) d \mathbf{x}=0
$$

The effective operator

Now we introduce the effective Maxwell operator $\mathcal{M}^{0}=\mathcal{M}\left(\eta^{0}, \mu^{0}\right)$.

Definition of the effective matrix

Let $\mathbf{e}_{j}, j=1,2,3$, be the standard basis in \mathbb{C}^{3}. Let $\Phi_{j}(\mathbf{x})$ be the Γ-periodic solution of the problem

$$
\operatorname{div} \eta(\mathbf{x})\left(\nabla \Phi_{j}(\mathbf{x})+\mathbf{e}_{j}\right)=0, \quad \int_{\Omega} \Phi_{j}(\mathbf{x}) d \mathbf{x}=0
$$

Let $Y_{\eta}(\mathbf{x})$ be the matrix with the columns $\nabla \Phi_{j}(\mathbf{x}), j=1,2,3$. Denote

$$
\widetilde{\eta}(\mathbf{x}):=\eta(\mathbf{x})\left(Y_{\eta}(\mathbf{x})+\mathbf{1}\right), \quad \eta^{0}:=|\Omega|^{-1} \int_{\Omega} \widetilde{\eta}(\mathbf{x}) d \mathbf{x} .
$$

The effective operator

Now we introduce the effective Maxwell operator $\mathcal{M}^{0}=\mathcal{M}\left(\eta^{0}, \mu^{0}\right)$.

Definition of the effective matrix

Let $\mathbf{e}_{j}, j=1,2,3$, be the standard basis in \mathbb{C}^{3}. Let $\Phi_{j}(\mathbf{x})$ be the Γ-periodic solution of the problem

$$
\operatorname{div} \eta(\mathbf{x})\left(\nabla \Phi_{j}(\mathbf{x})+\mathbf{e}_{j}\right)=0, \quad \int_{\Omega} \Phi_{j}(\mathbf{x}) d \mathbf{x}=0
$$

Let $Y_{\eta}(\mathbf{x})$ be the matrix with the columns $\nabla \Phi_{j}(\mathbf{x}), j=1,2,3$. Denote

$$
\widetilde{\eta}(\mathbf{x}):=\eta(\mathbf{x})\left(Y_{\eta}(\mathbf{x})+\mathbf{1}\right), \quad \eta^{0}:=|\Omega|^{-1} \int_{\Omega} \widetilde{\eta}(\mathbf{x}) d \mathbf{x} .
$$

We also define the matrix $G_{\eta}(\mathbf{x}):=\widetilde{\eta}(\mathbf{x})\left(\eta^{0}\right)^{-1}-\mathbf{1}$.

The effective operator

Now we introduce the effective Maxwell operator $\mathcal{M}^{0}=\mathcal{M}\left(\eta^{0}, \mu^{0}\right)$.

Definition of the effective matrix

Let $\mathbf{e}_{j}, j=1,2,3$, be the standard basis in \mathbb{C}^{3}. Let $\Phi_{j}(\mathbf{x})$ be the Γ-periodic solution of the problem

$$
\operatorname{div} \eta(\mathbf{x})\left(\nabla \Phi_{j}(\mathbf{x})+\mathbf{e}_{j}\right)=0, \quad \int_{\Omega} \Phi_{j}(\mathbf{x}) d \mathbf{x}=0
$$

Let $Y_{\eta}(\mathbf{x})$ be the matrix with the columns $\nabla \Phi_{j}(\mathbf{x}), j=1,2,3$. Denote

$$
\widetilde{\eta}(\mathbf{x}):=\eta(\mathbf{x})\left(Y_{\eta}(\mathbf{x})+\mathbf{1}\right), \quad \eta^{0}:=|\Omega|^{-1} \int_{\Omega} \widetilde{\eta}(\mathbf{x}) d \mathbf{x} .
$$

We also define the matrix $G_{\eta}(\mathbf{x}):=\widetilde{\eta}(\mathbf{x})\left(\eta^{0}\right)^{-1}-\mathbf{1}$.
Note that $Y_{\eta}(\mathbf{x})$ and $G_{\eta}(\mathbf{x})$ are periodic and $\int_{\Omega} Y_{\eta} d \mathbf{x}=\int_{\Omega} G_{\eta} d \mathbf{x}=0$.

The effective operator

The effective matrix μ^{0} is defined similarly.

The effective operator

The effective matrix μ^{0} is defined similarly.

Definition of the effective matrix

Let $\Psi_{j}(\mathbf{x})$ be the Г-periodic solution of the problem

$$
\operatorname{div} \mu(\mathbf{x})\left(\nabla \Psi_{j}(\mathbf{x})+\mathbf{e}_{j}\right)=0, \quad \int_{\Omega} \Psi_{j}(\mathbf{x}) d \mathbf{x}=0
$$

Let $Y_{\mu}(\mathbf{x})$ be the matrix with the columns $\nabla \Psi_{j}(\mathbf{x}), j=1,2,3$. Denote

$$
\widetilde{\mu}(\mathbf{x}):=\mu(\mathbf{x})\left(Y_{\mu}(\mathbf{x})+\mathbf{1}\right), \quad \mu^{0}:=|\Omega|^{-1} \int_{\Omega} \widetilde{\mu}(\mathbf{x}) d \mathbf{x}
$$

We also define the matrix $G_{\mu}(\mathbf{x}):=\widetilde{\mu}(\mathbf{x})\left(\mu^{0}\right)^{-1}-\mathbf{1}$.
Note that $Y_{\mu}(\mathbf{x})$ and $G_{\mu}(\mathbf{x})$ are periodic and $\int_{\Omega} Y_{\mu} d \mathbf{x}=\int_{\Omega} G_{\mu} d \mathbf{x}=0$.

Main results for the Maxwell system

So, we study the solutions of the Maxwell system

$$
\begin{equation*}
\left(\mathcal{M}_{\varepsilon}-i l\right)\binom{\mathbf{w}_{\varepsilon}}{\mathbf{z}_{\varepsilon}}=\binom{\mathbf{q}}{\mathbf{r}}, \quad \mathbf{q}, \mathbf{r} \in J, \tag{1}
\end{equation*}
$$

and also the fields $\mathbf{u}_{\varepsilon}=\left(\eta^{\varepsilon}\right)^{-1} \mathbf{w}_{\varepsilon}$ and $\mathbf{v}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}$.

Main results for the Maxwell system

So, we study the solutions of the Maxwell system

$$
\begin{equation*}
\left(\mathcal{M}_{\varepsilon}-i I\right)\binom{\mathbf{w}_{\varepsilon}}{\mathbf{z}_{\varepsilon}}=\binom{\mathbf{q}}{\mathbf{r}}, \quad \mathbf{q}, \mathbf{r} \in J \tag{1}
\end{equation*}
$$

and also the fields $\mathbf{u}_{\varepsilon}=\left(\eta^{\varepsilon}\right)^{-1} \mathbf{w}_{\varepsilon}$ and $\mathbf{v}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}$.
Consider the homogenized system

$$
\begin{equation*}
\left(\mathcal{M}^{0}-i l\right)\binom{\mathbf{w}_{0}}{\mathbf{z}_{0}}=\binom{\mathbf{q}}{\mathbf{r}}, \quad \mathbf{q}, \mathbf{r} \in J \tag{2}
\end{equation*}
$$

and denote $\mathbf{u}_{0}=\left(\eta^{0}\right)^{-1} \mathbf{w}_{0}, \mathbf{v}_{0}=\left(\mu^{0}\right)^{-1} \mathbf{z}_{0}$.

Main results for the Maxwell system

So, we study the solutions of the Maxwell system

$$
\begin{equation*}
\left(\mathcal{M}_{\varepsilon}-i l\right)\binom{\mathbf{w}_{\varepsilon}}{\mathbf{z}_{\varepsilon}}=\binom{\mathbf{q}}{\mathbf{r}}, \quad \mathbf{q}, \mathbf{r} \in J \tag{1}
\end{equation*}
$$

and also the fields $\mathbf{u}_{\varepsilon}=\left(\eta^{\varepsilon}\right)^{-1} \mathbf{w}_{\varepsilon}$ and $\mathbf{v}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}$.
Consider the homogenized system

$$
\begin{equation*}
\left(\mathcal{M}^{0}-i l\right)\binom{\mathbf{w}_{0}}{\mathbf{z}_{0}}=\binom{\mathbf{q}}{\mathbf{r}}, \quad \mathbf{q}, \mathbf{r} \in J \tag{2}
\end{equation*}
$$

and denote $\mathbf{u}_{0}=\left(\eta^{0}\right)^{-1} \mathbf{w}_{0}, \mathbf{v}_{0}=\left(\mu^{0}\right)^{-1} \mathbf{z}_{0}$.

Classical results

The solutions of (1) weakly converge in L_{2} to the solutions of (2):

$$
\mathbf{u}_{\varepsilon} \xrightarrow{w} \mathbf{u}_{0}, \quad \mathbf{v}_{\varepsilon} \xrightarrow{w} \mathbf{v}_{0}, \quad \mathbf{w}_{\varepsilon} \xrightarrow{w} \mathbf{w}_{0}, \quad \mathbf{z}_{\varepsilon} \xrightarrow{w} \mathbf{z}_{0}, \quad \varepsilon \rightarrow 0 .
$$

Main results for the Maxwell system

We find approximations for $\mathbf{u}_{\varepsilon}, \mathbf{v}_{\varepsilon}, \mathbf{w}_{\varepsilon}, \mathbf{z}_{\varepsilon}$ in the L_{2}-norm.

Main results for the Maxwell system

We find approximations for $\mathbf{u}_{\varepsilon}, \mathbf{v}_{\varepsilon}, \mathbf{w}_{\varepsilon}, \mathbf{z}_{\varepsilon}$ in the L_{2}-norm.
To formulate the results, we consider the "correction Maxwell system"

$$
\begin{equation*}
\left(\mathcal{M}^{0}-i l\right)\binom{\widehat{\mathbf{w}}_{\varepsilon}}{\widehat{\mathbf{z}}_{\varepsilon}}=\binom{\mathbf{q}_{\varepsilon}}{\mathbf{r}_{\varepsilon}}, \quad \mathbf{q}_{\varepsilon}:=\mathcal{P}_{\eta^{0}}\left(Y_{\eta}^{\varepsilon}\right)^{*} \mathbf{q}, \quad \mathbf{r}_{\varepsilon}:=\mathcal{P}_{\mu^{0}}\left(Y_{\mu}^{\varepsilon}\right)^{*} \mathbf{r} \tag{3}
\end{equation*}
$$

Here $\mathcal{P}_{\eta^{0}}$ is the orthogonal projection of the weighted space $L_{2}\left(\left(\eta^{0}\right)^{-1}\right)$ onto J, and $\mathcal{P}_{\mu^{0}}$ is the orthogonal projection of $L_{2}\left(\left(\mu^{0}\right)^{-1}\right)$ onto J.

Main results for the Maxwell system

We find approximations for $\mathbf{u}_{\varepsilon}, \mathbf{v}_{\varepsilon}, \mathbf{w}_{\varepsilon}, \mathbf{z}_{\varepsilon}$ in the L_{2}-norm.
To formulate the results, we consider the "correction Maxwell system"

$$
\begin{equation*}
\left(\mathcal{M}^{0}-i l\right)\binom{\widehat{\mathbf{w}}_{\varepsilon}}{\widehat{\mathbf{z}}_{\varepsilon}}=\binom{\mathbf{q}_{\varepsilon}}{\mathbf{r}_{\varepsilon}}, \quad \mathbf{q}_{\varepsilon}:=\mathcal{P}_{\eta^{0}}\left(Y_{\eta}^{\varepsilon}\right)^{*} \mathbf{q}, \quad \mathbf{r}_{\varepsilon}:=\mathcal{P}_{\mu^{0}}\left(Y_{\mu}^{\varepsilon}\right)^{*} \mathbf{r} \tag{3}
\end{equation*}
$$

Here $\mathcal{P}_{\eta^{0}}$ is the orthogonal projection of the weighted space $L_{2}\left(\left(\eta^{0}\right)^{-1}\right)$ onto J, and $\mathcal{P}_{\mu^{0}}$ is the orthogonal projection of $L_{2}\left(\left(\mu^{0}\right)^{-1}\right)$ onto J. Introduce the corresponding "correction fields"

$$
\widehat{\mathbf{u}}_{\varepsilon}:=\left(\eta^{0}\right)^{-1} \widehat{\mathbf{w}}_{\varepsilon}, \quad \widehat{\mathbf{v}}_{\varepsilon}:=\left(\mu^{0}\right)^{-1} \widehat{\mathbf{z}}_{\varepsilon} .
$$

Main results for the Maxwell system

We find approximations for $\mathbf{u}_{\varepsilon}, \mathbf{v}_{\varepsilon}, \mathbf{w}_{\varepsilon}, \mathbf{z}_{\varepsilon}$ in the L_{2}-norm.
To formulate the results, we consider the "correction Maxwell system"

$$
\begin{equation*}
\left(\mathcal{M}^{0}-i l\right)\binom{\widehat{\mathbf{w}}_{\varepsilon}}{\widehat{\mathbf{z}}_{\varepsilon}}=\binom{\mathbf{q}_{\varepsilon}}{\mathbf{r}_{\varepsilon}}, \quad \mathbf{q}_{\varepsilon}:=\mathcal{P}_{\eta^{0}}\left(Y_{\eta}^{\varepsilon}\right)^{*} \mathbf{q}, \quad \mathbf{r}_{\varepsilon}:=\mathcal{P}_{\mu^{0}}\left(Y_{\mu}^{\varepsilon}\right)^{*} \mathbf{r} . \tag{3}
\end{equation*}
$$

Here $\mathcal{P}_{\eta^{0}}$ is the orthogonal projection of the weighted space $L_{2}\left(\left(\eta^{0}\right)^{-1}\right)$ onto J, and $\mathcal{P}_{\mu^{0}}$ is the orthogonal projection of $L_{2}\left(\left(\mu^{0}\right)^{-1}\right)$ onto J. Introduce the corresponding "correction fields"

$$
\widehat{\mathbf{u}}_{\varepsilon}:=\left(\eta^{0}\right)^{-1} \widehat{\mathbf{w}}_{\varepsilon}, \quad \widehat{\mathbf{v}}_{\varepsilon}:=\left(\mu^{0}\right)^{-1} \widehat{\mathbf{z}}_{\varepsilon}
$$

Note that $\widehat{\mathbf{u}}_{\varepsilon}, \widehat{\mathbf{v}}_{\varepsilon}, \widehat{\mathbf{w}}_{\varepsilon}$, and $\widehat{\mathbf{z}}_{\varepsilon}$ weakly converge to zero in L_{2}, as $\varepsilon \rightarrow 0$.

Main results for the Maxwell system

We find approximations for $\mathbf{u}_{\varepsilon}, \mathbf{v}_{\varepsilon}, \mathbf{w}_{\varepsilon}, \mathbf{z}_{\varepsilon}$ in the L_{2}-norm.
To formulate the results, we consider the "correction Maxwell system"

$$
\begin{equation*}
\left(\mathcal{M}^{0}-i l\right)\binom{\widehat{\mathbf{w}}_{\varepsilon}}{\widehat{\mathbf{z}}_{\varepsilon}}=\binom{\mathbf{q}_{\varepsilon}}{\mathbf{r}_{\varepsilon}}, \quad \mathbf{q}_{\varepsilon}:=\mathcal{P}_{\eta^{0}}\left(Y_{\eta}^{\varepsilon}\right)^{*} \mathbf{q}, \quad \mathbf{r}_{\varepsilon}:=\mathcal{P}_{\mu^{0}}\left(Y_{\mu}^{\varepsilon}\right)^{*} \mathbf{r} \tag{3}
\end{equation*}
$$

Here $\mathcal{P}_{\eta^{0}}$ is the orthogonal projection of the weighted space $L_{2}\left(\left(\eta^{0}\right)^{-1}\right)$ onto J, and $\mathcal{P}_{\mu^{0}}$ is the orthogonal projection of $L_{2}\left(\left(\mu^{0}\right)^{-1}\right)$ onto J. Introduce the corresponding "correction fields"

$$
\widehat{\mathbf{u}}_{\varepsilon}:=\left(\eta^{0}\right)^{-1} \widehat{\mathbf{w}}_{\varepsilon}, \quad \widehat{\mathbf{v}}_{\varepsilon}:=\left(\mu^{0}\right)^{-1} \widehat{\mathbf{z}}_{\varepsilon}
$$

Note that $\widehat{\mathbf{u}}_{\varepsilon}, \widehat{\mathbf{v}}_{\varepsilon}, \widehat{\mathbf{w}}_{\varepsilon}$, and $\widehat{\mathbf{z}}_{\varepsilon}$ weakly converge to zero in L_{2}, as $\varepsilon \rightarrow 0$. Finally, we define the auxiliary smoothing operator Π_{ε} in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$:

$$
\left(\Pi_{\varepsilon} \mathbf{f}\right)(\mathbf{x})=(2 \pi)^{-3 / 2} \int_{\tilde{\Omega} / \varepsilon} e^{i(\mathbf{x}, \boldsymbol{\xi}) \widehat{\mathbf{f}}(\boldsymbol{\xi}) d \boldsymbol{\xi},}
$$

where $\widehat{\mathbf{f}}(\boldsymbol{\xi})$ is the Fourier-image of $\mathbf{f}(\mathbf{x})$.

Main results for the Maxwell system

Our main result is

Theorem 1 [T. Suslina]

For $0<\varepsilon \leqslant 1$ we have

$$
\begin{aligned}
\left\|\mathbf{u}_{\varepsilon}-\left(\mathbf{1}+Y_{\eta}^{\varepsilon}\right)\left(\mathbf{u}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{u}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right) \\
\left\|\mathbf{w}_{\varepsilon}-\left(\mathbf{1}+G_{\eta}^{\varepsilon}\right)\left(\mathbf{w}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{w}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right) \\
\left\|\mathbf{v}_{\varepsilon}-\left(\mathbf{1}+Y_{\mu}^{\varepsilon}\right)\left(\mathbf{v}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{v}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right) \\
\left\|\mathbf{z}_{\varepsilon}-\left(\mathbf{1}+G_{\mu}^{\varepsilon}\right)\left(\mathbf{z}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{z}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right) .
\end{aligned}
$$

Main results for the Maxwell system

Our main result is

Theorem 1 [T. Suslina]

For $0<\varepsilon \leqslant 1$ we have

$$
\begin{aligned}
\left\|\mathbf{u}_{\varepsilon}-\left(\mathbf{1}+Y_{\eta}^{\varepsilon}\right)\left(\mathbf{u}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{u}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right), \\
\left\|\mathbf{w}_{\varepsilon}-\left(\mathbf{1}+G_{\eta}^{\varepsilon}\right)\left(\mathbf{w}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{w}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right), \\
\left\|\mathbf{v}_{\varepsilon}-\left(\mathbf{1}+Y_{\mu}^{\varepsilon}\right)\left(\mathbf{v}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{v}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right), \\
\left\|\mathbf{z}_{\varepsilon}-\left(\mathbf{1}+G_{\mu}^{\varepsilon}\right)\left(\mathbf{z}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{z}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right) .
\end{aligned}
$$

Remark.

1) Estimates of Theorem 1 are order-sharp.

Main results for the Maxwell system

Our main result is

Theorem 1 [T. Suslina]

For $0<\varepsilon \leqslant 1$ we have

$$
\begin{aligned}
\left\|\mathbf{u}_{\varepsilon}-\left(\mathbf{1}+Y_{\eta}^{\varepsilon}\right)\left(\mathbf{u}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{u}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right), \\
\left\|\mathbf{w}_{\varepsilon}-\left(\mathbf{1}+G_{\eta}^{\varepsilon}\right)\left(\mathbf{w}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{w}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right) \\
\left\|\mathbf{v}_{\varepsilon}-\left(\mathbf{1}+Y_{\mu}^{\varepsilon}\right)\left(\mathbf{v}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{v}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right), \\
\left\|\mathbf{z}_{\varepsilon}-\left(\mathbf{1}+G_{\mu}^{\varepsilon}\right)\left(\mathbf{z}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{z}}_{\varepsilon}\right)\right\|_{L_{2}} & \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right) .
\end{aligned}
$$

Remark.

1) Estimates of Theorem 1 are order-sharp.
2) The constants depend only on $\|\eta\|_{L_{\infty}},\left\|\eta^{-1}\right\|_{L_{\infty}},\|\mu\|_{L_{\infty}},\left\|\mu^{-1}\right\|_{L_{\infty}}$, and the parameters of the lattice.

Main results for the Maxwell system

Remark.

3) All approximations are similar to each other. For instance, we have

$$
\mathbf{w}_{\varepsilon} \sim \mathbf{w}_{0}+G_{\eta}^{\varepsilon} \mathbf{w}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{w}}_{\varepsilon}+G_{\eta}^{\varepsilon} \Pi_{\varepsilon} \widehat{\mathbf{w}}_{\varepsilon}
$$

The first term is the effective field; other three terms weakly tend to zero and can be interpreted as the correctors of zero order.

Main results for the Maxwell system

Remark.

3) All approximations are similar to each other. For instance, we have

$$
\mathbf{w}_{\varepsilon} \sim \mathbf{w}_{0}+G_{\eta}^{\varepsilon} \mathbf{w}_{0}+\Pi_{\varepsilon} \widehat{\mathbf{w}}_{\varepsilon}+G_{\eta}^{\varepsilon} \Pi_{\varepsilon} \widehat{\mathbf{w}}_{\varepsilon}
$$

The first term is the effective field; other three terms weakly tend to zero and can be interpreted as the correctors of zero order.
4) The result can be formulated in operator terms:

$$
\left\|\left(\mathcal{M}_{\varepsilon}-i I\right)^{-1}-\left(I+G^{\varepsilon}\right)\left(\mathcal{M}^{0}-i I\right)^{-1}\left(I+Z_{\varepsilon}\right)\right\| \leqslant C \varepsilon
$$

where

$$
G^{\varepsilon}=\left(\begin{array}{cc}
G_{\eta}^{\varepsilon} & 0 \\
0 & G_{\mu}^{\varepsilon}
\end{array}\right), \quad Z_{\varepsilon}=\left(\begin{array}{cc}
\Pi_{\varepsilon} \mathcal{P}_{\eta^{0}}\left(Y_{\eta}^{\varepsilon}\right)^{*} & 0 \\
0 & \Pi_{\varepsilon} \mathcal{P}_{\mu^{0}}\left(Y_{\mu}^{\varepsilon}\right)^{*}
\end{array}\right) .
$$

Main results for the Maxwell system

5) Under some additional assumptions it is possible to replace Π_{ε} by identity. For instance, this is possible if $\eta \in W_{p, \text { per }}^{1}(\Omega)$ with $p>3$ and μ is arbitrary, or if $\mu \in W_{p, \text { per }}^{1}(\Omega)$ with $p>3$ and η is arbitrary.

Main results for the Maxwell system

5) Under some additional assumptions it is possible to replace Π_{ε} by identity. For instance, this is possible if $\eta \in W_{p, \text { per }}^{1}(\Omega)$ with $p>3$ and μ is arbitrary, or if $\mu \in W_{p, \mathrm{per}}^{1}(\Omega)$ with $p>3$ and η is arbitrary.
6) If one of the coefficients (η or μ) is constant, the results are simpler.

Theorem 2 [M. Birman and T. Suslina]

Let $\mu=\mu_{0}$ be a constant positive matrix. For $0<\varepsilon \leqslant 1$ we have

$$
\begin{array}{r}
\left\|\mathbf{u}_{\varepsilon}-\left(\mathbf{1}+Y_{\eta}^{\varepsilon}\right)\left(\mathbf{u}_{0}+\widehat{\mathbf{u}}_{\varepsilon}\right)\right\|_{L_{2}} \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right), \\
\left\|\mathbf{w}_{\varepsilon}-\left(\mathbf{1}+G_{\eta}^{\varepsilon}\right)\left(\mathbf{w}_{0}+\widehat{\mathbf{w}}_{\varepsilon}\right)\right\|_{L_{2}} \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right), \\
\left\|\mathbf{v}_{\varepsilon}-\left(\mathbf{v}_{0}+\widehat{\mathbf{v}}_{\varepsilon}\right)\right\|_{L_{2}} \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right), \\
\left\|\mathbf{z}_{\varepsilon}-\left(\mathbf{z}_{0}+\widehat{\mathbf{z}}_{\varepsilon}\right)\right\|_{L_{2}} \leqslant C \varepsilon\left(\|\mathbf{q}\|_{L_{2}}+\|\mathbf{r}\|_{L_{2}}\right) .
\end{array}
$$

Main results for the Maxwell system

Corollary

Let $\mu=\mu_{0}$ be a constant positive matrix, and let $\mathbf{q}=0$. Then the "correction fields" $\widehat{\mathbf{u}}_{\varepsilon}, \widehat{\mathbf{w}}_{\varepsilon}, \widehat{\mathbf{v}}_{\varepsilon}, \widehat{\mathbf{z}}_{\varepsilon}$ are equal to zero. For $0<\varepsilon \leqslant 1$ we have

$$
\begin{aligned}
\left\|\mathbf{u}_{\varepsilon}-\left(\mathbf{1}+Y_{\eta}^{\varepsilon}\right) \mathbf{u}_{0}\right\|_{L_{2}} & \leqslant C \varepsilon\|\mathbf{r}\|_{L_{2}}, \\
\left\|\mathbf{w}_{\varepsilon}-\left(\mathbf{1}+G_{\eta}^{\varepsilon}\right) \mathbf{w}_{0}\right\|_{L_{2}} & \leqslant C \varepsilon\|\mathbf{r}\|_{L_{2}}, \\
\left\|\mathbf{v}_{\varepsilon}-\mathbf{v}_{0}\right\|_{L_{2}} & \leqslant C \varepsilon\|\mathbf{r}\|_{L_{2}}, \\
\left\|\mathbf{z}_{\varepsilon}-\mathbf{z}_{0}\right\|_{L_{2}} & \leqslant C \varepsilon\|\mathbf{r}\|_{L_{2}} .
\end{aligned}
$$

Reduction to the second order elliptic operator

We reduce the problem to the study of some second order elliptic operator.

Reduction to the second order elliptic operator

We reduce the problem to the study of some second order elliptic operator. First, we represent each field as the sum of two terms:

$$
\mathbf{w}_{\varepsilon}=\mathbf{w}_{\varepsilon}^{(\mathbf{q})}+\mathbf{w}_{\varepsilon}^{(\mathbf{r})}, \quad \mathbf{z}_{\varepsilon}=\mathbf{z}_{\varepsilon}^{(\mathbf{q})}+\mathbf{z}_{\varepsilon}^{(\mathbf{r})}
$$

where $\left(\mathbf{w}_{\varepsilon}^{(\mathbf{q})}, \mathbf{z}_{\varepsilon}^{(\mathbf{q})}\right)$ is the solution of system (1) with $\mathbf{r}=0$, and $\left(\mathbf{w}_{\varepsilon}^{(\mathbf{r})}, \mathbf{z}_{\varepsilon}^{(\mathbf{r})}\right.$) is the solution of system (1) with $\mathbf{q}=0$.

Reduction to the second order elliptic operator

We reduce the problem to the study of some second order elliptic operator. First, we represent each field as the sum of two terms:

$$
\mathbf{w}_{\varepsilon}=\mathbf{w}_{\varepsilon}^{(\mathbf{q})}+\mathbf{w}_{\varepsilon}^{(\mathbf{r})}, \quad \mathbf{z}_{\varepsilon}=\mathbf{z}_{\varepsilon}^{(\mathbf{q})}+\mathbf{z}_{\varepsilon}^{(\mathbf{r})}
$$

where $\left(\mathbf{w}_{\varepsilon}^{(\mathbf{q})}, \mathbf{z}_{\varepsilon}^{(\mathbf{q})}\right)$ is the solution of system (1) with $\mathbf{r}=0$, and ($\mathbf{w}_{\varepsilon}^{(\mathbf{r})}, \mathbf{z}_{\varepsilon}^{(\mathbf{r})}$) is the solution of system (1) with $\mathbf{q}=0$.
Similarly, we represent \mathbf{u}_{ε} and \mathbf{v}_{ε} as the sum of two terms:

$$
\mathbf{u}_{\varepsilon}=\mathbf{u}_{\varepsilon}^{(\mathbf{q})}+\mathbf{u}_{\varepsilon}^{(\mathbf{r})}, \quad \mathbf{v}_{\varepsilon}=\mathbf{v}_{\varepsilon}^{(\mathbf{q})}+\mathbf{v}_{\varepsilon}^{(\mathbf{r})}
$$

We study the fields with indices (\mathbf{q}) and (\mathbf{r}) separately. The cases $\mathbf{q}=0$ and $\mathbf{r}=0$ are similar.

Reduction to the second order elliptic operator

The case where $\mathbf{q}=0$. System (1) with $\mathbf{q}=0$ takes the form

$$
\left.\begin{array}{c}
\mathbf{w}_{\varepsilon}^{(\mathbf{r})}=\operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}^{(\mathbf{r})} \\
\operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \mathbf{w}_{\varepsilon}^{(\mathbf{r})}+\mathbf{z}_{\varepsilon}^{(\mathbf{r})}=\operatorname{ir} \\
\operatorname{div} \mathbf{w}_{\varepsilon}^{(\mathbf{r})}=0, \quad \operatorname{div} \mathbf{z}_{\varepsilon}^{(\mathbf{r})}=0
\end{array}\right\}
$$

Reduction to the second order elliptic operator

The case where $\mathbf{q}=0$. System (1) with $\mathbf{q}=0$ takes the form

$$
\left.\begin{array}{c}
\mathbf{w}_{\varepsilon}^{(\mathbf{r})}=\operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}^{(\mathbf{r})} \\
\operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \mathbf{w}_{\varepsilon}^{(\mathbf{r})}+\mathbf{z}_{\varepsilon}^{(\mathbf{r})}=\operatorname{ir} \\
\operatorname{div} \mathbf{w}_{\varepsilon}^{(\mathbf{r})}=0, \quad \operatorname{div} \mathbf{z}_{\varepsilon}^{(\mathbf{r})}=0
\end{array}\right\}
$$

Hence, $\mathbf{z}_{\varepsilon}^{(r)}$ is the solution of the second order equation

$$
\begin{equation*}
\operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}^{(\mathbf{r})}+\mathbf{z}_{\varepsilon}^{(\mathbf{r})}=i \mathbf{r}, \quad \operatorname{div} \mathbf{z}_{\varepsilon}^{(\mathbf{r})}=0 \tag{4}
\end{equation*}
$$

Reduction to the second order elliptic operator

The case where $\mathbf{q}=0$. System (1) with $\mathbf{q}=0$ takes the form

$$
\left.\begin{array}{c}
\mathbf{w}_{\varepsilon}^{(\mathbf{r})}=\operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}^{(\mathbf{r})} \\
\operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \mathbf{w}_{\varepsilon}^{(\mathbf{r})}+\mathbf{z}_{\varepsilon}^{(\mathbf{r})}=\operatorname{ir} \\
\operatorname{div} \mathbf{w}_{\varepsilon}^{(\mathbf{r})}=0, \quad \operatorname{div} \mathbf{z}_{\varepsilon}^{(\mathbf{r})}=0
\end{array}\right\}
$$

Hence, $\mathbf{z}_{\varepsilon}^{(r)}$ is the solution of the second order equation

$$
\begin{equation*}
\operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}^{(r)}+\mathbf{z}_{\varepsilon}^{(\mathbf{r})}=i \mathbf{r}, \quad \operatorname{div} \mathbf{z}_{\varepsilon}^{(\mathbf{r})}=0 \tag{4}
\end{equation*}
$$

In order to study equation (4), it is convenient to substitute

$$
\mathbf{f}_{\varepsilon}:=\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{z}_{\varepsilon}^{(\mathbf{r})} .
$$

Reduction to the second order elliptic operator

The case where $\mathbf{q}=0$. System (1) with $\mathbf{q}=0$ takes the form

$$
\left.\begin{array}{c}
\mathbf{w}_{\varepsilon}^{(\mathbf{r})}=\operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}^{(\mathbf{r})} \\
\operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \mathbf{w}_{\varepsilon}^{(\mathbf{r})}+\mathbf{z}_{\varepsilon}^{(\mathbf{r})}=\operatorname{ir} \\
\operatorname{div} \mathbf{w}_{\varepsilon}^{(\mathbf{r})}=0, \quad \operatorname{div} \mathbf{z}_{\varepsilon}^{(\mathbf{r})}=0
\end{array}\right\}
$$

Hence, $\mathbf{z}_{\varepsilon}^{(r)}$ is the solution of the second order equation

$$
\begin{equation*}
\operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1} \mathbf{z}_{\varepsilon}^{(r)}+\mathbf{z}_{\varepsilon}^{(\mathbf{r})}=i \mathbf{r}, \quad \operatorname{div} \mathbf{z}_{\varepsilon}^{(\mathbf{r})}=0 \tag{4}
\end{equation*}
$$

In order to study equation (4), it is convenient to substitute

$$
\mathbf{f}_{\varepsilon}:=\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{z}_{\varepsilon}^{(\mathbf{r})} .
$$

Then \mathbf{f}_{ε} is the solution of the problem

$$
\begin{align*}
\left(\mu^{\varepsilon}\right)^{-1 / 2} \operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}_{\varepsilon}+\mathbf{f}_{\varepsilon} & =i\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{r} \\
\operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f}_{\varepsilon} & =0 . \tag{5}
\end{align*}
$$

Reduction to the second order elliptic operator

It is convenient to pass from (4) to (5), since the operator in (5) is selfadjoint with respect to the standard inner product in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$.

Reduction to the second order elliptic operator

It is convenient to pass from (4) to (5), since the operator in (5) is selfadjoint with respect to the standard inner product in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$. However, there is a difficulty: \mathbf{f}_{ε} satisfies the divergence-free condition containing rapidly oscillating coefficient.

Reduction to the second order elliptic operator

It is convenient to pass from (4) to (5), since the operator in (5) is selfadjoint with respect to the standard inner product in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$. However, there is a difficulty: \mathbf{f}_{ε} satisfies the divergence-free condition containing rapidly oscillating coefficient. We extend the system in order to remove the divergence-free condition.

Reduction to the second order elliptic operator

It is convenient to pass from (4) to (5), since the operator in (5) is selfadjoint with respect to the standard inner product in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$. However, there is a difficulty: \mathbf{f}_{ε} satisfies the divergence-free condition containing rapidly oscillating coefficient. We extend the system in order to remove the divergence-free condition. This leads to the study of the second order operator $\mathcal{L}_{\varepsilon}=\mathcal{L}\left(\eta^{\varepsilon}, \mu^{\varepsilon}\right)$:

$$
\mathcal{L}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1 / 2} \operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2}-\left(\mu^{\varepsilon}\right)^{1 / 2} \nabla \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2}
$$

acting in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$.

Reduction to the second order elliptic operator

It is convenient to pass from (4) to (5), since the operator in (5) is selfadjoint with respect to the standard inner product in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$. However, there is a difficulty: \mathbf{f}_{ε} satisfies the divergence-free condition containing rapidly oscillating coefficient. We extend the system in order to remove the divergence-free condition. This leads to the study of the second order operator $\mathcal{L}_{\varepsilon}=\mathcal{L}\left(\eta^{\varepsilon}, \mu^{\varepsilon}\right)$:

$$
\mathcal{L}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1 / 2} \operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2}-\left(\mu^{\varepsilon}\right)^{1 / 2} \nabla \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2}
$$

acting in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$. The precise definition of the operator $\mathcal{L}_{\varepsilon}$ is given in terms of the quadratic form

$$
\mathfrak{l}_{\varepsilon}[\mathbf{f}, \mathbf{f}]=\int_{\mathbb{R}^{3}}\left(\left\langle\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}, \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}\right\rangle+\left|\operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f}\right|^{2}\right) d \mathbf{x},
$$

$\operatorname{Dom} \mathfrak{l}_{\varepsilon}=\left\{\mathbf{f} \in L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right): \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f} \in L_{2}, \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f} \in L_{2}\right\}$.

Reduction to the second order elliptic operator

It is convenient to pass from (4) to (5), since the operator in (5) is selfadjoint with respect to the standard inner product in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$. However, there is a difficulty: \mathbf{f}_{ε} satisfies the divergence-free condition containing rapidly oscillating coefficient. We extend the system in order to remove the divergence-free condition. This leads to the study of the second order operator $\mathcal{L}_{\varepsilon}=\mathcal{L}\left(\eta^{\varepsilon}, \mu^{\varepsilon}\right)$:

$$
\mathcal{L}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1 / 2} \operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2}-\left(\mu^{\varepsilon}\right)^{1 / 2} \nabla \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2}
$$

acting in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$. The precise definition of the operator $\mathcal{L}_{\varepsilon}$ is given in terms of the quadratic form

$$
\mathfrak{l}_{\varepsilon}[\mathbf{f}, \mathbf{f}]=\int_{\mathbb{R}^{3}}\left(\left\langle\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}, \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}\right\rangle+\left|\operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f}\right|^{2}\right) d \mathbf{x}
$$

$\operatorname{Dom} \mathfrak{l}_{\varepsilon}=\left\{\mathbf{f} \in L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right): \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f} \in L_{2}, \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f} \in L_{2}\right\}$.
This form is closed and nonnegative. By definition, $\mathcal{L}_{\varepsilon}$ is the selfadjoint operator in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ generated by this form.

Reduction to the second order elliptic operator

The operator

$$
\mathcal{L}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1 / 2} \operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2}-\left(\mu^{\varepsilon}\right)^{1 / 2} \nabla \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2}
$$

is elliptic and acts in the whole space $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$.

Reduction to the second order elliptic operator

The operator

$$
\mathcal{L}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1 / 2} \operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2}-\left(\mu^{\varepsilon}\right)^{1 / 2} \nabla \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2}
$$

is elliptic and acts in the whole space $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$.
This operator splits in the orthogonal Weyl decomposition

$$
L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)=G\left(\mu^{\varepsilon}\right) \oplus J\left(\mu^{\varepsilon}\right)
$$

where

$$
\begin{aligned}
G\left(\mu^{\varepsilon}\right) & =\left\{\mathbf{g}=\left(\mu^{\varepsilon}\right)^{1 / 2} \nabla \varphi: \varphi \in H_{\mathrm{loc}}^{1}, \nabla \varphi \in L_{2}\right\} \\
J\left(\mu^{\varepsilon}\right) & =\left\{\mathbf{f} \in L_{2}: \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f}=0\right\}
\end{aligned}
$$

Reduction to the second order elliptic operator

The operator

$$
\mathcal{L}_{\varepsilon}=\left(\mu^{\varepsilon}\right)^{-1 / 2} \operatorname{curl}\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2}-\left(\mu^{\varepsilon}\right)^{1 / 2} \nabla \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2}
$$

is elliptic and acts in the whole space $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$.
This operator splits in the orthogonal Weyl decomposition

$$
L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)=G\left(\mu^{\varepsilon}\right) \oplus J\left(\mu^{\varepsilon}\right)
$$

where

$$
\begin{aligned}
G\left(\mu^{\varepsilon}\right) & =\left\{\mathbf{g}=\left(\mu^{\varepsilon}\right)^{1 / 2} \nabla \varphi: \varphi \in H_{\mathrm{loc}}^{1}, \nabla \varphi \in L_{2}\right\} \\
J\left(\mu^{\varepsilon}\right) & =\left\{\mathbf{f} \in L_{2}: \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f}=0\right\}
\end{aligned}
$$

We are interested in the part of $\mathcal{L}_{\varepsilon}$ in the subspace $J\left(\mu^{\varepsilon}\right)$. Let $\mathcal{P}\left(\mu^{\varepsilon}\right)$ be the orthogonal projection of $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ onto $J\left(\mu^{\varepsilon}\right)$.

Reduction to the second order elliptic operator

Conclusion

The solution of problem (5) can be represented as

$$
\mathbf{f}_{\varepsilon}=\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}\left(i\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{r}\right)
$$

Reduction to the second order elliptic operator

Conclusion

The solution of problem (5) can be represented as

$$
\mathbf{f}_{\varepsilon}=\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}\left(i\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{r}\right)
$$

The fields $\mathbf{z}_{\varepsilon}^{(r)}, \mathbf{v}_{\varepsilon}^{(r)}, \mathbf{w}_{\varepsilon}^{(r)}, \mathbf{u}_{\varepsilon}^{(r)}$ can be expressed in terms of \mathbf{f}_{ε} :

$$
\begin{array}{cl}
\mathbf{z}_{\varepsilon}^{(r)}=\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f}_{\varepsilon}, \quad \mathbf{v}_{\varepsilon}^{(r)}=\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}_{\varepsilon}, \\
\mathbf{w}_{\varepsilon}^{(r)}=\operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}_{\varepsilon}, \quad \mathbf{u}_{\varepsilon}^{(r)}=\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}_{\varepsilon}
\end{array}
$$

Reduction to the second order elliptic operator

Conclusion

The solution of problem (5) can be represented as

$$
\mathbf{f}_{\varepsilon}=\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}\left(i\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{r}\right)
$$

The fields $\mathbf{z}_{\varepsilon}^{(r)}, \mathbf{v}_{\varepsilon}^{(r)}, \mathbf{w}_{\varepsilon}^{(r)}, \mathbf{u}_{\varepsilon}^{(r)}$ can be expressed in terms of \mathbf{f}_{ε} :

$$
\begin{aligned}
\mathbf{z}_{\varepsilon}^{(r)}=\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f}_{\varepsilon}, \quad \mathbf{v}_{\varepsilon}^{(r)}=\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}_{\varepsilon}, \\
\mathbf{w}_{\varepsilon}^{(r)}=\operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}_{\varepsilon}, \quad \mathbf{u}_{\varepsilon}^{(r)}=\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}_{\varepsilon} .
\end{aligned}
$$

So, we have reduced the problem to the study of the resolvent $\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}$ and its "divergence-free part" $\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}$. We need to find approximations in the $\left(L_{2} \rightarrow L_{2}\right)$-norm and in the energy norm.

Reduction to the second order elliptic operator

Conclusion

The solution of problem (5) can be represented as

$$
\mathbf{f}_{\varepsilon}=\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}\left(i\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{r}\right)
$$

The fields $\mathbf{z}_{\varepsilon}^{(r)}, \mathbf{v}_{\varepsilon}^{(r)}, \mathbf{w}_{\varepsilon}^{(r)}, \mathbf{u}_{\varepsilon}^{(r)}$ can be expressed in terms of \mathbf{f}_{ε} :

$$
\begin{aligned}
\mathbf{z}_{\varepsilon}^{(r)}=\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f}_{\varepsilon}, \quad \mathbf{v}_{\varepsilon}^{(r)}=\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}_{\varepsilon}, \\
\mathbf{w}_{\varepsilon}^{(r)}=\operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}_{\varepsilon}, \quad \mathbf{u}_{\varepsilon}^{(r)}=\left(\eta^{\varepsilon}\right)^{-1} \operatorname{curl}\left(\mu^{\varepsilon}\right)^{-1 / 2} \mathbf{f}_{\varepsilon} .
\end{aligned}
$$

So, we have reduced the problem to the study of the resolvent $\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}$ and its "divergence-free part" $\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}$. We need to find approximations in the $\left(L_{2} \rightarrow L_{2}\right)$-norm and in the energy norm.

The fields with index (q) are studied similarly.

Results for the second order elliptic operator

Let $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$ be the effective operator. We prove that

$$
\begin{equation*}
\left\|\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}-\left(W^{\varepsilon}\right)^{*}\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon}\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon . \tag{6}
\end{equation*}
$$

Here $W(\mathbf{x})$ is some periodic matrix-valued function (it will be defined later).

Results for the second order elliptic operator

Let $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$ be the effective operator. We prove that

$$
\begin{equation*}
\left\|\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}-\left(W^{\varepsilon}\right)^{*}\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon}\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon . \tag{6}
\end{equation*}
$$

Here $W(\mathbf{x})$ is some periodic matrix-valued function (it will be defined later). For the "divergence-free part" of the resolvent we have

$$
\begin{equation*}
\left\|\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}-\left(W^{\varepsilon}\right)^{*} \mathcal{P}\left(\mu^{0}\right)\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon}\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon \tag{7}
\end{equation*}
$$

Results for the second order elliptic operator

Let $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$ be the effective operator. We prove that

$$
\begin{equation*}
\left\|\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}-\left(W^{\varepsilon}\right)^{*}\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon}\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon . \tag{6}
\end{equation*}
$$

Here $W(\mathbf{x})$ is some periodic matrix-valued function (it will be defined later). For the "divergence-free part" of the resolvent we have

$$
\begin{equation*}
\left\|\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}-\left(W^{\varepsilon}\right)^{*} \mathcal{P}\left(\mu^{0}\right)\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon}\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon . \tag{7}
\end{equation*}
$$

From here we deduce the required approximations for $\mathbf{v}_{\varepsilon}^{(r)}$ and $\mathbf{z}_{\varepsilon}^{(r)}$.

Results for the second order elliptic operator

Let $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$ be the effective operator. We prove that

$$
\begin{equation*}
\left\|\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}-\left(W^{\varepsilon}\right)^{*}\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon}\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon \tag{6}
\end{equation*}
$$

Here $W(\mathbf{x})$ is some periodic matrix-valued function (it will be defined later). For the "divergence-free part" of the resolvent we have

$$
\begin{equation*}
\left\|\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}-\left(W^{\varepsilon}\right)^{*} \mathcal{P}\left(\mu^{0}\right)\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon}\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon \tag{7}
\end{equation*}
$$

From here we deduce the required approximations for $\mathbf{v}_{\varepsilon}^{(r)}$ and $\mathbf{z}_{\varepsilon}^{(r)}$. The required approximations for $\mathbf{u}_{\varepsilon}^{(r)}$ and $\mathbf{w}_{\varepsilon}^{(r)}$ are deduced from

$$
\left\|\mathcal{L}_{\varepsilon}^{1 / 2}\left(\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}-\left(W^{\varepsilon}\right)^{*} \mathcal{P}\left(\mu^{0}\right)\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon}-\varepsilon K(\varepsilon)\right)\right\|_{L_{2} \rightarrow L_{2}}
$$

$$
\begin{equation*}
\leqslant C \varepsilon \tag{8}
\end{equation*}
$$

where $K(\varepsilon)$ is appropriate corrector.

Method: the scaling transformation

The operator $\mathcal{L}_{\varepsilon}$ is studied by the operator-theoretic approach based on the scaling transformation, the Floquet-Bloch theory, and the analytic perturbation theory.

Method: the scaling transformation

The operator $\mathcal{L}_{\varepsilon}$ is studied by the operator-theoretic approach based on the scaling transformation, the Floquet-Bloch theory, and the analytic perturbation theory.
Scaling transformation. Let $\mathcal{L}=\mathcal{L}(\eta, \mu)$ be the operator

$$
\mathcal{L}=\mu^{-1 / 2} \operatorname{curl} \eta^{-1} \operatorname{curl} \mu^{-1 / 2}-\mu^{1 / 2} \nabla \operatorname{div} \mu^{1 / 2} .
$$

Method: the scaling transformation

The operator $\mathcal{L}_{\varepsilon}$ is studied by the operator-theoretic approach based on the scaling transformation, the Floquet-Bloch theory, and the analytic perturbation theory.
Scaling transformation. Let $\mathcal{L}=\mathcal{L}(\eta, \mu)$ be the operator

$$
\mathcal{L}=\mu^{-1 / 2} \operatorname{curl} \eta^{-1} \operatorname{curl} \mu^{-1 / 2}-\mu^{1 / 2} \nabla \operatorname{div} \mu^{1 / 2}
$$

Let T_{ε} be the unitary scaling operator in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$:

$$
\left(T_{\varepsilon} \mathbf{f}\right)(\mathbf{x})=\varepsilon^{3 / 2} \mathbf{f}(\varepsilon \mathbf{x})
$$

Method: the scaling transformation

The operator $\mathcal{L}_{\varepsilon}$ is studied by the operator-theoretic approach based on the scaling transformation, the Floquet-Bloch theory, and the analytic perturbation theory.
Scaling transformation. Let $\mathcal{L}=\mathcal{L}(\eta, \mu)$ be the operator

$$
\mathcal{L}=\mu^{-1 / 2} \operatorname{curl} \eta^{-1} \operatorname{curl} \mu^{-1 / 2}-\mu^{1 / 2} \nabla \operatorname{div} \mu^{1 / 2}
$$

Let T_{ε} be the unitary scaling operator in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$:

$$
\left(T_{\varepsilon} \mathbf{f}\right)(\mathbf{x})=\varepsilon^{3 / 2} \mathbf{f}(\varepsilon \mathbf{x})
$$

Then we have

$$
\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}=\varepsilon^{2} T_{\varepsilon}^{*}\left(\mathcal{L}+\varepsilon^{2} I\right)^{-1} T_{\varepsilon}
$$

Method: the scaling transformation

The operator $\mathcal{L}_{\varepsilon}$ is studied by the operator-theoretic approach based on the scaling transformation, the Floquet-Bloch theory, and the analytic perturbation theory.
Scaling transformation. Let $\mathcal{L}=\mathcal{L}(\eta, \mu)$ be the operator

$$
\mathcal{L}=\mu^{-1 / 2} \operatorname{curl} \eta^{-1} \operatorname{curl} \mu^{-1 / 2}-\mu^{1 / 2} \nabla \operatorname{div} \mu^{1 / 2}
$$

Let T_{ε} be the unitary scaling operator in $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$:

$$
\left(T_{\varepsilon} \mathbf{f}\right)(\mathbf{x})=\varepsilon^{3 / 2} \mathbf{f}(\varepsilon \mathbf{x})
$$

Then we have

$$
\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}=\varepsilon^{2} T_{\varepsilon}^{*}\left(\mathcal{L}+\varepsilon^{2} I\right)^{-1} T_{\varepsilon}
$$

Thus, in order to approximate $\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}$ with error $O(\varepsilon)$, it suffices to approximate $\left(\mathcal{L}+\varepsilon^{2} /\right)^{-1}$ with error $O\left(\varepsilon^{-1}\right)$.

Method: factorization

Factorization. It is important that the operator \mathcal{L} admits a factorization of the form

$$
\mathcal{L}=\mathcal{X}^{*} \mathcal{X},
$$

where \mathcal{X} is the first order DO given by

$$
\mathcal{X} \mathbf{f}=\binom{-i \eta^{-1 / 2} \operatorname{curl}\left(\mu^{-1 / 2} \mathbf{f}\right)}{-i \operatorname{div}\left(\mu^{1 / 2} \mathbf{f}\right)} .
$$

Method: factorization

Factorization. It is important that the operator \mathcal{L} admits a factorization of the form

$$
\mathcal{L}=\mathcal{X}^{*} \mathcal{X}
$$

where \mathcal{X} is the first order DO given by

$$
\mathcal{X} \mathbf{f}=\binom{-i \eta^{-1 / 2} \operatorname{curl}\left(\mu^{-1 / 2} \mathbf{f}\right)}{-i \operatorname{div}\left(\mu^{1 / 2} \mathbf{f}\right)} .
$$

Remark. If $\mu=\mu_{0}$ is constant, then \mathcal{L} can be written as
$\mathcal{L}=b(\mathbf{D})^{*} g(\mathbf{x}) b(\mathbf{D}), \quad g(\mathbf{x})=\left(\begin{array}{c}\eta(\mathbf{x})^{-1} \\ 0 \\ 0\end{array}\right), \quad b(\mathbf{D})=\binom{-i \operatorname{curl} \mu_{0}^{-1 / 2}}{-i \operatorname{div} \mu_{0}^{1 / 2}}$.

Method: factorization

Factorization. It is important that the operator \mathcal{L} admits a factorization of the form

$$
\mathcal{L}=\mathcal{X}^{*} \mathcal{X}
$$

where \mathcal{X} is the first order DO given by

$$
\mathcal{X} \mathbf{f}=\binom{-i \eta^{-1 / 2} \operatorname{curl}\left(\mu^{-1 / 2} \mathbf{f}\right)}{-i \operatorname{div}\left(\mu^{1 / 2} \mathbf{f}\right)} .
$$

Remark. If $\mu=\mu_{0}$ is constant, then \mathcal{L} can be written as
$\mathcal{L}=b(\mathbf{D})^{*} g(\mathbf{x}) b(\mathbf{D}), \quad g(\mathbf{x})=\left(\begin{array}{c}\eta(\mathbf{x})^{-1} \\ 0 \\ 0\end{array}\right), \quad b(\mathbf{D})=\binom{-i \operatorname{curl} \mu_{0}^{-1 / 2}}{-i \operatorname{div} \mu_{0}^{1 / 2}}$.
The class of operators of the form $b(\mathbf{D})^{*} g(\mathbf{x}) b(\mathbf{D})$ has been studied by Birman and Suslina. So, if μ is constant, one can apply general results.

Method: the direct integral expansion

Direct integral. By the Floquet-Bloch theory, the operator \mathcal{L} admits the direct integral expansion

$$
\mathcal{L} \sim \int_{\tilde{\Omega}} \oplus \mathcal{L}(\mathbf{k}) d \mathbf{k} .
$$

Method: the direct integral expansion

Direct integral. By the Floquet-Bloch theory, the operator \mathcal{L} admits the direct integral expansion

$$
\mathcal{L} \sim \int_{\tilde{\Omega}} \oplus \mathcal{L}(\mathbf{k}) d \mathbf{k} .
$$

The parameter $\mathbf{k} \in \widetilde{\Omega} \subset \mathbb{R}^{3}$ is called a quasimomentum.

Method: the direct integral expansion

Direct integral. By the Floquet-Bloch theory, the operator \mathcal{L} admits the direct integral expansion

$$
\mathcal{L} \sim \int_{\tilde{\Omega}} \oplus \mathcal{L}(\mathbf{k}) d \mathbf{k} .
$$

The parameter $\mathbf{k} \in \widetilde{\Omega} \subset \mathbb{R}^{3}$ is called a quasimomentum. The operator $\mathcal{L}(\mathbf{k})=\mathcal{L}(\mathbf{k} ; \eta, \mu)$ acts in $L_{2}\left(\Omega ; \mathbb{C}^{3}\right)$ and is given by the differential expression

$$
\mathcal{L}(\mathbf{k})=\mu^{-1 / 2} \operatorname{curl}_{\mathbf{k}} \eta^{-1} \operatorname{curl}_{\mathbf{k}} \mu^{-1 / 2}-\mu^{1 / 2} \nabla_{\mathbf{k}} \operatorname{div}_{\mathbf{k}} \mu^{1 / 2}
$$

with periodic boundary conditions.

Method: the direct integral expansion

Direct integral. By the Floquet-Bloch theory, the operator \mathcal{L} admits the direct integral expansion

$$
\mathcal{L} \sim \int_{\tilde{\Omega}} \oplus \mathcal{L}(\mathbf{k}) d \mathbf{k}
$$

The parameter $\mathbf{k} \in \widetilde{\Omega} \subset \mathbb{R}^{3}$ is called a quasimomentum. The operator $\mathcal{L}(\mathbf{k})=\mathcal{L}(\mathbf{k} ; \eta, \mu)$ acts in $L_{2}\left(\Omega ; \mathbb{C}^{3}\right)$ and is given by the differential expression

$$
\mathcal{L}(\mathbf{k})=\mu^{-1 / 2} \operatorname{curl}_{\mathbf{k}} \eta^{-1} \operatorname{curl}_{\mathbf{k}} \mu^{-1 / 2}-\mu^{1 / 2} \nabla_{\mathbf{k}} \operatorname{div}_{\mathbf{k}} \mu^{1 / 2}
$$

with periodic boundary conditions. Here

$$
\nabla_{\mathbf{k}} \varphi:=\nabla \varphi+i \mathbf{k} \varphi, \quad \operatorname{div}_{\mathbf{k}} \mathbf{f}:=\operatorname{div} \mathbf{f}+i \mathbf{k} \cdot \mathbf{f}, \quad \operatorname{curl}_{\mathbf{k}} \mathbf{f}:=\operatorname{curl} \mathbf{f}+i \mathbf{k} \times \mathbf{f} .
$$

Method: the direct integral expansion

Direct integral. By the Floquet-Bloch theory, the operator \mathcal{L} admits the direct integral expansion

$$
\mathcal{L} \sim \int_{\tilde{\Omega}} \oplus \mathcal{L}(\mathbf{k}) d \mathbf{k}
$$

The parameter $\mathbf{k} \in \widetilde{\Omega} \subset \mathbb{R}^{3}$ is called a quasimomentum. The operator $\mathcal{L}(\mathbf{k})=\mathcal{L}(\mathbf{k} ; \eta, \mu)$ acts in $L_{2}\left(\Omega ; \mathbb{C}^{3}\right)$ and is given by the differential expression

$$
\mathcal{L}(\mathbf{k})=\mu^{-1 / 2} \operatorname{curl}_{\mathbf{k}} \eta^{-1} \operatorname{curl}_{\mathbf{k}} \mu^{-1 / 2}-\mu^{1 / 2} \nabla_{\mathbf{k}} \operatorname{div}_{\mathbf{k}} \mu^{1 / 2}
$$

with periodic boundary conditions. Here

$$
\nabla_{\mathbf{k}} \varphi:=\nabla \varphi+i \mathbf{k} \varphi, \quad \operatorname{div}_{\mathbf{k}} \mathbf{f}:=\operatorname{div} \mathbf{f}+i \mathbf{k} \cdot \mathbf{f}, \quad \operatorname{curl}_{\mathbf{k}} \mathbf{f}:=\operatorname{curl} \mathbf{f}+i \mathbf{k} \times \mathbf{f} .
$$

The precise definition of $\mathcal{L}(\mathbf{k})$ is given in terms of the corresponding quadratic form.

Method: analytic perturbation theory

To study the operator family $\mathcal{L}(\mathbf{k})$, we apply abstract operator-theoretic approach suggested by Birman and Suslina.

Method: analytic perturbation theory

To study the operator family $\mathcal{L}(\mathbf{k})$, we apply abstract operator-theoretic approach suggested by Birman and Suslina. We put

$$
\mathbf{k}=t \boldsymbol{\theta}, \quad t=|\mathbf{k}|, \quad \boldsymbol{\theta}=\mathbf{k} /|\mathbf{k}| \in \mathbb{S}^{2}
$$

and denote

$$
\mathcal{L}(\mathbf{k})=: L(t, \boldsymbol{\theta}) .
$$

Method: analytic perturbation theory

To study the operator family $\mathcal{L}(\mathbf{k})$, we apply abstract operator-theoretic approach suggested by Birman and Suslina. We put

$$
\mathbf{k}=t \boldsymbol{\theta}, \quad t=|\mathbf{k}|, \quad \boldsymbol{\theta}=\mathbf{k} /|\mathbf{k}| \in \mathbb{S}^{2}
$$

and denote

$$
\mathcal{L}(\mathbf{k})=: L(t, \boldsymbol{\theta}) .
$$

We study the operator family $L(t, \boldsymbol{\theta})$ by means of the analytic perturbation theory with respect to the one-dimensional parameter t. The unperturbed operator is $\mathcal{L}(0)$, and the perturbed operator is $\mathcal{L}(\mathbf{k})=L(t, \boldsymbol{\theta})$ (with small $t=|\mathbf{k}|)$.

Method: analytic perturbation theory

To study the operator family $\mathcal{L}(\mathbf{k})$, we apply abstract operator-theoretic approach suggested by Birman and Suslina. We put

$$
\mathbf{k}=t \boldsymbol{\theta}, \quad t=|\mathbf{k}|, \quad \boldsymbol{\theta}=\mathbf{k} /|\mathbf{k}| \in \mathbb{S}^{2}
$$

and denote

$$
\mathcal{L}(\mathbf{k})=: L(t, \boldsymbol{\theta}) .
$$

We study the operator family $L(t, \boldsymbol{\theta})$ by means of the analytic perturbation theory with respect to the one-dimensional parameter t. The unperturbed operator is $\mathcal{L}(0)$, and the perturbed operator is $\mathcal{L}(\mathbf{k})=L(t, \boldsymbol{\theta})$ (with small $t=|\mathbf{k}|)$.
The operator $L(t, \boldsymbol{\theta})$ admits a factorization of the form

$$
L(t, \boldsymbol{\theta})=X(t, \boldsymbol{\theta})^{*} X(t, \boldsymbol{\theta}), \quad X(t, \boldsymbol{\theta})=X_{0}+t X_{1}(\boldsymbol{\theta}) .
$$

Method: analytic perturbation theory

The operator $L(t, \theta)$ admits a factorization of the form

$$
L(t, \boldsymbol{\theta})=X(t, \boldsymbol{\theta})^{*} X(t, \boldsymbol{\theta})
$$

where $X(t, \boldsymbol{\theta})$ is a linear operator pencil:

$$
X(t, \boldsymbol{\theta})=X_{0}+t X_{1}(\boldsymbol{\theta})
$$

Here X_{0} is given by

$$
X_{0} \mathbf{f}=\binom{-i \eta^{-1 / 2} \operatorname{curl}\left(\mu^{-1 / 2} \mathbf{f}\right)}{-i \operatorname{div}\left(\mu^{1 / 2} \mathbf{f}\right)}
$$

with periodic boundary conditions; $X_{1}(\theta)$ is a bounded operator given by

$$
X_{1}(\boldsymbol{\theta}) \mathbf{f}=\binom{\eta^{-1 / 2} \boldsymbol{\theta} \times\left(\mu^{-1 / 2} \mathbf{f}\right)}{\boldsymbol{\theta} \cdot\left(\mu^{1 / 2} \mathbf{f}\right)}
$$

Method: analytic perturbation theory

Consider the kernel of the operator $\mathcal{L}(0)$:

$$
\mathfrak{N}=\operatorname{Ker} \mathcal{L}(0)=\operatorname{Ker} X_{0}
$$

It is given by

$$
\mathfrak{N}=\left\{\mathbf{f}(\mathbf{x})=\mu(\mathbf{x})^{1 / 2}\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}(\mathbf{x})\right): \mathbf{C} \in \mathbb{C}^{3}\right\}
$$

where $\Psi_{C}(\mathbf{x})$ is periodic solution of the equation

$$
\operatorname{div} \mu(\mathbf{x})\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}(\mathbf{x})\right)=0
$$

We have $\operatorname{dim} \mathfrak{N}=3$.

Method: analytic perturbation theory

Consider the kernel of the operator $\mathcal{L}(0)$:

$$
\mathfrak{N}=\operatorname{Ker} \mathcal{L}(0)=\operatorname{Ker} X_{0}
$$

It is given by

$$
\mathfrak{N}=\left\{\mathbf{f}(\mathbf{x})=\mu(\mathbf{x})^{1 / 2}\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}(\mathbf{x})\right): \mathbf{C} \in \mathbb{C}^{3}\right\}
$$

where $\Psi_{C}(\mathbf{x})$ is periodic solution of the equation

$$
\operatorname{div} \mu(\mathbf{x})\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}(\mathbf{x})\right)=0
$$

We have $\operatorname{dim} \mathfrak{N}=3$. This means that the point $\lambda=0$ is an isolated eigenvalue of multiplicity three of the unperturbed operator $\mathcal{L}(0)$.

Method: analytic perturbation theory

Consider the kernel of the operator $\mathcal{L}(0)$:

$$
\mathfrak{N}=\operatorname{Ker} \mathcal{L}(0)=\operatorname{Ker} X_{0}
$$

It is given by

$$
\mathfrak{N}=\left\{\mathbf{f}(\mathbf{x})=\mu(\mathbf{x})^{1 / 2}\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}(\mathbf{x})\right): \mathbf{C} \in \mathbb{C}^{3}\right\}
$$

where $\Psi_{C}(\mathbf{x})$ is periodic solution of the equation

$$
\operatorname{div} \mu(\mathbf{x})\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}(\mathbf{x})\right)=0
$$

We have $\operatorname{dim} \mathfrak{N}=3$. This means that the point $\lambda=0$ is an isolated eigenvalue of multiplicity three of the unperturbed operator $\mathcal{L}(0)$. Hence, for $t \leqslant t^{0}$ the perturbed operator $\mathcal{L}(\mathbf{k})=L(t, \boldsymbol{\theta})$ has exactly three eigenvalues on $[0, \delta]$, and the interval $(\delta, 3 \delta)$ is free of the spectrum. (We control the numbers δ and t^{0} explicitly.)

Method: analytic perturbation theory

Consider the kernel of the operator $\mathcal{L}(0)$:

$$
\mathfrak{N}=\operatorname{Ker} \mathcal{L}(0)=\operatorname{Ker} X_{0}
$$

It is given by

$$
\mathfrak{N}=\left\{\mathbf{f}(\mathbf{x})=\mu(\mathbf{x})^{1 / 2}\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}(\mathbf{x})\right): \mathbf{C} \in \mathbb{C}^{3}\right\}
$$

where $\Psi_{C}(\mathbf{x})$ is periodic solution of the equation

$$
\operatorname{div} \mu(\mathbf{x})\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}(\mathbf{x})\right)=0
$$

We have $\operatorname{dim} \mathfrak{N}=3$. This means that the point $\lambda=0$ is an isolated eigenvalue of multiplicity three of the unperturbed operator $\mathcal{L}(0)$. Hence, for $t \leqslant t^{0}$ the perturbed operator $\mathcal{L}(\mathbf{k})=L(t, \boldsymbol{\theta})$ has exactly three eigenvalues on $[0, \delta]$, and the interval $(\delta, 3 \delta)$ is free of the spectrum. (We control the numbers δ and t^{0} explicitly.) Only these eigenvalues and the corresponding eigenfunctions are important for our problem.

Method: analytic perturbation theory

By the Kato-Rellich theorem, for $t \leqslant t^{0}$ there exist real-analytic branches of the eigenvalues $\lambda_{l}(t, \boldsymbol{\theta})$ and real-analytic branches of the eigenvectors $\varphi_{I}(t, \boldsymbol{\theta})$ of the operator $L(t, \boldsymbol{\theta})$:

$$
L(t, \boldsymbol{\theta}) \varphi_{l}(t, \boldsymbol{\theta})=\lambda_{l}(t, \boldsymbol{\theta}) \varphi_{l}(t, \boldsymbol{\theta}), \quad I=1,2,3 .
$$

Method: analytic perturbation theory

By the Kato-Rellich theorem, for $t \leqslant t^{0}$ there exist real-analytic branches of the eigenvalues $\lambda_{l}(t, \boldsymbol{\theta})$ and real-analytic branches of the eigenvectors $\varphi_{I}(t, \boldsymbol{\theta})$ of the operator $L(t, \boldsymbol{\theta})$:

$$
L(t, \boldsymbol{\theta}) \varphi_{l}(t, \boldsymbol{\theta})=\lambda_{l}(t, \boldsymbol{\theta}) \varphi_{l}(t, \boldsymbol{\theta}), \quad I=1,2,3 .
$$

The vectors $\varphi_{I}(t, \boldsymbol{\theta}), I=1,2,3$, form an orthonormal basis in the eigenspace of $L(t, \boldsymbol{\theta})$ corresponding to the interval $[0, \delta]$.

Method: analytic perturbation theory

By the Kato-Rellich theorem, for $t \leqslant t^{0}$ there exist real-analytic branches of the eigenvalues $\lambda_{l}(t, \boldsymbol{\theta})$ and real-analytic branches of the eigenvectors $\varphi_{I}(t, \boldsymbol{\theta})$ of the operator $L(t, \boldsymbol{\theta})$:

$$
L(t, \boldsymbol{\theta}) \varphi_{l}(t, \boldsymbol{\theta})=\lambda_{l}(t, \boldsymbol{\theta}) \varphi_{l}(t, \boldsymbol{\theta}), \quad I=1,2,3 .
$$

The vectors $\varphi_{I}(t, \boldsymbol{\theta}), I=1,2,3$, form an orthonormal basis in the eigenspace of $L(t, \boldsymbol{\theta})$ corresponding to the interval $[0, \delta]$. For small $t \leqslant t_{*}(\boldsymbol{\theta})$ we have the following convergent power series expansions:

$$
\begin{aligned}
\lambda_{l}(t, \boldsymbol{\theta})=\gamma_{l}(\boldsymbol{\theta}) t^{2}+\mu_{l}(\boldsymbol{\theta}) t^{3}+\ldots, & I=1,2,3 \\
\varphi_{I}(t, \boldsymbol{\theta})=\omega_{l}(\boldsymbol{\theta})+t \psi_{l}(\boldsymbol{\theta})+\ldots, & I=1,2,3 .
\end{aligned}
$$

Method: analytic perturbation theory

By the Kato-Rellich theorem, for $t \leqslant t^{0}$ there exist real-analytic branches of the eigenvalues $\lambda_{l}(t, \boldsymbol{\theta})$ and real-analytic branches of the eigenvectors $\varphi_{I}(t, \boldsymbol{\theta})$ of the operator $L(t, \boldsymbol{\theta})$:

$$
L(t, \boldsymbol{\theta}) \varphi_{l}(t, \boldsymbol{\theta})=\lambda_{l}(t, \boldsymbol{\theta}) \varphi_{l}(t, \boldsymbol{\theta}), \quad I=1,2,3 .
$$

The vectors $\varphi_{I}(t, \boldsymbol{\theta}), I=1,2,3$, form an orthonormal basis in the eigenspace of $L(t, \boldsymbol{\theta})$ corresponding to the interval $[0, \delta]$. For small $t \leqslant t_{*}(\boldsymbol{\theta})$ we have the following convergent power series expansions:

$$
\begin{aligned}
\lambda_{l}(t, \boldsymbol{\theta})=\gamma_{l}(\boldsymbol{\theta}) t^{2}+\mu_{l}(\boldsymbol{\theta}) t^{3}+\ldots, & I=1,2,3, \\
\varphi_{l}(t, \boldsymbol{\theta})=\omega_{l}(\boldsymbol{\theta})+t \psi_{l}(\boldsymbol{\theta})+\ldots, & I=1,2,3 .
\end{aligned}
$$

We have $\gamma_{l}(\boldsymbol{\theta}) \geqslant c_{*}>0$. The vectors $\omega_{l}(\boldsymbol{\theta}), I=1,2,3$, form an orthonormal basis in \mathfrak{N}.

Method: analytic perturbation theory

By the Kato-Rellich theorem, for $t \leqslant t^{0}$ there exist real-analytic branches of the eigenvalues $\lambda_{l}(t, \boldsymbol{\theta})$ and real-analytic branches of the eigenvectors $\varphi_{I}(t, \boldsymbol{\theta})$ of the operator $L(t, \boldsymbol{\theta})$:

$$
L(t, \boldsymbol{\theta}) \varphi_{l}(t, \boldsymbol{\theta})=\lambda_{l}(t, \boldsymbol{\theta}) \varphi_{l}(t, \boldsymbol{\theta}), \quad I=1,2,3 .
$$

The vectors $\varphi_{I}(t, \boldsymbol{\theta}), I=1,2,3$, form an orthonormal basis in the eigenspace of $L(t, \boldsymbol{\theta})$ corresponding to the interval $[0, \delta]$. For small $t \leqslant t_{*}(\boldsymbol{\theta})$ we have the following convergent power series expansions:

$$
\begin{aligned}
\lambda_{l}(t, \boldsymbol{\theta})=\gamma_{l}(\boldsymbol{\theta}) t^{2}+\mu_{l}(\boldsymbol{\theta}) t^{3}+\ldots, & I=1,2,3 \\
\varphi_{l}(t, \boldsymbol{\theta})=\omega_{l}(\boldsymbol{\theta})+t \psi_{l}(\boldsymbol{\theta})+\ldots, & I=1,2,3 .
\end{aligned}
$$

We have $\gamma_{l}(\boldsymbol{\theta}) \geqslant c_{*}>0$. The vectors $\omega_{l}(\boldsymbol{\theta}), I=1,2,3$, form an orthonormal basis in \mathfrak{N}. The coefficients $\gamma_{l}(\boldsymbol{\theta})$ and the vectors $\omega_{l}(\boldsymbol{\theta})$, $I=1,2,3$, are called threshold characteristics of $L(t, \theta)$.

Method: analytic perturbation theory

The crucial notion of our method is the notion of the spectral germ of the operator family $L(t, \boldsymbol{\theta})$.

Method: analytic perturbation theory

The crucial notion of our method is the notion of the spectral germ of the operator family $L(t, \theta)$.

Definition of the spectral germ

The selfadjoint operator $S(\boldsymbol{\theta}): \mathfrak{N} \rightarrow \mathfrak{N}$ such that

$$
S(\boldsymbol{\theta}) \omega_{l}(\boldsymbol{\theta})=\gamma_{l}(\boldsymbol{\theta}) \omega_{l}(\boldsymbol{\theta}), \quad I=1,2,3,
$$

is called the spectral germ of the operator family $L(t, \boldsymbol{\theta})$ at $t=0$.

Method: analytic perturbation theory

The crucial notion of our method is the notion of the spectral germ of the operator family $L(t, \boldsymbol{\theta})$.

Definition of the spectral germ

The selfadjoint operator $S(\boldsymbol{\theta}): \mathfrak{N} \rightarrow \mathfrak{N}$ such that

$$
S(\boldsymbol{\theta}) \omega_{l}(\boldsymbol{\theta})=\gamma_{l}(\boldsymbol{\theta}) \omega_{l}(\boldsymbol{\theta}), \quad I=1,2,3,
$$

is called the spectral germ of the operator family $L(t, \boldsymbol{\theta})$ at $t=0$.
Thus, the germ contains information about the threshold characteristics.

Method: analytic perturbation theory

The crucial notion of our method is the notion of the spectral germ of the operator family $L(t, \boldsymbol{\theta})$.

Definition of the spectral germ

The selfadjoint operator $S(\boldsymbol{\theta}): \mathfrak{N} \rightarrow \mathfrak{N}$ such that

$$
S(\boldsymbol{\theta}) \omega_{l}(\boldsymbol{\theta})=\gamma_{l}(\boldsymbol{\theta}) \omega_{l}(\boldsymbol{\theta}), \quad I=1,2,3,
$$

is called the spectral germ of the operator family $L(t, \boldsymbol{\theta})$ at $t=0$.
Thus, the germ contains information about the threshold characteristics. It is possible to calculate the spectral germ.

Method: analytic perturbation theory

Let $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$ be the effective operator with constant effective coefficients. Let $\mathcal{L}^{0}(\mathbf{k})=L^{0}(t, \boldsymbol{\theta})$ be the corresponding operator family.

Method: analytic perturbation theory

Let $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$ be the effective operator with constant effective coefficients. Let $\mathcal{L}^{0}(\mathbf{k})=L^{0}(t, \boldsymbol{\theta})$ be the corresponding operator family. Let $\mathfrak{N}^{0}=\operatorname{Ker} \mathcal{L}^{0}(0)$. Then

$$
\mathfrak{N}^{0}=\left\{\mathbf{f}^{0}=\left(\mu^{0}\right)^{1 / 2} \mathbf{C}: \mathbf{C} \in \mathbb{C}^{3}\right\}
$$

consists of constant vectors.

Method: analytic perturbation theory

Let $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$ be the effective operator with constant effective coefficients. Let $\mathcal{L}^{0}(\mathbf{k})=L^{0}(t, \boldsymbol{\theta})$ be the corresponding operator family. Let $\mathfrak{N}^{0}=\operatorname{Ker} \mathcal{L}^{0}(0)$. Then

$$
\mathfrak{N}^{0}=\left\{\mathbf{f}^{0}=\left(\mu^{0}\right)^{1 / 2} \mathbf{C}: \mathbf{C} \in \mathbb{C}^{3}\right\}
$$

consists of constant vectors. Let $S^{0}(\boldsymbol{\theta}): \mathfrak{N}^{0} \rightarrow \mathfrak{N}^{0}$ be the spectral germ of the operator family $L^{0}(t, \boldsymbol{\theta})$.

Method: analytic perturbation theory

Let $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$ be the effective operator with constant effective coefficients. Let $\mathcal{L}^{0}(\mathbf{k})=L^{0}(t, \theta)$ be the corresponding operator family. Let $\mathfrak{N}^{0}=\operatorname{Ker} \mathcal{L}^{0}(0)$. Then

$$
\mathfrak{N}^{0}=\left\{\mathbf{f}^{0}=\left(\mu^{0}\right)^{1 / 2} \mathbf{C}: \mathbf{C} \in \mathbb{C}^{3}\right\}
$$

consists of constant vectors. Let $S^{0}(\boldsymbol{\theta}): \mathfrak{N}^{0} \rightarrow \mathfrak{N}^{0}$ be the spectral germ of the operator family $L^{0}(t, \boldsymbol{\theta})$. Then the germ $S^{0}(\boldsymbol{\theta})$ acts as multiplication by the matrix

$$
S^{0}(\boldsymbol{\theta})=\left(\mu^{0}\right)^{-1 / 2} r(\boldsymbol{\theta})^{*}\left(\eta^{0}\right)^{-1} r(\boldsymbol{\theta})\left(\mu^{0}\right)^{-1 / 2}+\left(\mu^{0}\right)^{1 / 2} \boldsymbol{\theta} \boldsymbol{\theta}^{*}\left(\mu^{0}\right)^{1 / 2}
$$

where

$$
r(\boldsymbol{\theta})=\left(\begin{array}{ccc}
0 & -\theta_{3} & \theta_{2} \\
\theta_{3} & 0 & -\theta_{1} \\
-\theta_{2} & \theta_{1} & 0
\end{array}\right)
$$

Method: analytic perturbation theory

Let $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$ be the effective operator with constant effective coefficients. Let $\mathcal{L}^{0}(\mathbf{k})=L^{0}(t, \theta)$ be the corresponding operator family. Let $\mathfrak{N}^{0}=\operatorname{Ker} \mathcal{L}^{0}(0)$. Then

$$
\mathfrak{N}^{0}=\left\{\mathbf{f}^{0}=\left(\mu^{0}\right)^{1 / 2} \mathbf{C}: \mathbf{C} \in \mathbb{C}^{3}\right\}
$$

consists of constant vectors. Let $S^{0}(\boldsymbol{\theta}): \mathfrak{N}^{0} \rightarrow \mathfrak{N}^{0}$ be the spectral germ of the operator family $L^{0}(t, \boldsymbol{\theta})$. Then the germ $S^{0}(\boldsymbol{\theta})$ acts as multiplication by the matrix

$$
S^{0}(\boldsymbol{\theta})=\left(\mu^{0}\right)^{-1 / 2} r(\boldsymbol{\theta})^{*}\left(\eta^{0}\right)^{-1} r(\boldsymbol{\theta})\left(\mu^{0}\right)^{-1 / 2}+\left(\mu^{0}\right)^{1 / 2} \boldsymbol{\theta} \boldsymbol{\theta}^{*}\left(\mu^{0}\right)^{1 / 2}
$$

where

$$
r(\boldsymbol{\theta})=\left(\begin{array}{ccc}
0 & -\theta_{3} & \theta_{2} \\
\theta_{3} & 0 & -\theta_{1} \\
-\theta_{2} & \theta_{1} & 0
\end{array}\right)
$$

The matrix $S^{0}(\boldsymbol{\theta})$ is the symbol of the effective operator.

Method: analytic perturbation theory

Let $\mathcal{U}: \mathfrak{N} \rightarrow \mathfrak{N}^{0}$ be the unitary operator, which takes $\mathbf{f}=\mu^{1 / 2}\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}\right)$ to $\mathbf{f}^{0}=\left(\mu^{0}\right)^{1 / 2} \mathbf{C}, \mathbf{C} \in \mathbb{C}^{3}$.

Method: analytic perturbation theory

Let $\mathcal{U}: \mathfrak{N} \rightarrow \mathfrak{N}^{0}$ be the unitary operator, which takes $\mathbf{f}=\mu^{1 / 2}\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}\right)$ to $\mathbf{f}^{0}=\left(\mu^{0}\right)^{1 / 2} \mathbf{C}, \mathbf{C} \in \mathbb{C}^{3}$. Then the germ $S(\boldsymbol{\theta})$ admits the following representation:

$$
S(\theta)=\mathcal{U}^{*} S^{0}(\theta) \mathcal{U}
$$

Method: analytic perturbation theory

Let $\mathcal{U}: \mathfrak{N} \rightarrow \mathfrak{N}^{0}$ be the unitary operator, which takes $\mathbf{f}=\mu^{1 / 2}\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}\right)$ to $\mathbf{f}^{0}=\left(\mu^{0}\right)^{1 / 2} \mathbf{C}, \mathbf{C} \in \mathbb{C}^{3}$. Then the germ $S(\boldsymbol{\theta})$ admits the following representation:

$$
S(\theta)=\mathcal{U}^{*} S^{0}(\theta) \mathcal{U}
$$

Remark. If $\mu=\mu_{0}$ is constant, then $S(\boldsymbol{\theta})=S^{0}(\boldsymbol{\theta})$.

Method: analytic perturbation theory

Let $\mathcal{U}: \mathfrak{N} \rightarrow \mathfrak{N}^{0}$ be the unitary operator, which takes $\mathbf{f}=\mu^{1 / 2}\left(\mathbf{C}+\nabla \Psi_{\mathbf{C}}\right)$ to $\mathbf{f}^{0}=\left(\mu^{0}\right)^{1 / 2} \mathbf{C}, \mathbf{C} \in \mathbb{C}^{3}$. Then the germ $S(\boldsymbol{\theta})$ admits the following representation:

$$
S(\theta)=\mathcal{U}^{*} S^{0}(\theta) \mathcal{U}
$$

Remark. If $\mu=\mu_{0}$ is constant, then $S(\boldsymbol{\theta})=S^{0}(\boldsymbol{\theta})$.
Applying abstract results by Birman and Suslina, it is possible to approximate the resolvent of $L(t, \boldsymbol{\theta})$ by the resolvent of the germ.

Theorem 3 [T. Suslina]

Let P be the orthogonal projection of $L_{2}\left(\Omega ; \mathbb{C}^{3}\right)$ onto \mathfrak{N}. Let $S(\boldsymbol{\theta}): \mathfrak{N} \rightarrow \mathfrak{N}$ be the spectral germ of $L(t, \boldsymbol{\theta})$. Then

$$
\begin{array}{r}
\left\|\left(L(t, \boldsymbol{\theta})+\varepsilon^{2} I\right)^{-1}-\left(t^{2} S(\boldsymbol{\theta})+\varepsilon^{2} l_{\mathfrak{N}}\right)^{-1} P\right\|_{L_{2}(\Omega) \rightarrow L_{2}(\Omega)} \leqslant C \varepsilon^{-1} \\
0<\varepsilon \leqslant 1, \quad t \leqslant t^{0}
\end{array}
$$

Method: approximation of the resolvent

Using Theorem 3 and representation $S(\boldsymbol{\theta})=\mathcal{U}^{*} S^{0}(\boldsymbol{\theta}) \mathcal{U}$ for the germ, we arrive at the following result.

Theorem 4 [T. Suslina]

Let $W(\mathbf{x})$ be the (3×3)-matrix with the columns $\mu(\mathbf{x})^{1 / 2}\left(\mathbf{C}_{j}+\nabla \Psi_{\mathbf{C}_{j}}(\mathbf{x})\right)$, $j=1,2,3$, where $\mathbf{C}_{j}=\left(\mu^{0}\right)^{-1 / 2} \mathbf{e}_{j}$. Then for $0<\varepsilon \leqslant 1$ and $\mathbf{k} \in \widetilde{\Omega}$ we have

$$
\left\|\left(\mathcal{L}(\mathbf{k})+\varepsilon^{2} I\right)^{-1}-W^{*}\left(\mathcal{L}^{0}(\mathbf{k})+\varepsilon^{2} I\right)^{-1} W\right\|_{L_{2}(\Omega) \rightarrow L_{2}(\Omega)} \leqslant C \varepsilon^{-1} .
$$

Method: approximation of the resolvent

Using the direct integral expansion, we obtain
Theorem 5 [T. Suslina]
For $0<\varepsilon \leqslant 1$ we have

$$
\left\|\left(\mathcal{L}+\varepsilon^{2} I\right)^{-1}-W^{*}\left(\mathcal{L}^{0}+\varepsilon^{2} I\right)^{-1} W\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon^{-1} .
$$

Method: approximation of the resolvent

Using the direct integral expansion, we obtain

Theorem 5 [T. Suslina]

For $0<\varepsilon \leqslant 1$ we have

$$
\left\|\left(\mathcal{L}+\varepsilon^{2} I\right)^{-1}-W^{*}\left(\mathcal{L}^{0}+\varepsilon^{2} I\right)^{-1} W\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon^{-1} .
$$

Finally, by the scaling transformation, we arrive at the following result.

Theorem 6 [T. Suslina]

Let $\mathcal{L}_{\varepsilon}=\mathcal{L}\left(\eta^{\varepsilon}, \mu^{\varepsilon}\right)$ and $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$. For $0<\varepsilon \leqslant 1$ we have

$$
\left\|\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}-\left(W^{\varepsilon}\right)^{*}\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon}\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon .
$$

Method: approximation of the resolvent

It is possible to separate the "divergence-free parts" of the operators on each step of investigation.

Method: approximation of the resolvent

It is possible to separate the "divergence-free parts" of the operators on each step of investigation.
The operator \mathcal{L} splits in the orthogonal Weyl decomposition

$$
L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)=G(\mu) \oplus J(\mu)
$$

where

$$
\begin{aligned}
G(\mu) & =\left\{\mathbf{g}=\mu^{1 / 2} \nabla \varphi: \varphi \in H_{\mathrm{loc}}^{1}, \nabla \varphi \in L_{2}\right\}, \\
J(\mu) & =\left\{\mathbf{f} \in L_{2}: \operatorname{div} \mu^{1 / 2} \mathbf{f}=0\right\} .
\end{aligned}
$$

Method: approximation of the resolvent

It is possible to separate the "divergence-free parts" of the operators on each step of investigation.
The operator \mathcal{L} splits in the orthogonal Weyl decomposition

$$
L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)=G(\mu) \oplus J(\mu)
$$

where

$$
\begin{aligned}
G(\mu) & =\left\{\mathbf{g}=\mu^{1 / 2} \nabla \varphi: \varphi \in H_{\mathrm{loc}}^{1}, \nabla \varphi \in L_{2}\right\}, \\
J(\mu) & =\left\{\mathbf{f} \in L_{2}: \operatorname{div} \mu^{1 / 2} \mathbf{f}=0\right\} .
\end{aligned}
$$

The operator $\mathcal{L}(\mathbf{k})$ splits in the orthogonal Weyl decomposition

$$
L_{2}\left(\Omega ; \mathbb{C}^{3}\right)=G(\mu ; \mathbf{k}) \oplus J(\mu ; \mathbf{k})
$$

where

$$
\begin{aligned}
G(\mu ; \mathbf{k}) & =\left\{\mathbf{g}=\mu^{1 / 2} \nabla_{\mathbf{k}} \varphi: \varphi \in H_{\mathrm{per}}^{1}(\Omega)\right\}, \\
J(\mu ; \mathbf{k}) & =\left\{\mathbf{f} \in L_{2}\left(\Omega ; \mathbb{C}^{n}\right): \operatorname{div}_{\mathbf{k}}\left(\mu^{1 / 2} \mathbf{f}\right)=0\right\} .
\end{aligned}
$$

Method: approximation of the resolvent

Moreover, the germ $S(\boldsymbol{\theta})$ splits in the orthogonal decomposition

$$
\mathfrak{N}=G_{\boldsymbol{\theta}} \oplus J_{\boldsymbol{\theta}},
$$

where

$$
\begin{aligned}
G_{\boldsymbol{\theta}} & \left.=\left\{c \mathbf{f}_{\boldsymbol{\theta}}: \mathbf{f}_{\boldsymbol{\theta}}=\mu^{1 / 2}\left(\boldsymbol{\theta}+\nabla \Psi_{\boldsymbol{\theta}}\right), \quad c \in \mathbb{C}\right)\right\}, \quad \operatorname{dim} \boldsymbol{G}_{\boldsymbol{\theta}}=1, \\
J_{\boldsymbol{\theta}} & =\left\{\mathbf{f}_{\perp}=\mu^{1 / 2}\left(\mathbf{C}_{\perp}+\nabla \Psi_{\mathbf{C}_{\perp}}\right): \mu^{0} \mathbf{C}_{\perp} \perp \boldsymbol{\theta}\right\}, \quad \operatorname{dim} J_{\boldsymbol{\theta}}=2
\end{aligned}
$$

Method: approximation of the resolvent

Moreover, the germ $S(\boldsymbol{\theta})$ splits in the orthogonal decomposition

$$
\mathfrak{N}=G_{\boldsymbol{\theta}} \oplus J_{\boldsymbol{\theta}},
$$

where

$$
\begin{aligned}
G_{\boldsymbol{\theta}} & \left.=\left\{c \mathbf{f}_{\boldsymbol{\theta}}: \mathbf{f}_{\boldsymbol{\theta}}=\mu^{1 / 2}\left(\boldsymbol{\theta}+\nabla \Psi_{\boldsymbol{\theta}}\right), \quad c \in \mathbb{C}\right)\right\}, \quad \operatorname{dim} \boldsymbol{G}_{\boldsymbol{\theta}}=1, \\
J_{\boldsymbol{\theta}} & =\left\{\mathbf{f}_{\perp}=\mu^{1 / 2}\left(\mathbf{C}_{\perp}+\nabla \Psi_{\mathbf{C}_{\perp}}\right): \mu^{0} \mathbf{C}_{\perp} \perp \boldsymbol{\theta}\right\}, \quad \operatorname{dim} J_{\boldsymbol{\theta}}=2
\end{aligned}
$$

It turns out that two branches $\varphi_{1}(t, \boldsymbol{\theta})$ and $\varphi_{2}(t, \boldsymbol{\theta})$ belong to $J(\mu ; \mathbf{k})$, and $\varphi_{3}(t, \boldsymbol{\theta})$ belongs to $G(\mu ; \mathbf{k})$. The corresponding "embrios" $\omega_{1}(\boldsymbol{\theta})$ and $\omega_{2}(\boldsymbol{\theta})$ belong to $J_{\boldsymbol{\theta}}$, and $\omega_{3}(\boldsymbol{\theta}) \in G_{\boldsymbol{\theta}}$.

Method: approximation of the resolvent

Moreover, the germ $S(\boldsymbol{\theta})$ splits in the orthogonal decomposition

$$
\mathfrak{N}=G_{\boldsymbol{\theta}} \oplus J_{\boldsymbol{\theta}},
$$

where

$$
\begin{aligned}
G_{\boldsymbol{\theta}} & \left.=\left\{c \mathbf{f}_{\boldsymbol{\theta}}: \mathbf{f}_{\boldsymbol{\theta}}=\mu^{1 / 2}\left(\boldsymbol{\theta}+\nabla \Psi_{\boldsymbol{\theta}}\right), \quad c \in \mathbb{C}\right)\right\}, \quad \operatorname{dim} G_{\boldsymbol{\theta}}=1, \\
J_{\boldsymbol{\theta}} & =\left\{\mathbf{f}_{\perp}=\mu^{1 / 2}\left(\mathbf{C}_{\perp}+\nabla \Psi_{\mathbf{C}_{\perp}}\right): \mu^{0} \mathbf{C}_{\perp} \perp \boldsymbol{\theta}\right\}, \quad \operatorname{dim} J_{\boldsymbol{\theta}}=2
\end{aligned}
$$

It turns out that two branches $\varphi_{1}(t, \boldsymbol{\theta})$ and $\varphi_{2}(t, \boldsymbol{\theta})$ belong to $J(\mu ; \mathbf{k})$, and $\varphi_{3}(t, \boldsymbol{\theta})$ belongs to $G(\mu ; \mathbf{k})$. The corresponding "embrios" $\omega_{1}(\boldsymbol{\theta})$ and $\omega_{2}(\boldsymbol{\theta})$ belong to $J_{\boldsymbol{\theta}}$, and $\omega_{3}(\boldsymbol{\theta}) \in G_{\boldsymbol{\theta}}$.
The part of the germ acting in J_{θ} corresponds to the "divergence free" part of the operator family $L(t, \theta)$.

Method: approximation of the resolvent

These considerations lead to the following result.

Theorem 7 [T. Suslina]

Let $\mathcal{L}_{\varepsilon}=\mathcal{L}\left(\eta^{\varepsilon}, \mu^{\varepsilon}\right)$ and $\mathcal{L}^{0}=\mathcal{L}\left(\eta^{0}, \mu^{0}\right)$. Let $\mathcal{P}\left(\mu^{\varepsilon}\right)$ be the orthogonal projection of $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ onto the subspace $J\left(\mu^{\varepsilon}\right)=\left\{\mathbf{f} \in L_{2}: \operatorname{div}\left(\mu^{\varepsilon}\right)^{1 / 2} \mathbf{f}=0\right\}$. Let $\mathcal{P}\left(\mu^{0}\right)$ be the orthogonal projection of $L_{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ onto the subspace $J\left(\mu^{0}\right)=\left\{\mathbf{f} \in L_{2}: \operatorname{div}\left(\mu^{0}\right)^{1 / 2} \mathbf{f}=0\right\}$. For $0<\varepsilon \leqslant 1$ we have

$$
\left\|\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}-\left(W^{\varepsilon}\right)^{*} \mathcal{P}\left(\mu^{0}\right)\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon}\right\|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon
$$

Method: approximation of the resolvent

Approximation for the resolvent of $\mathcal{L}_{\varepsilon}$ in the "energy norm":

Theorem 8 [T. Suslina]

For $0<\varepsilon \leqslant 1$ we have

$$
\begin{aligned}
\| \mathcal{L}_{\varepsilon}^{1 / 2}\left(\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}\right. & -\left(W^{\varepsilon}\right)^{*} \mathcal{P}\left(\mu^{0}\right)\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon} \\
& -\varepsilon K(\varepsilon)) \|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon .
\end{aligned}
$$

Here $K(\varepsilon)$ is a corrector of the form

$$
K(\varepsilon)=\sum_{l=1}^{3} \Lambda_{l}^{\varepsilon} D_{l} \mathcal{P}\left(\mu^{0}\right)\left(\mathcal{L}^{0}+I\right)^{-1} \Pi_{\varepsilon} W^{\varepsilon},
$$

and $\Lambda_{l}(\mathbf{x})$ are appropriate periodic matrix-valued functions.

Method: approximation of the resolvent

Approximation for the resolvent of $\mathcal{L}_{\varepsilon}$ in the "energy norm":

Theorem 8 [T. Suslina]

For $0<\varepsilon \leqslant 1$ we have

$$
\begin{aligned}
\| \mathcal{L}_{\varepsilon}^{1 / 2}\left(\mathcal{P}\left(\mu^{\varepsilon}\right)\left(\mathcal{L}_{\varepsilon}+I\right)^{-1}\right. & -\left(W^{\varepsilon}\right)^{*} \mathcal{P}\left(\mu^{0}\right)\left(\mathcal{L}^{0}+I\right)^{-1} W^{\varepsilon} \\
& -\varepsilon K(\varepsilon)) \|_{L_{2}\left(\mathbb{R}^{3}\right) \rightarrow L_{2}\left(\mathbb{R}^{3}\right)} \leqslant C \varepsilon .
\end{aligned}
$$

Here $K(\varepsilon)$ is a corrector of the form

$$
K(\varepsilon)=\sum_{l=1}^{3} \Lambda_{l}^{\varepsilon} D_{l} \mathcal{P}\left(\mu^{0}\right)\left(\mathcal{L}^{0}+I\right)^{-1} \Pi_{\varepsilon} W^{\varepsilon},
$$

and $\Lambda_{l}(\mathbf{x})$ are appropriate periodic matrix-valued functions.
The results for the Maxwell system are deduced from Theorems 7 and 8 .

References

- M. Sh. Birman and T. A. Suslina, Second order periodic differential operators. Threshold properties and homogenization, St. Petersburg Math. J. 15 (2004), no. 5, 1-108.
- M. Sh. Birman and T. A. Suslina, Homogenization of periodic differential operators with corrector. Approximation of solutions in the Sobolev space $H^{1}\left(\mathbb{R}^{d}\right)$, St. Petersburg Math. J. 18 (2007), no. 6, 455-494.
- M. Sh. Birman and T. A. Suslina, Homogenization of a stationary periodic Maxwell system in the case of constant magnetic permeability, Funct. Anal. Appl. 41 (2007), no. 2, 455-494.
- T. A. Suslina, Homogenization of a stationary periodic Maxwell system, St. Petersburg Math. J. 16 (2005), no. 5, 455-494.
- T. A. Suslina, Homogenization with corrector for a stationary periodic Maxwell system, St. Petersburg Math. J. 19 (2008), no. 3, 455-494.

