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High frequency scattering

∆u + k2u = 0, in exterior domain.

Difficult when k is large
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Difficulties at high frequencies

Solutions oscillate in space with wavelength λ = 2π/k .

Conventional boundary elements lead to full matrices of
dimension at least N = O(kd−1), as k →∞.

Domain finite elements lead to sparse matrices but require
even larger N.

Can improve BEM, e.g. using FMM, but cost still grows rapidly
as k increases.

EM scattering by ice crystal solved using BEM++, see www.bempp.org

& Groth et al. J. Quant. Spec. Rad. Trans. 2015.
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The “mid frequency” problem

(∆ + k2)u = 0

Hybrid Numerical-Asymptotic (HNA) approach

Fuse conventional BEM with high frequency asymptotics to
create algorithms that are controllably accurate and
computationally feasible over the whole frequency range.
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A typical scattering problem
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∆u + k2u = 0

u = 0
Γ

D

obstacle

Using Green’s representation theorem

u(x) = ui (x)−
∫

Γ
Φ(x, y)

∂u

∂n
(y) ds(y), x ∈ D,

we reformulate the scattering problem as a BIE for
∂u

∂n
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A typical scattering problem

... in operator notation,

A∂u
∂n

= f .

To solve numerically:

choose a finite-dimensional approximation space VN ⊂ V ;

select an approximation vN to ∂u/∂n from VN using the
Galerkin method: find vN ∈ VN such that

〈AvN ,wN〉 = 〈f ,wN〉 , ∀wN ∈ VN .
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Hybrid Numerical-Asymptotic BEM

A∂u
∂n

= f

Key idea: enrich the BEM approximation space with oscillatory
basis functions

∂u

∂n
(x , k) ≈ v0(x , k) +

J∑
j=1

vj(x , k) eikφj (x),

v0 is some known leading order asymptotic behaviour

φj , j = 1, . . . , J are specified phases, from asymptotics

vj , m = 1, . . . , J are unknown amplitudes, found numerically

Simon Chandler-Wilde High frequency scattering



Hybrid Numerical-Asymptotic BEM

A∂u
∂n

= f

Key idea: enrich the BEM approximation space with oscillatory
basis functions

∂u

∂n
(x , k) ≈ v0(x , k) +

J∑
j=1

vj(x , k) eikφj (x),

v0 is some known leading order asymptotic behaviour

φj , j = 1, . . . , J are specified phases, from asymptotics

vj , m = 1, . . . , J are unknown amplitudes, found numerically

Simon Chandler-Wilde High frequency scattering



Hybrid Numerical-Asymptotic BEM

∂u

∂n
(x , k) ≈ v0(x , k) +

J∑
j=1

vj(x , k) eikφj (x),

Expectation: If v0 and φj are chosen appropriately, vj ,
j = 1, . . . , J, will be slowly varying, and less expensive to
approximate than ∂u/∂n.

In many cases we can prove this by rigorous HF best
approximation estimates - this talk – & prove convergence of
Galerkin method by combining with HF estimates of continuity
and coercivity constants - talks by Spence/Smyshlyaev
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Polynomial approximation of analytic functions

Let Πp = {polynomials of degree ≤ p}. If v(s) is analytic in Dε,
the ε neighbourhood of [0, L], and

|v(s)| ≤ M, for s ∈ Dε,

then, for some C , τ > 0,

inf
vp∈Πp

‖v − vp‖L2(0,L) ≤ C M e−τp.

N.B. If v is k-dependent but M = O(1) as k →∞ then
p = O(1) maintains accuracy.
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|v(s)| ≤ M, for s ∈ Dε,
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inf
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Polynomial approximation of analytic functions

Let Πp = {polynomials of degree ≤ p}. If v(s) is analytic in Dε,
the ε neighbourhood of [0, L], and

|v(s)| ≤ M, for s ∈ Dε,

then, for some C , τ > 0,

inf
vp∈Πp

‖v − vp‖L2(0,L) ≤ C M e−τp.

N.B. If v(s) = exp(iks) then M = exp(kε) and p = O(k)
needed to maintain accuracy. cf. M. Ainsworth (2004)
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High frequency asymptotics - convex polygons

According to GTD, for a convex polygon, the leading-order
asymptotic behaviour on a “lit” side is

∂u

∂n
∼ 2

∂ui

∂n
+ v+(s)eiks + v−(s)e−iks , k →∞

where s is arc length along the side.
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High frequency asymptotics - convex polygons

On an “unlit” side it is just

∂u

∂n
∼ v+(s)eiks + v−(s)e−iks , k →∞.
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Regularity results - convex polygons

Theorem (Hewett, Langdon and Melenk (2013))

Let Ω be a convex polygon. Then on any side Γj

∂u

∂n
(x) = Ψ(x) + eiksv+

j (s) + e−iksv−j (Lj − s), x ∈ Γj ,

where

Ψ := 2∂u
i

∂n if Γj is lit and Ψ := 0 otherwise;

The functions v±j (s) are analytic in Re[s] > 0, with:

|v+
j (s)| ≤ C

{
k3/2 log1/2(2 + k)|ks|π/Ωj−1, 0 < |s| ≤ 1/k ,

k3/2 log1/2(2 + k)|ks|−1/2, |s| > 1/k ,

where Ωj is the exterior angle at the vertex Pj .
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hp approximation space VN

Approximate v±j by piecewise polynomials of order p on
overlapping geometric meshes, graded towards the corner
singularities

Here σ is a grading parameter - typically σ ≈ 0.15.

Simon Chandler-Wilde High frequency scattering



Error estimate - convex polygons

Theorem (Hewett, Langdon and Melenk (2013))

For k ≥ k0 > 0, there exist constants C , τ > 0, such that∥∥∥∥∂u∂n − vN

∥∥∥∥
L2(Γ)

≤ Ck5/2e−pτ .

Total number of degrees of freedom N = O
(
p2
)

We can achieve any required accuracy with N growing like log2 k
as k →∞, rather than like k , as for a standard BEM.
Method is essentially frequency independent.
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Numerical results - equilateral triangle
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Numerical results, fixed N = 300, triangle

k N
L/λ (1/k)‖∂u/∂n − v300‖L2(Γ) COND rel. cpt(s)

5 20.00 1.96×10−1 3.50×102 1.00
10 10.00 1.48×10−1 2.77×101 0.99
20 5.00 1.12×10−1 3.51×101 0.97
40 2.50 8.50×10−2 4.60×101 1.11
80 1.25 6.44×10−2 6.12×101 1.07

160 0.63 4.88×10−2 8.27×101 1.04
320 0.31 3.70×10−2 1.12×102 1.20
640 0.16 2.80×10−2 1.53×102 1.20

1280 0.08 2.16×10−2 2.08×102 1.23
2560 0.04 1.65×10−2 2.83×102 1.33
5120 0.02 1.26×10−2 3.85×102 1.33
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Non-convex polygons

The leading-order asymptotic behaviour on Γ is more complicated:

Partial illumination Re-reflections
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Restrict attention to a particular class of nonconvex polygons

Assume that:

1 Each exterior angle is either a right angle or greater than π.
2 At each right angle, the obstacle lies within the dashed lines:

Ω

Examples:

NC
NC

C

C

C

NC

NC
C

C

NC

NC
C

On a “convex” (C) side, ∂u/∂n behaves as in convex case

Question: What happens on a “nonconvex” (NC) side?
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Regularity results on a nonconvex side

x
r

s
Ω

α

ui

For x ∈ Γj the following representation holds

∂u

∂n
(x) = Ψ(x) + v+

j (Lj + s)e iks + v−j (Lj − s)e−iks + ṽj(s)e ikr
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For x ∈ Γj the following representation holds

∂u

∂n
(x) = Ψ(x) + v+

j (Lj + s)e iks + v−j (Lj − s)e−iks + ṽj(s)e ikr

Leading order behaviour

Ψ(x) :=

{
2∂u

d

∂n (x), π
2 ≤ α ≤

3π
2 ,

0, otherwise,

where ud is the known solution of a canonical diffraction problem.
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Regularity results on a nonconvex side

x
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Ω
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For x ∈ Γj the following representation holds

∂u

∂n
(x) = Ψ(x) + v+

j (Lj + s)e iks + v−j (Lj − s)e−iks + ṽj(s)e ikr

Theorem

The functions v±j have the same properties as those for the convex
sides, in particular are analytic in the right hand complex plane.
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Regularity results on a nonconvex side

x
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For x ∈ Γj the following representation holds

∂u

∂n
(x) = Ψ(x) + v+

j (Lj + s)e iks + v−j (Lj − s)e−iks + ṽj(s)e ikr

Theorem

The function ṽj is analytic in a complex k-independent
ε-neighbourhood Dε of the side Γj with

|ṽj(s)| ≤ Ck log1/2(2 + k), s ∈ Dε, k ≥ k1.
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Regularity results on a nonconvex side

x
r

s
Ω

α

ui

For x ∈ Γj the following representation holds

∂u

∂n
(x) = Ψ(x) + v+

j (Lj + s)e iks + v−j (Lj − s)e−iks + ṽj(s)e ikr

Approximation space:

Replace v−j by a piecewise polynomial supported on a
geometric mesh.

Replace v+
j and ṽj by polynomials supported on the whole

side.
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Error estimate - nonconvex polygons

Theorem (C-W, Hewett, Langdon and Twigger (2015))

For k ≥ k0 > 0, there exist constants C , τ > 0, such that∥∥∥∥∂u∂n − vN

∥∥∥∥
L2(Γ)

≤ Ck5/2e−pτ ,

Total number of degrees of freedom N = O
(
p2
)
.

Again, we can provably achieve any required accuracy with N
growing like log2 k as k →∞, rather than like k, as for a standard
BEM.
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Numerical results - nonconvex polygon

Partial illumination Re-reflections
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Relative max. error on circle in domain

Partial illumination Re-reflections
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3D screen (Hargreaves, Hewett, Lam, Langdon 2015)

Recall ansatz:

φ(x) ≈ V0(x , k) +
M∑

m=1

Vm(x , k)eikφm(x)

Leading order behaviour is much more complicated than for 2D

Much harder to identify M and φm, m = 1, . . . ,M, so that
corresponding amplitudes Vm are not oscillatory.

“Edge waves” and “corner waves”, diffracted by edges and
corners respectively, travel in many directions across surface of
screen.

These waves are rediffracted infinitely often by the other
edges and corners of the screen, taking a different direction of
travel after each rediffraction.
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Solution behaviour
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Solution behaviour without leading order
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Shadow boundaries associated with edge waves
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Hybrid approximation space

Subtract leading order oscillatory behaviour (incident field).

Small conventional elements around the rim (to represent
singular behaviour at edge).

Large hybrid elements in the centre; basis functions are plane
waves multiplied by polynomial basis functions (order p).

Phase functions on hybrid elements correspond to first order
diffraction directions (“edge plane waves”).
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Hybrid approximation space

Subtract leading order oscillatory behaviour (incident field).

Small conventional elements around the rim (to represent
singular behaviour at edge).

Large hybrid elements in the centre; basis functions are plane
waves multiplied by polynomial basis functions (order p).

Phase functions on hybrid elements correspond to first order
diffraction directions (“edge plane waves”). Also, reflections
of EPWs.
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Preliminary numerical results
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Scattering by penetrable obstacles (Groth, Hewett,
Langdon)
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Geometrical optics
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Diffraction by a penetrable wedge
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HNA approximation space
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Numerical results: triangle
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Multiple scattering configurations (with Gibbs, Langdon,
Moiola)

Scattering configuration
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Summary

Standard BEM (e.g. BEM++) is error controllable and
adaptable, but cost grows with frequency;

Asymptotic methods are fast, but inaccurate when frequency
is not sufficiently large;

HNA BEM combines best features of BEM and asymptotic
methods, but is limited to certain classes of problems;

Much more to be done to extend method as a computational
tool to wider geometries - see open problems session

Much deep mathematics needed to prove error estimates more
broadly, especially in 3D - see open problem session
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Further reading:

C-W, Graham, Langdon & Spence, Acta Numerica 21 (2012), pp.
89–305.

C-W & Langdon, Acoustic scattering: high frequency boundary element

... in Unified transform for BVPs: applications and advances, A S Fokas

& B Pelloni (eds.), SIAM, 2015, pp. 181–226.
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