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Topological Solitons

For the purposes of this talk, a topological soliton can be defined as a
stable, particle-like solution to a non-linear field theory.

Stability is due to the presence of some topological charge, B ∈ N.
This is usually a generalised winding number.

Examples include sine-Gordon kinks, sigma-model lumps, monopoles,
vortices, Skyrmions, Yang-Mills instantons...
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Example: The Sine-Gordon Model

Consider the Lagrangian in two spacetime dimensions:

L =
1

2
∂µφ(x)∂µφ(x)− (1− cosφ(x))

Potential has an infinite number of vacua when φ = 2πn, n ∈ N.

This leads to a topological charge

N =
φ+ − φ−

2π

where φ(x)→ φ± as x → ±∞.
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Energy Bounds for Topological Solitons

We can put a lower bound on the static energies of soliton solutions
using a Bogomolny argument.

The static energy in the sine-Gordon model is

E =

∫ ∞
−∞

(
1

2
φ′

2
+ (1− cosφ)

)
dx

By completing the square we can write

E =

∫ ∞
−∞

{(
1√
2
φ′ ±

√
(1− cosφ)

)2

∓
√

2(1− cosφ)φ′

}
dx ≥ 8|N|

Saturation of the bound implies a first order equation of motion. In
this example we can solve it (for N = 1) to find analytic solutions,
but this is not always possible.
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Scaling Arguments

Derrick’s Theorem provides a non-existence theorem for solitons.

If a soliton is to be stable, then it must be stable against spatial
rescalings.

As an example, we can write the sine-Gordon static energy as

E =

∫ ∞
−∞

φ′
2
dx +

∫ ∞
−∞

(1− cosφ) dx = E2 + E0

Under a spatial rescaling x → λx then

E → E (λ) =
1

λ
E2 + λE0

Minimising this over λ gives a scale for the size of the soliton.
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The O(2)− σ Model

Consider a three-component unit vector φ with the Lagrangian

L =
1

2
∂µφ · ∂µφ +

λ

2
(1− φ · φ)

For a finite static energy we require φ→ φ∞ as |x | → ∞. W.L.O.G
we can take φ∞ = (0, 0, 1).

In two spatial dimensions, this compactifies R2 to S2, and we can
write φ : S2 → S2.

The map has an associated winding number

B = − 1

4π

∫
φ · (∂xφ× ∂zφ) dx dz ,

which we identify with the topological charge.

The static energy is invariant under spatial rescalings.
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Yang-Mills Instantons

In four spatial dimensions, consider the Lagrangian

L = −1

2
Tr(FµνF

µν)

where Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ]

The “solitons” of this system are called Yang-Mills instantons, and
they are also scale-invariant.

YM instantons are highly symmetric and there is a wealth of
mathematics concerning them!
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Skyrmions

Skyrmions are solitons of the Skyrme model, in three spatial
dimensions

It is a modified σ-model with target space S3 = SU(2)

L =
1

2
Tr(∂µU∂

µU†) +
1

16
Tr([∂µUU

†, ∂νUU
†][∂µUU†, ∂νUU†])

Obtained as a low-energy effective field theory for QCD in the large
colour limit

The topological charge is identified with baryon number

Skyrmions possess interesting symmetries, although their binding
energies are too large
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Holographic QCD: The Sakai-Sugimoto Model

The Sakai-Sugimoto is the leading example of an AdS/QCD theory

Formulated in a (4+1) dimensional spacetime with a warped metric
of the form

ds2 = H(z)dxµdx
µ +

1

H(z)
dz2

where H(z) =
(
1 + z2

)p
The Sakai-Sugimoto takes p = 2

3 and we say the spacetime is AdS-like
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Holographic QCD: The Sakai-Sugimoto Model

The Lagrangian is, in suitable units:

L = −1

2
Tr(FΓ∆F Γ∆) +

9π

λ
ω5(AΓ)

where AΓ and FΓ∆ are some U(2) gauge field and field strength
respectively. λ is the ’t Hooft coupling.

The second term is a Chern-Simons term, which takes the form of a
coupling between the gauge field and a topological quantity

Topological solitons in the bulk correspond to Skyrmions on the
boundary (coupled to a tower of vector mesons)

This model is analytically and numerically very complicated

Matt Elliot-Ripley (Durham University) Toy models of holographic baryons 17/12/2014 11 / 20



Holographic QCD: The Sakai-Sugimoto Model

The Lagrangian is, in suitable units:

L = −1

2
Tr(FΓ∆F Γ∆) +

9π

λ
ω5(AΓ)

where AΓ and FΓ∆ are some U(2) gauge field and field strength
respectively. λ is the ’t Hooft coupling.

The second term is a Chern-Simons term, which takes the form of a
coupling between the gauge field and a topological quantity

Topological solitons in the bulk correspond to Skyrmions on the
boundary (coupled to a tower of vector mesons)

This model is analytically and numerically very complicated

Matt Elliot-Ripley (Durham University) Toy models of holographic baryons 17/12/2014 11 / 20



Holographic QCD: The Sakai-Sugimoto Model

The Lagrangian is, in suitable units:

L = −1

2
Tr(FΓ∆F Γ∆) +

9π

λ
ω5(AΓ)

where AΓ and FΓ∆ are some U(2) gauge field and field strength
respectively. λ is the ’t Hooft coupling.

The second term is a Chern-Simons term, which takes the form of a
coupling between the gauge field and a topological quantity

Topological solitons in the bulk correspond to Skyrmions on the
boundary (coupled to a tower of vector mesons)

This model is analytically and numerically very complicated

Matt Elliot-Ripley (Durham University) Toy models of holographic baryons 17/12/2014 11 / 20



Holographic QCD: The Sakai-Sugimoto Model

The Lagrangian is, in suitable units:

L = −1

2
Tr(FΓ∆F Γ∆) +

9π

λ
ω5(AΓ)

where AΓ and FΓ∆ are some U(2) gauge field and field strength
respectively. λ is the ’t Hooft coupling.

The second term is a Chern-Simons term, which takes the form of a
coupling between the gauge field and a topological quantity

Topological solitons in the bulk correspond to Skyrmions on the
boundary (coupled to a tower of vector mesons)

This model is analytically and numerically very complicated

Matt Elliot-Ripley (Durham University) Toy models of holographic baryons 17/12/2014 11 / 20



Holographic QCD: The Sakai-Sugimoto Model

The Lagrangian is, in suitable units:

L = −1

2
Tr(FΓ∆F Γ∆) +

9π

λ
ω5(AΓ)

where AΓ and FΓ∆ are some U(2) gauge field and field strength
respectively. λ is the ’t Hooft coupling.

The second term is a Chern-Simons term, which takes the form of a
coupling between the gauge field and a topological quantity

Topological solitons in the bulk correspond to Skyrmions on the
boundary (coupled to a tower of vector mesons)

This model is analytically and numerically very complicated

Matt Elliot-Ripley (Durham University) Toy models of holographic baryons 17/12/2014 11 / 20



A Lower-Dimensional Analogue

Studying a low-dimensional analogue of the SS model makes
computations and numerical simulations more feasible

We can use these toy models to study bulk solitons and test
predictions made in the full SS model

A natural analogue for the Yang-Mills term is an O(2)− σ term, since
both are scale invariant

We still have a choice to make regarding the analogue of the
Chern-Simons term
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Stabilization via the Baby Skyrme Term

One option is to represent the Chern-Simons term by a baby-Skyrme
term

L =
1

2
gµν∂µφ · ∂νφ +

κ2

4
gµνgαβ(∂µφ× ∂αφ) · (∂νφ× ∂βφ)

For small κ (the analogue of large ’t Hooft coupling) the solitons of
this model are small compared to the curvature of spacetime

We can approximate these solitons well by flat-space σ-model lumps

The curvature of spacetime and the baby-Skyrme interaction pick out
a preferred size
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Static Solutions of the BS Model

Here are some numerical static solutions to the baby-Skyrme model in
this curved space, with parameter value κ = 0.01
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Finite Density Chains

We can also use this model to study dense QCD (its low-dimensional
analogue)

At some critical density it has been shown that the baryon chains
undergo a phase transition to produce “baryonic popcorn”. This is
more energetically favourable that the “dyon salt”.
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Stabilization via a Vector Meson Term

Another (arguably better) candidate for our low-dimensional model is
given by

L =
1

2
gµν∂µφ · ∂νφ−

1

4
gµαgνβ(∂µων − ∂νωµ)(∂αωβ − ∂βωα)

+
1

2
gµνM2ωµων + gωµB

µ

Bµ = − 1
8π
√
H
εµαβφ · (∂αφ× ∂βφ) is the conserved topological

current of the system

It can be shown that the Vector Meson model tends to the Baby
Skyrme model in the limit

g ,M →∞ ,
g

M
∝ κ constant
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Static Solutions of the VM Model

For large g and M, it can be numerically confirmed that solitons in
both model are similar.

As we shrink g and M, keeping their ratio fixed, different qualitative
behaviour can be observed.
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Finite Density Chains

In the full Sakai-Sugimoto model it is predicted that finite density
baryon chains form a “zig-zag” pattern.

This requires that the optimal separation between two solitons is
greater than the size of a single soliton

Can we find a parameter regime in the Vector Meson model to
reproduce this behaviour?
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Summary

Topological solitons have been introduced and many examples have
been mentioned

Introduced the Sakai-Sugimoto model and looked at two
lower-dimensional analogues

Finite density chains of solitons have been investigated in both models

At lower densities the chains in both models look similar, but at
higher densities results are not yet conclusive

Numerical results require further verification, and analogues of the
dyon salt or popcorn phenomena are still to be found in the vector
meson model
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Thank you for listening.
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